
© AUG 2022 | IRE Journals | Volume 6 Issue 2 | ISSN: 2456-8880 

IRE 1703775          ICONIC RESEARCH AND ENGINEERING JOURNALS 146 

Mathematical Modelling of Transport of Pollutants of 

Longitudinal Dispersion in Unsaturated Porous Media 
 

NIRANJAN C M1, S R SUDHEENDRA2
 

1 Assistant Professor, Department of Mathematics, Acharya Institute of Technology,  

Bangalore, INDIA 
2 Professor, Department of Mathematics, Acharya Institute of Technology,  

Bangalore, INDIA 

 

Abstract- In order to understand the behavior of 

contaminant transport through different types of 

media, several researchers are carrying out 

experimental investigations through laboratory and 

field studies. Many of them are working on the 

analytical and numerical studies to simulate the 

movement of contaminants in soil and groundwater 

of the contaminant transport. A key to the 

management of groundwater is the ability to model 

the movement of fluids and contaminants in the 

subsurface environment. It is obvious that the 

contaminant source activities cannot be completely 

eliminated and perhaps our water bodies will 

continue to serve as receptors of vast quantities of 

waste. The solution is obtained for the given 

mathematical model in a finite length initially solute 

free domain. The input condition is considered 

continuous of uniform and of increasing nature 

both. The solution has been obtained using Laplace 

transform, moving coordinates and Duhamel’s 

theorem is used to get the solution in terms of 

complementary error function. 

 

Indexed Terms- Advection, dispersion, adsorption, 

Integral transforms, Fick’s law, Moving coordinates, 

Duhamel’s theorem 

 

I. INTRODUCTION 

 

The advection-dispersion equation is a partial 

differential equation and it is derived on the principle 

of conservation of mass using Fick’s law, which is of 

parabolic in nature. For getting the analytical solutions 

the approach is to reduce the advection–dispersion 

equation into a diffusion equation by eliminating the 

convective term. This can be done by either 

introducing the moving coordinates of by including 

another dependent variable. To get the desired result it 

can be made use of Laplace transforms technique. 

 

II. MATHEMATICAL FORMULATION AND 

MODEL 

 

The basic governing equation of the flow is 
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Basically, fluid concentration along the saturated flow, 

,0=C carries in the medium. Later at ,0=t the 

concentration is changed to .0CC = For a semi-

infinite column the initial and boundary conditions 

(Fig.1) are 
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Now, let 
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Put equation (3) in equation (1), reduces to Fick’s law 

of diffusion equation 

 

2

2

z
D

t 


=




     (4) 

The conditions (2) becomes 
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For semi-infinite medium, the temperature (t) is 
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Now consider the model with the boundary conditions 
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We write 
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Now, if the equation (4) is multiplied by 
pte−
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The solution is, 
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Using the table of Laplace transforms to find the 

inverse of the above function (Carslaw and Jaeger, 

1947). The result is 
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With the initial concentration 0 and time at 0=z  the 

solution of the problem using Duhamel’s theorem is 
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using Leibnitz rule we have 
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Now the solution is 
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Where 
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III. EVALUATION OF INTEGRAL SOLUTION 

 

In the equation (9) the integration of first term reduces 

to (Pierce, 1956) 
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Letting 
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the solution is 

 







 de
D

z
t

Dt

z

2

2

2

2

4

2 −



 







−=  (8) 

 

Since 
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Expressing second term as an error function 

(Horenstein, 1945), 
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Now the integral of second term of equation (9) can be 

put as 
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(10) 
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Adding and subtracting the above term, we get 
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further, 
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Making a note that 

 

Now the integral can be expressed as 
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Substituting in the first term we have. 
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Substituting this into equation (10) which gives 
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Thus, 
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by definition 
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also, 
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Equation (11) reduces to, 
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Substituting the value of ( )tz,  in equation (3) the 

solution reduces to 
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Reconstituting the value of   and  gives 
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The first and second terms are asymmetric in the above 

solution. It is possible to obtain the symmetrical 

solution by considering the boundary conditions 

( ) ,, 0CtC =−  with a long distance away from the 

source. 

 

IV. RESULTS AND CONCLUSIONS 

 

The important limitation for the analytical methods are 

that applications for a relatively simple problems. For 

one-dimensional transport model, analytical method is 

more convenient than the other standard methods. 

Figures 1 to 4 represents the concentration profiles 

against distance along the media for different values of 

porosity n . It is seen that for a fixed velocity w, 

dispersion coefficient D, 
0C

C  decreases with depth 

as porosity n, whereas concentration profile versus 

time for different values of depth z. For a fixed z it is 

seen that because of lesser effect of dispersion 

coefficient D, the concentration increases at the 

beginning and attains a steady-state value for greater 

time. Hence we conclude that by these solutions using 

integral transform we can find the steady-state 

concentration distributions and temporal moments. 

Likewise the transient concentration distribution is 

accessible through numerical inversions. 

 

 
Fig. 1 

 

 
Fig. 2 

 



© AUG 2022 | IRE Journals | Volume 6 Issue 2 | ISSN: 2456-8880 

IRE 1703775          ICONIC RESEARCH AND ENGINEERING JOURNALS 150 

 
Fig. 3 

 

 
Fig. 4 
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