
© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 543

Identification of Dynamic Performance, Power, and

Resource Management in Chip of Multiprocessors

PRIYA MISHRA

Department of Computer Science, Siddaganga Institute of Technology

Abstract— Multicore CPUs are currently supported by all

modern electronic gadgets. Power management, on the

other hand, is one of the most important aspects of today's

microprocessor architecture. The purpose of power

management is to get the most out of a limited amount of

energy. Power management strategies must strike a

compromise between the pressing requirement for better

performance/throughput and the negative thermal impacts

of aggressive power usage. This study involves into the

fundamentals of multicore processors, as well as current

research topics in the field, before focusing on power

management concerns in multicore architectures. This

paper's main goal is to survey and explain existing power

management approaches. Microprocessor performance

has risen at an exponential rate in recent years. Parallelism

has been achieved via a variety of techniques, including

pipelining, super- scalar architectures, and chip

multiprocessors or multicore processors. We discuss the

many degrees of parallelism and how subsequent

technologies attempted to leverage each level in this paper.

Reactive and predictive power management strategies are

the two primary kinds of developed power management

techniques. The technique reacts to changes in workload

performance in reactive approaches. In other words, a

workload may contain phases that need high performance,

as well as ones that require I/O delays and poor

performance. When the workload status changes, the

method adjusts to the new situation. Predictive approaches,

on the other hand, can help to solve this problem. Those

strategies detect workload phase changes before they

occur, allowing them to intervene quickly before a

program's phase changes. As a consequence, you get the

best energy saving and performance outcomes.

Indexed Terms— Multi-core Architecture, Parallelism,

Super-Scalar Architecture, Reactive and Predictive Power

Management.

I. INTRODUCTION

The development of multi-core CPUs ushered forth a

slew of new study fields. Prior to the introduction of

multicore computers, the speed of microprocessors

grew at an exponential rate. More transistors are

required for increased speed. Moore discovered that

every two years, the number of transistors doubles [1].

With the tremendous growth in speed, the number of

transistors in processors has expanded to the point that

Moore's law can no longer be used because an

incredibly large number of transistors switching at

extremely high frequencies entails extremely high-

power consumption. The introduction of multicore

computers sparked a flurry of related research. To

make use of the potential of multicore techniques, it's

critical to divide code into threads that can execute

independently. However, not every code can be

broken down in this way [1]. Serialized code

diminishes the processor's projected performance and

wastes a lot of energy. The term "asymmetric multi-

core processor" refers to a CPU with one main core

and numerous tiny cores. The serial portion of the code

will be moved to the main core, while the parallel

portion will be performed on the tiny cores. This

speeds up both the serial and parallel parts by

leveraging the big core and executing them

simultaneously on the small and large cores to achieve

high throughput. We suggest using reconfigurable

cores to enable cloud latency-critical, interactive

services and batch applications to co- schedule. This

involves meeting the stringent QoS requirements of

latency- critical interactive services and optimizing the

throughput of batch applications while always

maintaining within the server's allowable power

budget, which is set either by the chip's power budget

or by a data center-wide global power management.

Previous work on reconfigurable multicores, such as

Flicker, has focused solely on batch workloads,

resulting in QoS breaches and uncertain performance

for latency-sensitive services. CuttleSys is an online

resource manager that blends scalable machine

learning with quick design space exploration to

successfully explore the enormous configuration space

and arrive at a high-performing solution [2]. To begin,

the system uses collaborative filtering, specifically

PQ- reconstruction with Stochastic Gradient Descent

(SGD), to estimate an application's performance (tail

latency for latency-critical applications and

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 544

throughput for batch applications) and power

consumption across core and cache configurations

without the need for exhaustive profiling. Second, it

uses a novel, parallel Dynamically Dimensioned

Search (DDS) method to quickly identify a per-job,

globally advantageous configuration that meets QoS

for latency- sensitive workloads while also

maximizing throughput for batch processes, all while

staying within the power budget. CuttleSys can

reassess its conclusions and respond to changes in

application behavior since both strategies keep

overheads minimal, a few milliseconds [2].

II. LITERATURE REVIEW

Computer architects employ a variety of ways to

accomplish dynamic resource management in this

environment. Model- based and Rule-based heuristic

approaches create choices in real-time using a model

or an encoding algorithm [3]. Optimization

approaches seek to reduce or maximize a goal while

taking into account specific restrictions. For various

observed situations, machine learning systems

discover the optimum input values. Finally, control

theoretic approaches adapt to situations through their

inherent feedback loop [3]. Dynamic resource

management has been proven to be an excellent

strategy for increasing computer system

dependability, efficiency, and performance [3].

Modern multicores make it more difficult to manage

shared resources during runtime since they enable a

wide range of workloads with changing resource needs

and, at times, contradictory limits. Homogeneous

architectures have substantial issues due to the

dynamic behavior of workloads that change among

concurrent applications. In emerging heterogeneous

multicore processors (HMPs), where heterogeneous

compute units are deployed on a single chip, the need

for a holistic dynamic resource management technique

becomes more critical, allowing trade-offs between

objectives such as maximizing performance and

minimizing power consumption [3].

Previous research on energy optimization in single and

multicore CPUs got a lot of attention. DVFS and task

migration were two of the most common strategies

used by prior optimization systems. These strategies

are utilized as key control mechanisms to steer

processor operation toward low energy consumption

while maintaining acceptable performance. As part of

the algorithm that implements the optimization

solution, control choices are made based on

estimations or projections of energy or other

associated variables in a reactive or proactive way [4].

The monitoring and decision-making of a system are

frequently done on a regular basis, during intervals

known as control periods or epochs. It's the process

that distinguishes the impact of a certain energy

optimization approach. For the sake of brevity, we will

only examine past work that used techniques from the

general field of machine learning. The article offers a

multinomial logistic regression-based classification

approach that classifies workload into a predefined set

of classes at runtime, which is subsequently used to

develop a DVFS algorithm [4]. For offline workload

characterization, a multinominal logistic regression

classifier is created utilizing a huge number of

performance counters. This classifier is used to

anticipate workload for a specific application at

runtime, and then frequency and thread packing are

chosen to maximize performance within a certain

power budget [4]. This research focuses on low-

overhead and generic thread criticality prediction

algorithms that make use of on-chip counters and

measurements.

III. METHODOLOGY

One of the key constraints in the pipelined processor

architecture is that the pipeline can only be started with

one instruction, regardless of how many instructions

can execute at various phases at the same time. A

superscalar processor has several copies of the whole

data route (including the ALU), allowing it to issue as

many instructions as the number of copies allows.

Because each instruction has its own dedicated data

route, it works essentially independently. In the 1990s

and early 2000s, superscalar processor principles were

always merged with pipelined processor concepts to

create the pipelined superscalar processor, which was

widely employed. A superscalar processor's core

greatest accuracy for criticality prediction after testing

a range of strategies based on instruction counts and

other options [2]. Our research demonstrates how to

turn memory statistics into thread criticality

predictions (TCPs). We also look at combining them

with condense estimators, which can help decrease the

high-cost reactions to wrong predictions by gauging

the probability of right forecasts. We also illustrate the

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 545

universality of our TCP hardware by putting it to two

different purposes. To begin, we look at how TCP may

help Intel Threading Building Blocks (TBB) improve

task-stealing decisions for thread load balancing [5].

Threads with empty task queues can "steal" work from

the most crucial thread and minimize program

runtimes by accurately and lightweight identifying the

critical thread. We focus on barrier-based applications

in the second application study and utilize TCP to

guide dynamic voltage and frequency scaling (DVFS)

decisions. We explain how determining the degree of

criticality of distinct threads may be valuable as well

[5]. Operations include acquiring and decode a stream

of instructions, branch prediction determining if there

are any dependence between instructions, and lastly

distribute instructions to various functional units to

issued. It significantly improves system's overall

performance a throughput. However, due to t

dependency problem described in pipeline processors,

only a limited number instructions can run at the same

time. Furthermore, the number of granted orders is

restricted. It also adds a lot of hard overhead, resulting

in bigger regions a higher power usage. In the design

of mu core processors, power management h become

a critical concern. Increased pow consumption has a

number of negative consequences, including unstable

thermal characteristics of the die, which affects system

performance, making power consumption a problem

that is often more critical than speed. A key finding is

that threads operating on various cores do not require

the same amount of power. To establish a good

balance between scalar performance/throughput

performance and power, it's necessary to dynamically

alter the amount of power utilized for processing based

on the code's temporal demands. Developed power

management strategies may be categorized into two

primary categories: reactive and predictive. The

technique reacts to changes in workload performance

in reactive approaches. In other words, a workload

may contain phases that need high performance, as

well as ones that require I/O delays and poor

performance.

Figure 1: A Tree diagram for Power Management

Technique

When the workload status changes, the method adjusts

to the new situation. However, there may be a lag

between changes in workload phase and changes in

power adaptation, resulting in inefficient energy usage

or performance loss. Predictive approaches, on the

other hand, can help to solve this problem. Those

strategies detect workload phase changes before they

occur, allowing them to intervene quickly before a

program's phase changes. As a result, energy savings

and performance are maximized. However, because

no workload can be completely foreseen, reactive

approaches are utilized operate at high speeds all of the

time. Th are occasional waiting times, for example

owing to memory read/write operation which need

conserving computing power for the sections that

cannot be expected, which often account for more than

60% of the total effort. As a result, reactive tactics are

unavoidable, and we will concentrate on them in this

research. To obtain the optimum level of power

management in multi-core processors, we are looking

at some of the dynamic strategies described in Fig. 1.

We also go through some of the drawbacks that each

of these strategies has, as well as how past research has

sought to address them.

A. Power

This method was employed in the early days of

microprocessors. The essential idea is that the entire

command is performed in a single clock cycle. All

subsequent instructions in the instruction stream must

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 546

wait until an instruction has completed its execution

before proceeding. Naturally, certain instructions take

a long time to execute/wait, affecting the execution of

other instructions and lowering overall system

performance [6].

A. Pipelining

Instead of processing the entire command at once,

pipelining breaks the single-cycle processor into many

stages, each of which executes a piece of the

instruction alongside another portion of another

instruction [6]. If we have a three-stage pipelined

processor, for example, it implies the single-cycle

processor is separated into three phases, such as

FETCH OPERANDS, DECODE, and EXECUTE.

Then we may run three instructions at the same time.

The first instruction will be in the EXECUTE stage at

clock cycle 3, while the second will be in the

DECODE stage and the third will be in the FETCH

OPERANDS stage.

IV. OUT-OF-ORDER PROCESSOR

A. Deep pipelining

The goal of deep pipelining is to greatly increase the

number of pipeline stages. From the description of the

pipelined processor, it is clear that the more steps you

add, the faster the execution. Many considerations,

such as the existing risks and the logic overhead,

restrict the number of steps. Many approaches have

been proposed to alleviate the data dependence

problem, as we described in the pipelined processor.

Forwarding, delaying, and register renaming are

examples of these strategies [7].

B. Super scalar processor

One of the key constraints in the pipelined processor

architecture is that the pipeline can only be started with

one instruction, regardless of how many instructions

can execute at various phases at the same time. A

superscalar processor has several copies of the whole

data route (including the ALU), allowing it to issue as

many instructions as the number of copies allows.

Because each instruction has its own dedicated data

route, it works essentially independently [7].

C. OoO (Out-of-Order) processors

OoO processors scan the instruction window ahead of

time for independent instructions that can be

performed right away. This indicates that instructions

are not carried out in the sequence in which they were

written. When an instruction's operands are accessible,

the instruction is executed regardless of the program's

sequencing. The problem of dependencies caused by

pipelined superscalar processors is solved by OoO

processors [5].

D. Chip multiprocessors

Thread level parallelism is effectively exploited by

chip multiprocessors or multi- core CPUs. A process

is a program that is presently running. There are one

or more threads in each process. A server program, for

example, would have at least two threads, one for

accepting connections and the other for outbound

connections. Because they run in parallel, no thread

has to wait for the other to finish. Multi-threading is

underutilized in typical uniprocessor systems [4].

E. Base Model

The overall model for estimating the number of cycles

C takes into account the number of instructions N, the

effective dispatch rate Deff, the number of branches

mispredictions mbpred, the branch resolution time

cres, the front-end pipeline depth cfe, the number of

instructions fetch misses at each cache level I mILi,

the access latency to each cache level cLi, the size of

the ROB (Reorder Buffer) ROB,1 the number of LLC

load

To deal with the incompatibilities between the x86

(the model's current target ISA) and the Alpha

instruction set (the original target ISA). The first and

most significant distinction is that x86 is a CISC

design, whereas Alpha is a RISC architecture.

VI. EXPERIMENTAL SETUP

The CPI of the benchmarks for the baseline

configuration produced by simulation using Sniper

(left bar) and our model (right bar) are shown in Fig.

6. (Right bar). Across all benchmarks, the average

absolute inaccuracy is 7.6%. Positive and negative

errors are present, indicating that our model is not

biased. Gromacs has a maximum inaccuracy of 22.3

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 547

percent, which is owing to significant functional unit

contention at extremely short timeframes. We can't

simulate this very well since we require samples of at

least 1,000 instructions, which are averaged out to get

this fine-grained behavior [7]. To depict an

application's performance bottlenecks by displaying

how much performance is influenced by instruction

execution, cache misses, and branch misses.

Figure.2. The entire CPI is broken down into CPI

stack components.

We utilize Sniper's built in CPI stack generator for the

left bar [6]. The model's CPI stacks are created as

follows. The model Equation is made up of many

components that represent various penalties. Each

component can be represented independently in a

stack, with the top of the stack equaling the overall

cycle count. The CPI stack components are obtained

by dividing the components by the number of

instructions.

CONCLUSION

Based on allocation choices and control decisions, we

suggested a categorization for dynamic resource

management. We looked at how heuristics, machine

learning, and control theoretic approaches are utilized

in computer systems to tune architectural parameters.

Power, energy, temperature, Quality-of-Service, and

dependability are the resource metrics we're looking at

while researching these strategies. We looked at some

of the recent initiatives to use machine learning

technologies to improve forecast accuracy for

allocation and resource management. We investigated

the evolution of control theoretic approaches in

dynamic resource management to provide resilience in

resource management of multi/many-core systems.

Finally, an overview of the coverage of existing on-

chip resource management strategies explored in this

paper was addressed. However, combining certain

tactics with solutions designed to better those

procedures is a fantastic option to consider. Thread

scoring in many-type asymmetric cores, for example,

appears to be quite promising. Future research should

look at evaluating such hybrid, compatible

techniques/improvements in order to achieve even

high performance and energy efficiency.

REFERENCES

[1] K. M. Attia, M. A. El-Hosseini and H. A. Ali,

"Dynamic power management techniques," Ain

Shams Engineering Journal, vol. 8, no. 1, pp.

445-456, 2017.

[2] N. Kulkarni, G. Gonzalez-Pumariega, A.

Khurana and C. A. Shoemaker, "CuttleSys: Data-

Driven Resource Management for Interactive

Services on Reconfigurable Multicores," 53rd

Annual IEEE/ACM International Symposium on

Microarchitecture, vol. 1, no. 1, pp. 650-664,

2020.

[3] K. Moazzemi, A. Kanduri, D. Juh ́asz and A.

Miele, "Trends in On-Chip Dynamic Resource

Management," IEEE, vol. 1, no. 1, pp. 1-8, 2021.

[4] M. G. Moghaddam, W. Guan and C. Ababei,

"Dynamic Energy Optimization in Chip

Multiprocessors Using Deep Neural Networks,"

IEEE TRANSACTIONS ON MULTI-SCALE

COMPUTING SYSTEMS, vol. 4, no. 4, pp. 649-

661, 2018.

[5] Manakkadu, Sheheeda, Sourav Dutta, and

Nazeih M. Botros. "Power aware parallel

computing on asymmetric multiprocessor."

In 2014 27th IEEE International System-on-Chip

Conference (SOCC), pp. 35-40. IEEE, 2014.

[6] A. Bhattacharjee and M. Martonosi, "Thread

Criticality Predictors for Dynamic Performance

Power, and Resource Management in Chip

Multiprocessors," IEEE, vol. 1, no. 1, pp. 1 -12,

2021.

[7] Sam Van den Steen, S. Eyerman, S. D. Pestel and

M. Mechri, "Analytical Processor Performance

and Power Modeling Using Micro-Architecture

Independent Characteristics," IEEE

TRANSACTIONS ON COMPUTERS, vol. 65, no.

12, pp. 3537-3551, 2016.

© JUL 2022 | IRE Journals | Volume 6 Issue 1 | ISSN: 2456-8880

IRE 1703694 ICONIC RESEARCH AND ENGINEERING JOURNALS 548

[8] Mariam Manakkadu, Sheheeda. "POWER-

AWARE PERFORMANCE OPTIMIZATION

ON MULTICORE ARCHITECTURES."

[9] S. V. d. Steen, S. D. Pestel and M. Mechri,

"Micro-Architecture Independent Analytical

Processor Performance and Power Modeling,"

IEEE, vol. 25, no. 4, pp. 32-41, 2015.

[10] Carlson, Trevor E., Wim Heirman, and Lieven

Eeckhout. "Sniper: Exploring the level of

abstraction for scalable and accurate parallel

multi-core simulation." In Proceedings of 2011

International Conference for High Performance

Computing, Networking, Storage and Analysis,

pp. 1-12. 2011.

[11] Heirman, Wim, Souradip Sarkar, Trevor E.

Carlson, Ibrahim Hur, and Lieven Eeckhout.

"Power-aware multi-core simulation for early

design stage hardware/software co-

optimization." In Proceedings of the 21st

international conference on Parallel

architectures and compilation techniques, pp. 3-

12. 2012.

[12] Jha, Sudhanshu Shekhar, Wim Heirman, Ayose

Falcón, Jordi Tubella, Antonio González, and

Lieven Eeckhout. "Shared resource aware

scheduling on power-constrained tiled many-

core processors." Journal of Parallel and

Distributed Computing 100 (2017): 30-41.

[13] Jha, Sudhanshu Shekhar, Wim Heirman, Ayose

Falcón, Jordi Tubella, Antonio González, and

Lieven Eeckhout. "Shared resource aware

scheduling on power-constrained tiled many-

core processors." Journal of Parallel and

Distributed Computing 100 (2017): 30-41.

