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Abstract— Multicore CPUs are currently supported by all 

modern electronic gadgets. Power management, on the 

other hand, is one of the most important aspects of today's 

microprocessor architecture. The purpose of power 

management is to get the most out of a limited amount of 

energy. Power management strategies must strike a 

compromise between the pressing requirement for better 

performance/throughput and the negative thermal impacts 

of aggressive power usage. This study involves into the 

fundamentals of multicore processors, as well as current 

research topics in the field, before focusing on power 

management concerns in multicore architectures. This 

paper's main goal is to survey and explain existing power 

management approaches. Microprocessor performance 

has risen at an exponential rate in recent years. Parallelism 

has been achieved via a variety of techniques, including 

pipelining, super- scalar architectures, and chip 

multiprocessors or multicore processors. We discuss the 

many degrees of parallelism and how subsequent 

technologies attempted to leverage each level in this paper. 

Reactive and predictive power management strategies are 

the two primary kinds of developed power management 

techniques. The technique reacts to changes in workload 

performance in reactive approaches. In other words, a 

workload may contain phases that need high performance, 

as well as ones that require I/O delays and poor 

performance. When the workload status changes, the 

method adjusts to the new situation. Predictive approaches, 

on the other hand, can help to solve this problem. Those 

strategies detect workload phase changes before they 

occur, allowing them to intervene quickly before a 

program's phase changes. As a consequence, you get the 

best energy saving and performance outcomes. 

Indexed Terms— Multi-core Architecture, Parallelism, 

Super-Scalar Architecture, Reactive and Predictive Power 

Management. 

I. INTRODUCTION 

The development of multi-core CPUs ushered forth a 

slew of new study fields. Prior to the introduction of 

multicore computers, the speed of microprocessors 

grew at an exponential rate. More transistors are 

required for increased speed. Moore discovered that 

every two years, the number of transistors doubles [1]. 

With the tremendous growth in speed, the number of 

transistors in processors has expanded to the point that 

Moore's law can no longer be used because an 

incredibly large number of transistors switching at 

extremely high frequencies entails extremely high-

power consumption. The introduction of multicore 

computers sparked a flurry of related research. To 

make use of the potential of multicore techniques, it's 

critical to divide code into threads that can execute 

independently. However, not every code can be 

broken down in this way [1]. Serialized code 

diminishes the processor's projected performance and 

wastes a lot of energy. The term "asymmetric multi-

core processor" refers to a CPU with one main core 

and numerous tiny cores. The serial portion of the code 

will be moved to the main core, while the parallel 

portion will be performed on the tiny cores. This 

speeds up both the serial and parallel parts by 

leveraging the big core and executing them 

simultaneously on the small and large cores to achieve 

high throughput. We suggest using reconfigurable 

cores to enable cloud latency-critical, interactive 

services and batch applications to co- schedule. This 

involves meeting the stringent QoS requirements of 

latency- critical interactive services and optimizing the 

throughput of batch applications while always 

maintaining within the server's allowable power 

budget, which is set either by the chip's power budget 

or by a data center-wide global power management. 

Previous work on reconfigurable multicores, such as 

Flicker, has focused solely on batch workloads, 

resulting in QoS breaches and uncertain performance 

for latency-sensitive services. CuttleSys is an online 

resource manager that blends scalable machine 

learning with quick design space exploration to 

successfully explore the enormous configuration space 

and arrive at a high-performing solution [2]. To begin, 

the system uses collaborative filtering, specifically 

PQ- reconstruction with Stochastic Gradient Descent 

(SGD), to estimate an application's performance (tail 

latency for latency-critical applications and 
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throughput for batch applications) and power 

consumption across core and cache configurations 

without the need for exhaustive profiling. Second, it 

uses a novel, parallel Dynamically Dimensioned 

Search (DDS) method to quickly identify a per-job, 

globally advantageous configuration that meets QoS 

for latency- sensitive workloads while also 

maximizing throughput for batch processes, all while 

staying within the power budget. CuttleSys can 

reassess its conclusions and respond to changes in 

application behavior since both strategies keep 

overheads minimal, a few milliseconds [2]. 

II. LITERATURE REVIEW 

Computer architects employ a variety of ways to 

accomplish dynamic resource management in this 

environment. Model- based and Rule-based heuristic 

approaches create choices in real-time using a model 

or an encoding algorithm [3]. Optimization 

approaches seek to reduce or maximize a goal while 

taking into account specific restrictions. For various 

observed situations, machine learning systems 

discover the optimum input values. Finally, control 

theoretic approaches adapt to situations through their 

inherent feedback loop [3]. Dynamic resource 

management has been proven to be an excellent 

strategy for increasing computer system 

dependability, efficiency, and performance [3]. 

Modern multicores make it more difficult to manage 

shared resources during runtime since they enable a 

wide range of workloads with changing resource needs 

and, at times, contradictory limits. Homogeneous 

architectures have substantial issues due to the 

dynamic behavior of workloads that change among 

concurrent applications. In emerging heterogeneous 

multicore processors (HMPs), where heterogeneous 

compute units are deployed on a single chip, the need 

for a holistic dynamic resource management technique 

becomes more critical, allowing trade-offs between 

objectives such as maximizing performance and 

minimizing power consumption [3]. 

Previous research on energy optimization in single and 

multicore CPUs got a lot of attention. DVFS and task 

migration were two of the most common strategies 

used by prior optimization systems. These strategies 

are utilized as key control mechanisms to steer 

processor operation toward low energy consumption 

while maintaining acceptable performance. As part of 

the algorithm that implements the optimization 

solution, control choices are made based on 

estimations or projections of energy or other 

associated variables in a reactive or proactive way [4]. 

The monitoring and decision-making of a system are 

frequently done on a regular basis, during intervals 

known as control periods or epochs. It's the process 

that distinguishes the impact of a certain energy 

optimization approach. For the sake of brevity, we will 

only examine past work that used techniques from the 

general field of machine learning. The article offers a 

multinomial logistic regression-based classification 

approach that classifies workload into a predefined set 

of classes at runtime, which is subsequently used to 

develop a DVFS algorithm [4]. For offline workload 

characterization, a multinominal logistic regression 

classifier is created utilizing a huge number of 

performance counters. This classifier is used to 

anticipate workload for a specific application at 

runtime, and then frequency and thread packing are 

chosen to maximize performance within a certain 

power budget [4]. This research focuses on low-

overhead and generic thread criticality prediction 

algorithms that make use of on-chip counters and 

measurements.  

III. METHODOLOGY 

One of the key constraints in the pipelined processor 

architecture is that the pipeline can only be started with 

one instruction, regardless of how many instructions 

can execute at various phases at the same time. A 

superscalar processor has several copies of the whole 

data route (including the ALU), allowing it to issue as 

many instructions as the number of copies allows. 

Because each instruction has its own dedicated data 

route, it works essentially independently. In the 1990s 

and early 2000s, superscalar processor principles were 

always merged with pipelined processor concepts to 

create the pipelined superscalar processor, which was 

widely employed. A superscalar processor's core 

greatest accuracy for criticality prediction after testing 

a range of strategies based on instruction counts and 

other options [2]. Our research demonstrates how to 

turn memory statistics into thread criticality 

predictions (TCPs). We also look at combining them 

with condense estimators, which can help decrease the 

high-cost reactions to wrong predictions by gauging 

the probability of right forecasts. We also illustrate the 
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universality of our TCP hardware by putting it to two 

different purposes. To begin, we look at how TCP may 

help Intel Threading Building Blocks (TBB) improve 

task-stealing decisions for thread load balancing [5]. 

Threads with empty task queues can "steal" work from 

the most crucial thread and minimize program 

runtimes by accurately and lightweight identifying the 

critical thread. We focus on barrier-based applications 

in the second application study and utilize TCP to 

guide dynamic voltage and frequency scaling (DVFS) 

decisions. We explain how determining the degree of 

criticality of distinct threads may be valuable as well 

[5]. Operations include acquiring and decode a stream 

of instructions, branch prediction determining if there 

are any dependence between instructions, and lastly 

distribute instructions to various functional units to 

issued. It significantly improves system's overall 

performance a throughput. However, due to t 

dependency problem described in pipeline processors, 

only a limited number instructions can run at the same 

time. Furthermore, the number of granted orders is 

restricted. It also adds a lot of hard overhead, resulting 

in bigger regions a higher power usage. In the design 

of mu core processors, power management h become 

a critical concern. Increased pow consumption has a 

number of negative consequences, including unstable 

thermal characteristics of the die, which affects system 

performance, making power consumption a problem 

that is often more critical than speed. A key finding is 

that threads operating on various cores do not require 

the same amount of power. To establish a good 

balance between scalar performance/throughput 

performance and power, it's necessary to dynamically 

alter the amount of power utilized for processing based 

on the code's temporal demands. Developed power 

management strategies may be categorized into two 

primary categories: reactive and predictive. The 

technique reacts to changes in workload performance 

in reactive approaches. In other words, a workload 

may contain phases that need high performance, as 

well as ones that require I/O delays and poor 

performance. 

 

Figure 1: A Tree diagram for Power Management 

Technique  

 

When the workload status changes, the method adjusts 

to the new situation. However, there may be a lag 

between changes in workload phase and changes in 

power adaptation, resulting in inefficient energy usage 

or performance loss. Predictive approaches, on the 

other hand, can help to solve this problem. Those 

strategies detect workload phase changes before they 

occur, allowing them to intervene quickly before a 

program's phase changes. As a result, energy savings 

and performance are maximized. However, because 

no workload can be completely foreseen, reactive 

approaches are utilized operate at high speeds all of the 

time. Th are occasional waiting times, for example 

owing to memory read/write operation which need 

conserving computing power for the sections that 

cannot be expected, which often account for more than 

60% of the total effort. As a result, reactive tactics are 

unavoidable, and we will concentrate on them in this 

research. To obtain the optimum level of power 

management in multi-core processors, we are looking 

at some of the dynamic strategies described in Fig. 1. 

We also go through some of the drawbacks that each 

of these strategies has, as well as how past research has 

sought to address them. 

A. Power 

This method was employed in the early days of 

microprocessors. The essential idea is that the entire 

command is performed in a single clock cycle. All 

subsequent instructions in the instruction stream must 
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wait until an instruction has completed its execution 

before proceeding. Naturally, certain instructions take 

a long time to execute/wait, affecting the execution of 

other instructions and lowering overall system 

performance [6]. 

A. Pipelining 

Instead of processing the entire command at once, 

pipelining breaks the single-cycle processor into many 

stages, each of which executes a piece of the 

instruction alongside another portion of another 

instruction [6]. If we have a three-stage pipelined 

processor, for example, it implies the single-cycle 

processor is separated into three phases, such as 

FETCH OPERANDS, DECODE, and EXECUTE. 

Then we may run three instructions at the same time. 

The first instruction will be in the EXECUTE stage at 

clock cycle 3, while the second will be in the 

DECODE stage and the third will be in the FETCH 

OPERANDS stage. 

IV. OUT-OF-ORDER PROCESSOR 

A. Deep pipelining 

The goal of deep pipelining is to greatly increase the 

number of pipeline stages. From the description of the 

pipelined processor, it is clear that the more steps you 

add, the faster the execution. Many considerations, 

such as the existing risks and the logic overhead, 

restrict the number of steps. Many approaches have 

been proposed to alleviate the data dependence 

problem, as we described in the pipelined processor. 

Forwarding, delaying, and register renaming are 

examples of these strategies [7]. 

B. Super scalar processor 

One of the key constraints in the pipelined processor 

architecture is that the pipeline can only be started with 

one instruction, regardless of how many instructions 

can execute at various phases at the same time. A 

superscalar processor has several copies of the whole 

data route (including the ALU), allowing it to issue as 

many instructions as the number of copies allows. 

Because each instruction has its own dedicated data 

route, it works essentially independently [7]. 

 

C. OoO (Out-of-Order) processors 

OoO processors scan the instruction window ahead of 

time for independent instructions that can be 

performed right away. This indicates that instructions 

are not carried out in the sequence in which they were 

written. When an instruction's operands are accessible, 

the instruction is executed regardless of the program's 

sequencing. The problem of dependencies caused by 

pipelined superscalar processors is solved by OoO 

processors [5]. 

D. Chip multiprocessors 

Thread level parallelism is effectively exploited by 

chip multiprocessors or multi- core CPUs. A process 

is a program that is presently running. There are one 

or more threads in each process. A server program, for 

example, would have at least two threads, one for 

accepting connections and the other for outbound 

connections. Because they run in parallel, no thread 

has to wait for the other to finish. Multi-threading is 

underutilized in typical uniprocessor systems [4]. 

E. Base Model 

The overall model for estimating the number of cycles 

C takes into account the number of instructions N, the 

effective dispatch rate Deff, the number of branches 

mispredictions mbpred, the branch resolution time 

cres, the front-end pipeline depth cfe, the number of 

instructions fetch misses at each cache level I mILi, 

the access latency to each cache level cLi, the size of 

the ROB (Reorder Buffer) ROB,1 the number of LLC 

load 

To deal with the incompatibilities between the x86 

(the model's current target ISA) and the Alpha 

instruction set (the original target ISA). The first and 

most significant distinction is that x86 is a CISC 

design, whereas Alpha is a RISC architecture.  

VI.  EXPERIMENTAL SETUP 

The CPI of the benchmarks for the baseline 

configuration produced by simulation using Sniper 

(left bar) and our model (right bar) are shown in Fig. 

6. (Right bar). Across all benchmarks, the average 

absolute inaccuracy is 7.6%. Positive and negative 

errors are present, indicating that our model is not 

biased. Gromacs has a maximum inaccuracy of 22.3 
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percent, which is owing to significant functional unit 

contention at extremely short timeframes. We can't 

simulate this very well since we require samples of at 

least 1,000 instructions, which are averaged out to get 

this fine-grained behavior [7]. To depict an 

application's performance bottlenecks by displaying 

how much performance is influenced by instruction 

execution, cache misses, and branch misses. 

 

Figure.2. The entire CPI is broken down into CPI 

stack components. 

 

We utilize Sniper's built in CPI stack generator for the 

left bar [6]. The model's CPI stacks are created as 

follows. The model Equation is made up of many 

components that represent various penalties. Each 

component can be represented independently in a 

stack, with the top of the stack equaling the overall 

cycle count. The CPI stack components are obtained 

by dividing the components by the number of 

instructions. 

CONCLUSION 

Based on allocation choices and control decisions, we 

suggested a categorization for dynamic resource 

management. We looked at how heuristics, machine 

learning, and control theoretic approaches are utilized 

in computer systems to tune architectural parameters. 

Power, energy, temperature, Quality-of-Service, and 

dependability are the resource metrics we're looking at 

while researching these strategies. We looked at some 

of the recent initiatives to use machine learning 

technologies to improve forecast accuracy for 

allocation and resource management. We investigated 

the evolution of control theoretic approaches in 

dynamic resource management to provide resilience in 

resource management of multi/many-core systems. 

Finally, an overview of the coverage of existing on-

chip resource management strategies explored in this 

paper was addressed. However, combining certain 

tactics with solutions designed to better those 

procedures is a fantastic option to consider. Thread 

scoring in many-type asymmetric cores, for example, 

appears to be quite promising. Future research should 

look at evaluating such hybrid, compatible 

techniques/improvements in order to achieve even 

high performance and energy efficiency.       
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