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Abstract— In this paper, we have developed a new 

continued fraction using the pierce expansion which 

is called the pierce continued fraction. There are 

several applications of continued fractions and one 

important application is the approximation to the 

square root problem. In our work, we have 

introduced new convergent sequences to solve this 

problem using pierce continued fraction. The 

convergent rate of these two continued fractions is 

different from each other. Furthermore, an 

algorithm was developed using matlab programmed 

to find the pierce continued fraction. As a future 

work we hope to construct a new approach to solve 

the pelle’s equation. 

 

Indexed Terms—Approximation to square root 

problem, continued fraction, convergent, pierce 

expansion, pierce continued fraction. 

 

I. INTRODUCTION 

 

Continued fraction expansions of numbers are 

contained in the Euclidian algorithm [3] and are 

important in giving rational approximation of real 

numbers. They have been used since the beginning of 

science in many ancient civilizations including Greek, 

Indian, and Chinese [3]. The famous golden ration can 

be represented in an attractive manner using the 

corresponding continued fractions. 

𝜑 = 1 +
1

1 +
1

1 +
1

1 +
1

. . . .1 +
1
1

 

There are several applications based on continued 

fractions in Linear Algebra [1], Group Theory [4], 

Convex Analysis [2], Design Theory [2], 

Approximation [2], solving linear Diophantine 

equations [2], and solving Pelle’s equation [2]. One of 

the most important aspects of these continued fractions 

is their convergent which was introduced by the Dutch 

mathematician /astronomer Christiaan Huygens 

(1629-1695).  

Definition 1.1 Continued Fraction [1] 

Let x be a any real number,   

𝑥 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

. . . . 𝑎𝑛−1 +
1

𝑎𝑛

 

where 𝑎1, 𝑎2, . . . 𝑎𝑛 are natural numbers with 

𝑎1, 𝑎2, . . . 𝑎𝑛 positive is called a finite continued 

fraction.  

Definition 1.2 (Convergent of a Continued Fraction) 

[2] 

The continued fraction  [𝑎0, 𝑎1, . . . . . 𝑎𝑛] where k is a 

non-negative integer is called the nth convergent of the 

simple continued fraction [𝑎0, 𝑎1, . . . . . 𝑎𝑛] and is 

denoted by 𝐶𝑛. 

When solving the approximation square root problem, 

the convergent rate of the continued fraction is 

relatively slower. Therefore, a new continued fraction 

has been introduced using the Pierce expansion. 

Definition 1.3 (Pierce Expansion) 

Any real number x,0 < 𝑥 ≤ 1, can be written as  

𝑥 =
1

𝑎1
−

1

𝑎1𝑎2
−

1

𝑎1𝑎2𝑎3
− . . . +

(−1)𝑛+1

𝑎1𝑎2𝑎3.....𝑎𝑛
,  

where 𝑎1, 𝑎2, 𝑎3 are natural numbers 
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Only disadvantage of this representation is x should be 

0 < 𝑥 ≤ 1. 

Using the above expansion, a new continued fraction, 

called the pierce continued fraction, can be obtained. 

pierce continued fraction are defined for real numbers 

𝑥; 0 < 𝑥 ≤ 1. 

Definition 1.4 Pierce Continued Fraction   

Any real number x,0 < 𝑥 ≤ 1, 

𝑥 =
1−

1−
1−

1..
.
.1−

1
𝑎3

𝑎4
𝑎3

𝑎2

𝑎1
= {𝑎1, 𝑎2, . . . . . . 𝑎𝑛}   where 

𝑎1, 𝑎2, . . . 𝑎𝑛are positive real numbers is called a finite 

pierce continued fraction. If the positive real numbers 

are integers then above finite pierce continued fraction 

is called a simple finite pierce continued fraction. The 

above simple finite pierce continued fraction is 

denoted by {𝑎1, 𝑎2, . . . . . . 𝑎𝑛}. 𝑎1, 𝑎2, . . . 𝑎𝑛 are called 

partial quotients of a simple finite pierce continued 

fraction. 

When the number is greater than 1, (say) n, we take 𝑥 

as 𝑥 = 𝑛 − ⌈𝑛⌉. 

Example 1 

3

8
=

1−
1−

1
2

1

2
= {2,1,2}  

A new mapping has been proposed to construct the 

pierce continued fraction, 

Define a mapping ℎ from the interval (0,1] to the set 

of positive real numbers, given by   

ℎ(𝑥) = 1 − 𝑥 (⌈
1

𝑥
⌉ − 1). 

 Set𝑎𝑚 = ⌊
1

ℎ
(𝑘−1)(𝑥)

⌋, where ℎ
(𝑚)(𝑥) = ℎ (ℎ

(𝑚−1)(𝑥)) 

and ℎ
(0)(𝑥) = 𝑥. (Here ⌈. ⌉and⌊. ⌋ denote greatest 

integer less than or equal to ‘.’, least integer greater 

than or equal to ‘.’ respectively.) Using this we can 

compute the corresponding partial quotients. 

Further, a MATLAB programmed has been developed 

to find the pierce continued fraction using above 

mapping as below: 

 

 

 

 

 

For example, pierce continued fraction of  1
𝑒⁄  is, 

{2,3,4,5,6,7. . . } 

Theorem 1.1 

i. Every rational number x, 0 < x < 1 less than 1 

can be written as a simple pierce continued 

fraction. 

ii. Every simple finite pierce continued fraction 

represent a rational number. 

Proof  

i. Clearly by the definition of pierce expansion. 

ii. By using the Principle of Mathematical 

Induction 

     Consider [𝑎0, 𝑎1, . . . . . 𝑎𝑛] 

     When n=1, 

    [𝑎0, 𝑎1] =
1−

1

𝑎1

𝑎0
=

𝑎1−1

𝑎1

𝑎0
=

𝑎1−1

𝑎0𝑎1
∈ ℚ 

Assume that [𝑎0, 𝑎1, . . . . . 𝑎𝑘] is a rational number 
𝑝

𝑞
, 𝑞 ≠ 0, 𝑝 ≤ 𝑞 for 𝑘 𝜖 ℤ+ 

Consider, 

[𝑎0, 𝑎1, … . . 𝑎𝑘 , 𝑎𝑘+1] =
1−

1−
.
.
.
.

1−
1

𝑎𝑘+1
𝑎𝑘
.

𝑎2
𝑎1

𝑎0
 

 k terms 
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             =
1 −

1 −
.
.
.
.

1 −
1

𝑎𝑘+1

𝑎𝑘

.
𝑎2

𝑎1

𝑎0

 

                                 =
1−

𝑝

𝑞

𝑎0
=

𝑞−𝑝

𝑞𝑎0
𝜖 ℚ  𝑎0, 𝑞 ≠ 0.  

By the principle of mathematical induction, the results 

is true for 𝑘 𝜖 ℤ+
. 

Convergent property can be defined as follows: 

Definition 1.3 

The pierce continued fraction  {𝑎0, 𝑎1, . . . . . 𝑎𝑛} where 

𝑘 is a non-negative integer is called the nth convergent 

of the simple finite pierce continued fraction 

{𝑎0, 𝑎1, . . . . . 𝑎𝑛}and is denoted by 𝐶𝑛. 

Two sequences {[𝑃𝑛}, {𝑄𝑛} have been defined to 

obtain a better for the approximation to square root 

problem  

Theorem 1.2 

Let 𝑎0, 𝑎1, . . . . . 𝑎𝑘 be finite or infinite sequence of real 

numbers. Define two sequences {[𝑃𝑛}, {𝑄𝑛} 

respectively as follows, 

𝑃0 = 1 

𝑃1 = 𝑎1 − 1 

. 

. 

𝑃𝑛 = 𝑎𝑛𝑃𝑛−1 + (−1)𝑛  

Then 𝐶𝑛 =
𝑃𝑛

𝑄𝑛
. 

Proof  

When we prove this theorem, general formula for 

{𝑃𝑛}, {𝑄𝑛}have been found and then we can consider 

the convergent part. 

Now consider {𝑃𝑛} sequence, 

 𝑃0 = 1 

𝑃1 = 𝑎1 − 1  

.  

𝑃𝑛 = 𝑎𝑛𝑃𝑛−1 + (−1)𝑛  

Now clearly 𝑃𝑘 = 𝑎1𝑎2. . . . . . 𝑎𝑘 + (−1)𝑎2. . . . . . 𝑎𝑘 +

(−1)2𝑎3. . . . . 𝑎𝑘+. . . . . +(−1)𝑘−1𝑎𝑘 + (−1)𝑘 

We can prove this by P.M.I 

 𝑘 = 1 

𝑃1 = 𝑎1 + (−1) = 𝑎1 − 1  

Assume that it is true for 𝑘 = 𝑝; 

Therefore  

𝑃𝑝 = 𝑎1𝑎2. . . . . . 𝑎𝑝 + (−1)𝑎2. . . . . . 𝑎𝑝 +

(−1)2𝑎3. . . . . 𝑎𝑝+. . . . . +(−1)𝑝−1𝑎𝑝 + (−1)𝑝 ……(1) 

Then by (1) × 𝑎𝑝+1, 

 we get  

𝑃𝑝𝑎𝑝+1

= 𝑎1𝑎2. . . . . . 𝑎𝑝𝑎𝑝+1 + (−1)𝑎2. . . . . . 𝑎𝑝𝑎𝑝+1

+ (−1)2𝑎3. . . . . 𝑎𝑝𝑎𝑝+1+. . . . . +(−1)𝑝−1𝑎𝑝𝑎𝑝+1 

+(−1)𝑝𝑎𝑝+1 

But we know that 

𝑃𝑝+1 = 𝑃𝑝𝑎𝑝+1 + (−1)𝑝+1 

𝑃𝑝+1 − (−1)𝑝+1 = 𝑎𝑝+1𝑃𝑝 

𝑃𝑝+1

= 𝑎1𝑎2. . . . . . 𝑎𝑝𝑎𝑝+1 + (−1)𝑎2. . . . . . 𝑎𝑝𝑎𝑝+1

+ (−1)2𝑎3. . . . . 𝑎𝑝𝑎𝑝+1+. . . . . +(−1)𝑝−1𝑎𝑝𝑎𝑝+1 + 

(−1)𝑝𝑎𝑝+1 + (−1)𝑝+1 

Therefore, the result is true for   𝑝 ∈ ℤ+. 

Therefore  

𝑃𝑛 = 𝑎1𝑎2. . . . . . 𝑎𝑛 + (−1)𝑎2. . . . . . 𝑎𝑛 +

(−1)2𝑎3. . . . . 𝑎𝑛+. . . . . +(−1)𝑛−1𝑎𝑛 + (−1)𝑛…..(2) 

Similarly, for {𝑄𝑛} sequence,  

𝑄𝑛 = 𝑎0𝑎1. . . . . 𝑎𝑛 ………………………………(3) 

Now consider, 

𝑄0 = 𝑎0 

𝑄1 = 𝑎1𝑎0 

. 

. 

𝑄𝑛 = 𝑄𝑛−1𝑎𝑛 for  𝑛 ∈ 𝑍+ 
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(2)

(3)
, 

𝑃𝑛

𝑄𝑛

=
1

𝑎1

−
1

𝑎1𝑎2

+
1

𝑎1𝑎2𝑎3

−. . . +
(−1)𝑛+1

𝑎1𝑎2𝑎3. . . . . 𝑎𝑛

. 

           =
1−

1−
1−

1..
.
.1−

1
𝑎3

𝑎4
𝑎3

𝑎2

𝑎1
= {𝑎1, 𝑎2, . . . . . . 𝑎𝑛} = 𝐶𝑛        

(By definition). 

Using above results following identities can be easily 

formed, 

Theorem 1.3 

Let 𝐶𝑛 =
𝑃𝑛

𝑄𝑛
 be nth convergent of the pierce continued 

fraction {𝑎0, 𝑎1, . . . . . 𝑎𝑛 . . . . } where n is positive 

integer. Then  

i. 𝑃𝑛𝑄𝑛−1 − 𝑃𝑛−1𝑄𝑛 = (−1)𝑛𝑄𝑛−1 

ii. 𝑃𝑛𝑄𝑛−2 − 𝑃𝑛−2𝑄𝑛 = (−1)𝑛−1(𝑎𝑛 −

1)𝑄𝑛−2; 𝑛 ≥ 2 

Proof. 

Proofs can be done by Principle of Mathematical 

Induction  

Corollary 1  

i. 𝑪𝒏 − 𝑪𝒏−𝟏 =
(−𝟏)𝒏

𝑸𝒏
 

ii. 𝑪𝒏 − 𝑪𝒏−𝟐 =
(−𝟏)𝒏−𝟏(𝒂𝒏−𝟏)

𝑸𝒏
. 

Proofs can be prepared using Theorem 1.4. 

Example 2 

Approximation value of √5 can be determined using 

pierce continued fraction as follows; 

We have re written √5, this way 

𝑥 = √5 = 2 + (√5 − 2) 

Using above algorithm, we can construct simple finite 

pierce continued fraction (S.F.P.C.F) for (√5 −

2).(√5 − 2) = [4,17,19,57,77, . . . ]. Then we can 

construct two sequences that we have mentioned 

above. 

𝐶0 = 2.25 

𝐶1 = 2.2352941176 

𝐶2 = 2.2360681115 

𝐶3 = 2.2360679775 

Now to get final answers we have to add 2 for each 𝐶𝑛 

value. Our new 𝐶𝑛 sequence is, 

Exact value of the √5 is, √5 = 2.2360679977. 

By definition 1.3, nth convergent is denoted by Cn, the 

actual value x of the infinite pierce continued fraction 

will lies between two strings, one string made up of 

odd convergent, and other made up of even 

convergent. Thus, 

𝐶0 ≥ 𝐶2 ≥ 𝐶4. . . . . ≥ 𝑥 ≥. . . . . . ≥ 𝐶5 ≥ 𝐶3 ≥ 𝐶1 

 

According to this we can obtain following theorems, 

Theorem 1.4 

Let x = [𝑎0, 𝑎1, 𝑎2, . . . . . 𝑎𝑛. . . ], where 𝐶𝑛is nth 

convergent. Then,  

𝑞1
𝑖
 0 1 2 3 

𝐶1
𝑖 4 17 19 77 

𝑃𝑖 1 16 305 1761984 

𝑄𝑖 4 68 1292 7463884 

𝐶𝑖 0.25 0.2352941176 0.2360681115 0.2360679775 
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i. xCn
n

=
→

lim . Further 𝑥 ⋛ 𝐶𝑛 according to n 

is odd or even. 

ii. |𝑥 − 𝐶𝑛| ≥ |𝑥 − 𝐶𝑛+1| 

iii. |𝑥 − 𝐶𝑛| <
1

𝑞𝑛+1
 

Proof  

i. Since 𝐶1 ≤ 𝐶3 ≤ 𝐶5 ≤. . . . ..is increasing 

sequence. Bounded above by any even 

convergent. 

12
lim

−

→
 nC

n
 exist. 

n
n

CCCCC 27531 lim
→

  

Similarly, 𝐶0 ≥ 𝐶2 ≥ 𝐶4. . . . . . .. is an decreasing 

sequence which is bounded below by any odd 

convergent. 

n
n

C2lim
→

 exist.        

12420 lim..... −
→

 n
n

CCCC  

Since 𝑄𝑛 = 𝑄𝑛−1𝑎𝑛: {𝑄𝑛}is an increasing sequence  

Therefore  𝑄𝑛 → ∞as 𝑛 → ∞ 

Since 𝑪𝒏 − 𝑪𝒏−𝟏 =
(−𝟏)𝒏

𝑸𝒏
 by corollary 1 part (iv) 

Therefore 122 limlim −
→→

= n
n

n
n

CC  

n
n

n
n

n
n

CCC 2122 limlimlim
→

−
→→

==  

i.e.      𝑥 = [𝑎0, 𝑎1, 𝑎2, . . . . . 𝑎𝑛 , 𝑎𝑛+1. . . ] 

𝑥 =
1

𝑎1

−
1

𝑎1𝑎2

+
1

𝑎1𝑎2𝑎3

−. . . +
(−1)𝑛+1

𝑎1𝑎2𝑎3. . . 𝑎𝑛

+
(−1)𝑛+2

𝑎1𝑎2𝑎3. . . 𝑎𝑛+2

 

𝑥 =
1

𝑎1
−

1

𝑎1𝑎2
+

1

𝑎1𝑎2𝑎3
−. . . +

(−1)𝑛

𝑎1𝑎2𝑎3.....𝑎𝑛
+

(−1)𝑛+1

𝑎1𝑎2𝑎3.....𝑎𝑛
{.

1

𝑎𝑛+1
+

(−1)1

𝑎𝑛+1𝑎𝑛+2
}

 

This can be written as,  

𝑥 = 𝐶𝑛 +
𝑦(−1)𝑛+1

𝑄𝑛
………………………………..(4) 

Now consider, 

|𝑥 − 𝐶𝑛| = |
𝑦(−1)𝑛+1

𝑄𝑛
| =

𝑦

𝑄𝑛
 but we know 

𝑦

𝑄𝑛
≥ 0 

But we know 𝑦 < 1 

Then, 

𝑦

𝑄𝑛
<

1

𝑄𝑛
,0 ≤ |𝑥 − 𝐶𝑛| <

1

𝑄𝑛
 ……………………(5) 

But 𝑛 → ∞,
1

𝑄𝑛
→ 0(∵ 𝑄𝑛 > 0) 

By sandwich lemma with (5) 

xCn
n

=
→

lim  

Therefore,  

𝐶0 ≥ 𝐶2 ≥ 𝐶4. . . . . ≥ 𝑥 ≥. . . . . . ≥ 𝐶5 ≥ 𝐶3 ≥ 𝐶1. 

i.e. 𝑥 ⋛ 𝐶𝑛 according to 𝑛 is odd or even. 

ii. By (4),   𝑥 = 𝐶𝑛 +
𝑦(−1)𝑛+1

𝑄𝑛
 

 

|𝑥 − 𝐶𝑛| = |
𝑦

𝑄𝑛

| =
𝑦

𝑄𝑛

− − − − − −(𝐴) 

           𝑥 = 𝐶𝑛+1 +
𝑦(−1)𝑛+2

𝑄𝑛+1
………………………(6) 

|𝑥 − 𝐶𝑛+1| = |
𝑦(−1)𝑛+2

𝑄𝑛+1

|

=
𝑦

𝑄𝑛+1

− − − − − −(𝐵), 𝑛 ≥ 1 

We know 𝑄𝑛 is an increasing sequence  

∴ 𝑄𝑛 ≤ 𝑄𝑛+1 ⇒ 
1

𝑄𝑛
≥

1

𝑄𝑛+1
⇒ 

𝑦

𝑄𝑛
≥

𝑦

𝑄𝑛+1
. 

Therefore |𝑥 − 𝐶𝑛| ≥ |𝑥 − 𝐶𝑛+1|. 

iii. By Corollary 1 part (iv) 

 𝑪𝒏 − 𝑪𝒏−𝟏 =
(−𝟏)𝒏

𝑸𝒏
 

|𝐶𝑛 − 𝐶𝑛−1| = |
(−1)𝑛

𝑄𝑛
| =

1

𝑄𝑛
………………(7) 

𝑄𝑛 𝑦 
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By above part ii., 𝑥 lies between 𝐶𝑛and 𝐶𝑛+1 

|𝑥 − 𝐶𝑛| < |𝐶𝑛+1 − 𝐶𝑛| =
1

𝑄𝑛+1

 

|𝑥 − 𝐶𝑛| <
1

𝑄𝑛+1

 

Last part has been given for upper bound for given 

approximation square root problem. 

II. RESULTS AND DISCUSSION 

Using our proposed algorithm, we establish couple of 

results.  

Result 1.  For any real number x (0 < 𝑥 < 1), 

suppose that the Pierce contined fraction of 

𝑥is⟨𝑎, 𝑏, 𝑎, 𝑏, . . ⟩ (for example, =
11

3
⟨3,4,3,4, . . . ⟩). 

This infinite Pierce continued fraction can be written 

as a finite continued fraction, 

𝑥 = ⟨𝑎, 𝑏, 𝑎, 𝑏, . . ⟩ = ⟨𝑎, 𝑏, 𝑎𝑏 − 1⟩, where  𝑏 = 𝑎 + 1. 

Result 2. For any real number ,x (0 < 𝑥 < 1), 

suppose that the Pierce continued fraction of 𝑥 is ⟨𝑎, 𝑏⟩  

(for example, =
117

12
⟨9,13⟩). This finite continued 

fraction can be written as an infinite continued 

fraction, 

          𝑥 = ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝑏 − 1, 𝑏 − 1, 𝑏 − 1, . . . ⟩ 

In previous theorem last part have been discussed an 

upper bound for square root problem, for an example 

considering the value of √5 correct to four decimal 

places,  

If |√5 − 𝐶𝑛| < 0.00005 then 𝐶𝑛 − 0.00005 < √5 <

𝐶𝑛 + 0.00005and 𝐶𝑛gives the value of √5 correct to 

four decimals places.by theorem 1.3 part (iii), 

|𝑥 − 𝐶𝑛| <
1

𝑄𝑛+1
 

If 
1

𝑄𝑛+1
< 0.00005then|√5 − 𝐶𝑛| < 0.00005.  

i.e., 𝑄𝑛 > 20,000. 

According example 2,  

Using continued fraction approximation value of √5in 

to 4 decimal places is given by the 6th convergent (𝑐6) 

But using the pierce continued fraction same result can 

be obtained by 4th convergent or less. 

In addition, we have illustrated above results 

graphically. Table 1, we get this value when n=3. But 

if we used standard continued fraction minimum value 

for n is 6. 

 

 

 

 

 

 

Fig. 1- exact value of √5 vs 𝐶𝑛 

 

 

 

 

 

 

Fig. 2- exact value of √5 vs 𝑐𝑛 

 

 

 

 

 

 

 

Fig. 3- 𝐶1
𝑛 vs 𝑐𝑛  
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In figure 1, graph of 𝐶𝑛 has been coincide with graph 

of √5 subsequently 𝑛 = 3. According to the above 

graphs, the variance of the partial quotients of pierce 

continued fraction are smaller than partial quotients of 

usual continued fraction. 

CONCLUSION 

In this work we introduce a continued fraction called 

the Pierce continued fraction which has a better 

convergent rate than the usual continued fraction. 

Using this advantage, we got appropriate approach for 

approximation to square root problem. Moreover, two 

sequences {𝑃𝑛}  and {𝑄𝑛} are defined to obtain the 

relevant convergence.  In addition, we have proved 

theorem which are necessary to obtain the 

convergence of a pierce continued fraction. Most of 

the proofs are similar to the proofs of their continued 

fraction.  

There are lots of applications related to continued 

fractions. Solving linear Diophantine equations is one 

of the major applications. As a future work, we expect 

to establish a result to solve the Pelle’s equation using 

Pierce continued fraction.   
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