
© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 185

Advanced Encryption Standard Algorithm for File

Security

OLASUNKANMI FELIX O1, DANJUMA S. S2, HARUNA BEGE3, KOLAWOLE S. F4

1 NISMES, Kaduna, affiliated to Nuhu Bamalli polytechnic,Zaria, Nigeria
2, 3 Nuhu Bamalli Polytechni, Zaria

4 Nigerian Defence Academy Kaduna, Nigeria

Abstract- The efficacy of the Advanced Encryption

Standard (AES) algorithm has made it very attractive

for data encryption. As a result of this, it has been

employed by many large organizations for

safeguarding files in any binary format. It makes use

of a symmetric key to achieve successful data

encoding. To encrypt a file, it uses different key sizes.

Although a bigger key size increases the degree of

unpredictability, it also increases the encryption

time. AES utilizes Add round key, Byte substitution,

Shift rows and Shift column matrix operations

together with a Galois Field computation in Modulus

two (MOD 2). This paper shows the step-by-step

process of how data is encrypted using the AES.

Indexed Terms- AES, Add round key, Byte

substitution, Galois Field, Shift rows and Shift

column.

I. INTRODUCTION

AES, also known as Rijndael, is a symmetric block

cipher that uses a set block size in its cryptographic

method [1]. It employs bits sizes of 128, 192, and 256,

with the following rounds; 10, 12 and 14 respectively;

it utilizes higher key sizes in recent times of systems

with fast processing speed [2]. The AES cryptographic

technique is widely used since it is well known for its

high security [3]. It encrypts plaintext through the

following processes; byte substitution (SubBytes),

shift rows, mix column and the Add Round Key [4].

II. HOW AES WORKS

The AES performs encryption of files via four major

steps including; byte substitution, shift rows, mix

column and add round key [4]. The operation

scrambles the input data using a particular technique

in each step until the required output is generated. This

work will concentrate on the encryption of data with a

128-bit input.

III. ADD ROUND KEY

The input data which is a plaintext of 128 bits (16

bytes or 4 words) is exclusively ORed (XOR) with the

cipher key of 128 bits [5]. The XOR logic gate has two

inputs, it produces a logic output of “one” only when

one of the inputs is a “one”, else, zero otherwise. i.e.

0 XOR 0 = 0

1 XOR 0 = 1

1 XOR 1 = 0

0 XOR 1 = 1

The hexadecimal presentation of the plaintext and the

cipher key are XORed and the intermediate results are

stored as an output state [6].

Table 3.1 Hexadecimal computation

Hex 8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 186

The hexadecimal representation of the plain text is

XORed with the hexadecimal representation of the

 [6]. Where represents the symbol for XOR

operation

IV. SUBSTITUTION BYTE

During this stage, values of each output are replaced

with values from the AES S-Box lookup table that

correspond to it [6].

Table 4.1 S-Box [7][8]

The first two numbers obtained from the hexadecimal

computation of the add round key are 1 and 9. From

the AES S-box lookup table, 1 is read from the X-axis,

while 9 is read from the Y-axis. The value at the point

of intersection from the lookup table becomes the new

value. This step is repeated for all values gotten from

the output of the add round key table until a new output

state known as byte substitution is obtained [9][10].

Table 4.1 Output state after Byte substitution

He

x

Y

0 1 2 3 4 5 6 7 8 9 a b c d e f

`

x

0 6

3

7

c

7

7

7

b

f

2

6

b

6

f

c

5

3

0

0

1

6

7

2

b

f

e

d

7

a

b

7

6

1 c

a

8

2

c

9

7

d

F

a

5

9

4

7

f

0

a

d

d

4

a

2

a

f

9

c

a

4

7

2

c

0

2 b

7

f

d

9

3

2

6

3

6

3

f

f

7

c

c

3

4

a

5

e

5

f

1

7

1

d

8

3

1

1

5

3 0

4

c

7

2

3

c

3

1

8

9

6

0

5

9

a

0

7

1

2

8

0

e

2

e

b

2

7

b

2

7

5

4 0

9

8

3

2

c

1

a

1

b

6

e

5

a

a

0

5

2

3

b

d

6

b

3

2

9

e

3

2

f

8

4

5 5

3

d

1

0

0

e

d

2

0

F

c

b

1

5

b

6

a

c

b

b

e

3

9

4

a

4

c

5

8

C

f

6 d

0

e

f

a

a

f

b

4

3

4

d

3

3

8

5

4

5

f

9

0

2

7

f

5

0

3

c

9

f

a

8

7 5

1

a

3

4

0

8

f

9

2

9

d

3

8

f

5

b

c

b

6

d

a

2

1

1

0

f

f

f

3

d

2

8 c

d

0

c

1

3

e

c

5

f

9

7

4

4

1

7

c

4

a

7

7

e

3

d

6

4

5

d

1

9

7

3

9 6

0

8

1

4

f

d

c

2

2

2

a

9

0

8

8

4

6

e

e

b

8

1

4

d

e

5

e

0

b

D

b

A e

0

3

2

3

a

0

a

4

9

0

6

2

4

5

c

c

2

d

3

a

c

6

2

9

1

9

5

e

4

7

9

B e

7

c

8

3

7

6

d

8

d

d

5

4

e

a

9

6

c

5

6

f

4

e

a

6

5

7

a

a

e

0

8

C b

a

7

8

2

5

2

e

1

c

a

6

b

4

c

6

e

8

d

d

7

4

1

f

4

b

b

d

8

b

8

a

D 7

0

3

e

b

5

6

6

4

8

0

3

f

6

0

e

6

1

3

5

5

7

b

9

8

6

c

1

1

d

9

e

E e

1

f

8

9

8

1

1

6

9

d

9

8

e

9

4

9

b

1

e

8

7

e

9

c

e

5

5

2

8

D

f

F 8

c

a

1

8

9

0

d

B

f

e

6

4

2

6

8

4

1

9

9

2

d

0

f

b

0

5

4

b

b

1

6

32 88 31 e0

43 5a 31 37

f6 30 98 07

a8 8d a2 34

2b 28 ab 09

7e ae f7 ef

15 d2 15 4f

16 a6 88 3c

Block of Plain

text

Block of Cipher

text

0011

0010

1000

1000

0011

0001

1110

0000

0100

0011

0101

1010

0011

0001

0011

0111

1111

0110

0011

0000

1001

1000

0000

1111

0101

1000

1000

1101

1010

0010

0011

0100

0010

1011

0010

1000

1010

1011

0000

1001

0111

1110

1010

1110

1111

0111

1100

1111

0001

0101

1101

0010

0001

0101

0100

1111

0001

0110

1010

0110

1000

1000

0011

1100

Hexadecimal representation

of plain text

Hexadecimal representation of

Cipher text

Table 3.2 Output state of Add round

ke

Hexadecimal representation of add

round key

19 a0 9a e9

3d f4 c6 f8

e3 e2 8d 48

be 2b 2a 08

© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 187

V. SHIFT ROWS

The process here entails putting the byte substitution's

output in a square matrix (4x4) and then perform a

round shift on each row, starting from the second row,

the last byte (41) is shifted once to the left to display

(b4). While the last bytes on the third and fourth row

are shifted two and three times respectively. [11].

VI. MIX COLUMN

This is accomplished by multiplying the shift rows

output by a predetermined 4x4 matrix.

4x4 Predefined Matrix [12]

Each word of the Shift rows output state (4x1

matrixes) is multiplied by the predefined 4x4 matrix.

Let W0= (d4 bf 5d 30) W1 = (e0 b4 52 ae) W2 = (b8 41

11 f1) and W3 = (1e 27 98 e5). Where W0, W1, W2, and

W3 represents each word of the shift rows output state

respectively.

This is done using the Galois fields which is

computing polynomials as bits sequence, also the

Galois fields are computed in Modulus two (MOD 2),

so the values obtained from the computations will

either be 0s and/or 1s. Galois field is given as:

A ϵ GF (28) [13]

A(x) = a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0, ai

∈ GF (2) = {0, 1}. [13]

If the product of two Galois fields is more than a byte

(8 bits) then the result can be reduced by performing

XOR operation on a special primitive polynomial

known as the irreducible polynomial. This polynomial

is given as: P(x) = x8 + x4 + x3 + x + 1[13]

An example is used to illustrate this, by using the

output state obtained after the shift rows operation.

The first word is multiplied by a 4x4 predefined

matrix.

Applying Galois field (A(x) =

a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0) we have:

(X1(x7 + x6 + x4 + x2)) + (x1 + x0 (x7 +x5 +x4 + x3 + x2

+ x1 + x0)) + (X0(x6 + x4 + x3 + x2 + x0)) + (X0(x5 + x4))

Representing the above expression in its binary

equivalent we have:

 (10 * 1101 0100) + (11 * 1011 1111) + (01 * 0101

1101) + (01 * 0011 0000)

i.e. (X1(x7 + x6 + x4 + x2)) = (10 * 1101 0100), (x1 + x0

(x7 +x5 +x4 + x3 + x2 + x1 + x0)) = (11 * 1011 1111),

(X0(x6 + x4 + x3 + x2 + x0)) = (01 * 0101 1101), (X0(x5

+ x4)) = (01 * 0011 0000)

Solving the polynomial for the first byte of the first

word (W0) we have

(X1(x7 + x6 + x4 + x2)) = (10 * 1101 0100);

Answer = 1X8 + 1X7 + 0X6 + 1X5 + 0X4 + 1X3 + 0X2

+ 0X1 + 0X0 = 110101000

Since 6, 4, 2 and 0 are not captured in the answer, they

are replaced with 0s in the binary equivalent while the

captured answers are replaced with 1s respectively.

d4 e0 b8 1e

27 bf b4 41

11 98 5d 52

ae f1 e5 30

 d4 e0 b8 1e

27 bf b4 41

11 98 5d 52

ae f1 e5 30

d4 e0 b8 1e

bf b4 41 27

5d 52 11 98

30 ae f1 e5

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

10 11 01 01

01 10 11 01

01 01 10 11

11 01 01 10

1101

0110

1011

1111

0101

1101

0011

0000

=

d4

bf

5d

30

 1

2 3

4 5

6 7

7 8

© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 188

Because the product of the Galois fields is more than

a byte (8 bits), the result is reduced by performing

XOR operation with the irreducible polynomial.

Similarly solving the polynomial for the second byte

of the first word (W0) we have:

(x1 + x0 (x7 +x5 +x4 + x3 + x2 + x1 + x0)) = (11 * 1011

1111)

 0 1

0 0 1

1 1 2

2 2 3

3 3 4

4 4 5

5 5 6

7 7 8

Answer = 1x8 + 1x7 + 1x6 + 0x5 + 0x4 + 0x3 + 0x2 + 0x1

+ 0x0 = 111000001

In computing the answer, we use XOR addition.

Anywhere a number in the answers appear as an even

number we replace it with 0s. For odd appearances, we

replace with 1s. i.e. 8, 7, 6 and 0 appeared once

therefore we replace them with 1s while the rest

appeared twice therefore we denote them as 0s.

In addition, since the binary value doesn’t fit into a

byte, we reduce it with x8 + x4 + x3 + x1 + x0 =

100011011.

Similarly solving the polynomial for the third byte of

the first word (W0) we have:

(X0(x6 + x4 + x3 + x2 + x0)) = (01 * 0101 1101)

(01 * 0101 1101) = 0101 1101

Solving the polynomial for the third byte of the first

word (W0) we have:

(X0(x5 + x4)) = (01 * 0011 0000)

(01 * 0011 0000) = 0011 0000

Performing XOR operation on the first word the

following answer is obtained;

(X1(x7 + x6 + x4 + x2)) = (10 * 1101 0100), (x1 + x0 (x7

+x5 +x4 + x3 + x2 + x1 + x0)) = (11 * 1011 1111), (X0(x6

+ x4 + x3 + x2 + x0)) = (01 * 0101 1101), (X0(x5 + x4))

= (01 * 0011 0000)

The same process is repeated for the second word

(W1), third word (W2) and fourth word (W3) and the

following result is obtained as the output state

04 e0 48 28

66 cb f8 06

81 19 d3 26

e5 9a 7a 4c

VII. ADD ROUND KEY

The processes done here is the same with that in

section 2, in this process, output state from the Mix

column operation is exclusively ORed (XOR) with the

128 bits (16 bytes or 4 words) cipher key.

Table 6.1 Output state from Add round key

a4 68 6b 02

9c 9f 5b 6a

7f 35 ea 50

f2 2b 43 49

04 e0 48 28

66 cb f8 06

81 19 d3 26

e5 9a 7a 4c

Mix Column
Output

a0 88 23 2a

fa 54 a3 6c

fe 2c 39 76

17 b1 39 05

Cipher Key

a4 68 6b 02

9c 9f 5b ba

7f 35 ea 50

f2 2b 43 49

Output State

© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 189

Except for the mix column, which is performed nine

times, the entire process is done ten times. Following

that, the resulting AES-encrypted file is acquired.

CONCLUSION

AES is a trusted algorithm for securing files, which is

why it is employed by notable organizations for

securing documents. This paper has therefore broken

the processes required by this algorithm to secure

information into various components in a bid to

demonstrate why it is still one of the most reliable

algorithm for protecting data.

ACKNOWLEDGMENT

This research is supported by the Department of

Electrical and Electronics Engineering Nigerian

Defence Academy, Kaduna State, Nigeria.

REFERENCES

[1] M. N. Islam, M. M. H. Mia, M. F. I. Chowdhury

and M. A. Matin, "Effect of Security Increment

to Symmetric Data Encryption through AES

Methodology," 2008 Ninth ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking, and

Parallel/Distributed Computing, Phuket, 2008,

pp. 291-294, doi: 10.1109/SNPD.2008.101.

[2] M. Panda, "Performance analysis of encryption

algorithms for security," 2016 International

Conference on Signal Processing,

Communication, Power and Embedded System

(SCOPES), Paralakhemundi, 2016, pp. 278-284,

doi: 10.1109/SCOPES.2016.7955835.

[3] NIST, “Advanced Encryption Standard (AES)”,

FIPS PUBS 197, National Institute of Standards

and Technology, November 2001.

[4] T. P. Innokentievich and M. V. Vasilevich, "The

Evaluation of the cryptographic strength of

asymmetric encryption algorithms," 2017

Second Russia and Pacific Conference on

Computer Technology and Applications (RPC),

Vladivostok, 2017, pp. 180-183, doi:

10.1109/RPC.2017.8168094.

[5] A. Joshi, P. K. Dakhole and A. Thatere,

"Implementation of S-Box for Advanced

Encryption Standard," 2015 IEEE International

Conference on Engineering and Technology

(ICETECH), Coimbatore, 2015, pp. 1-5, doi:

10.1109/ICETECH.2015.7275043.

[6] A. Kak, “Lecture 8: AES: The Advnced

Encryption Standard, Lecturer Notes on

Computer and network Security”, February 11,

2021

[7] A. Joshi, P. K. Dakhole and A. Thatere,

"Implementation of S-Box for Advanced

Encryption Standard," 2015 IEEE International

Conference on Engineering and Technology

(ICETECH), 2015, pp. 1-5, doi:

10.1109/ICETECH.2015.7275043.

[8] Shreenivas Pai N, Raghuram S, Chennakrishna

M and A. S. V. Karthik, "Logic optimization of

AES S-Box," 2016 International Conference on

Automatic Control and Dynamic Optimization

Techniques (ICACDOT), 2016, pp. 1042-1046,

doi: 10.1109/ICACDOT.2016.7877745.

[9] O. B. Sahoo, D. K. Kole and H. Rahaman, "An

Optimized S-Box for Advanced Encryption

Standard (AES) Design," 2012 International

Conference on Advances in Computing and

Communications, 2012, pp. 154-157, doi:

10.1109/ICACC.2012.35.

[10] Jingmei Liu, Baodian Wei, Xiangguo Cheng and

Xinmei Wang, "An AES S-box to increase

complexity and cryptographic analysis," 19th

International Conference on Advanced

Information Networking and Applications

(AINA'05) Volume 1 (AINA papers), 2005, pp.

724-728 vol.1, doi: 10.1109/AINA.2005.84.

[11] Sujatha Hiremath and M.S. Suma, “Advanced

Encryption Standard Implemented on FPGA,”

2009 Second International Conference on

Computer and Electrical Engineering, 7695-

3925-6/09 $26.00 © 2009 IEEE, DOI

10.1109/ICCEE.2009.231

[12] A. Bhardwaj and S. Som, "Study of different

cryptographic technique and challenges in

future," 2016 International Conference on

Innovation and Challenges in Cyber Security

(ICICCS-INBUSH), Noida, 2016, pp. 208-212,

doi: 10.1109/ICICCS.2016.7542353.

[13] C. Yu and M. Ciesielski, "Formal Analysis of

Galois Field Arithmetic Circuits-Parallel

© SEP 2022 | IRE Journals | Volume 6 Issue 3 | ISSN: 2456-8880

IRE 1703832 ICONIC RESEARCH AND ENGINEERING JOURNALS 190

Verification and Reverse Engineering," in IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 2,

pp. 354-365, Feb. 2019, doi:

10.1109/TCAD.2018.2808457.

