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Abstract- We present a new formulation to 

automatically solve jigsaw puzzles considering only 

the information contained on the image. Our 

formulation maps the problem of solving a jigsaw 

puzzle to the maximization of a constrained 

quadratic function that can be solved by a numerical 

method. The proposed method is deterministic and it 

can handle arbitrary rectangular pieces. We tested 

the validity of the method to solve problems up to 

3300 puzzle pieces, and we compared our results to 

the current state-of-the-art, obtaining superior 

accuracy.  

 

I. INTRODUCTION 
 

In the well-known jigsaw puzzle problem, numerous 

non overlapping tiles have to be assembled together, 

according to a color pattern or shape fitting, with the 

goal of reconstructing a single plane or image. 

Although this problem has been proven to be NP-

complete when the affinity between the tiles is 

uncertain [1], several scientific challenges such as the 

reconstruction of documents from shredded paper [2], 

and reassembling broken archeological artifacts from 

fragments [3], can be reformulated as 2D or 3D jigsaw 

puzzle problems. In this paper we focus on the 

problem of reconstructing images from identically 

shaped rectangular tiles placed without repetition 

within a regular rectangular grid of known 

dimensions. Contrary to what occurs in traditional 

jigsaw puzzles, here the tile shape does not provide 

any information, making the problem even more 

challenging. In solving this kind of problem, we first 

need to deal with its combinatorial nature: since a 

tiling can be described as a permutation of the tiles 

within the rectangular grid, the number of possible 

tilings grows exponentially as a function of the  

number of tiles. In addition, since the problem is 

global in nature we seek local measures of pairwise tile 

matching to help reduce the complexity of the search.  

 

However, no such rule based solely on local boundary 

tile similarity is known to date. Automatic solvers for 

jigsaw puzzles have been proposed since 1954, when 

the first method was presented by Freeman and Garder 

[4]. It was able to solve pictorial puzzles with 9 

fragments by analyzing critical points on the border of 

the puzzle pieces. Since then and based on the first 

method, several other methods focused on matching 

the shape of the tiles only [5]. Kosiba et al. [6] were 

the first to consider not only the shape of the tiles, but 

also the content of the image. In their method, the 

matching process between the tiles considers many 

characteristics: color samples along the borders, 

curvature parameters, and the concavity and convexity 

of the tiles. Nielsen et al. [7] proposed the first solver 

to assemble successfully puzzles without shape 

information. The method was able to solve puzzles 

with 320 square tiles using a greedy approach.  

 

Two recently proposed methods [8], [9] solve the 

square jigsaw puzzle by considering a pairwise 

compatibility metric between tiles which compares the 

color information on the shared boundary of two tiles. 

Cho et al. [8] presents a solver for puzzles with 432 

tiles based on maximizing a probability function via 

loopy belief propagation. Since they don’t have local 

evidence for their graphical model, they rely on 

knowing the placement of some tiles to solve the 

problem. Pomeranz et al. [9] presented the current 

state-of-the-art solver. By assuming a puzzle with 

square tiles, they solve problems with up to 3300 tiles 

using a greedy approach. However, this method 

requires solving each puzzle several times starting 

from different random seeds to obtain good results up 

to certain accuracy. In this paper we propose a simple 
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quadratic programming formulation to solve jigsaw 

puzzles with identically shaped rectangular tiles. We 

show that, for the same image sets, we can achieve 

superior accuracy over the current state-of-the-art 

method. Our method will be referenced as PSQP – 

Puzzle Solving by Quadratic Programming.  

 

II. RELATED WORK 
 

First consider an image partitioned into a regular 2D 

grid of size Ncols × Nrows, forming N tiles t1,...,tN , 

of identical dimensions. Now consider an empty grid 

of the same size as the previous one with N locations 

labeled 1,...,N. The problem is to determine a one-to-

one correspondence between the N tiles and the N 

locations, optimal with respect to certain properly 

constructed global matching function. Since this 

correspondence can be described by a permutation π 

of the N tiles, the problem to be solved reduces to a 

discrete optimization problem over the finite group of 

permutations of N elements. 

 

We organize the locations as a directed graph G = 

{V,E = EH ∪ EV }, where the vertices are the tile 

locations, V = {1,...,N}, and the set of edges E 

comprises all pairs of neighboring tile locations. EH 

and EV denote the set of horizontal and vertical 

neighboring locations, respectively. G must be a direct 

graph because in general, swapping two tiles from 

neighboring locations should result in a change in the 

global matching function. For each pair of tiles (ti, tj ) 

so that 1 ≤ i, j ≤ N and i = j, we define two local 

matching compatibilities CHi,j ≥ 0 and CVi,j ≥ 0, that 

correspond to the compatibility of assigning ti and tj to 

locations connected by any horizontal edge e ∈ EH or 

vertical edge e ∈ EV , respectively. We consider the 

following global matching function of a permutation π 

 

where e = (i, j) is the edge connecting the neighboring 

locations i and j, and π(i) can be regarded as a 1-1 

mapping which assigns the tile tπ(i) to the location i. 

Our goal is to maximize this function over all the 

permutations π of N elements. Since this is a hard 

combinatorial optimization problem, we first extend 

the domain of the global matching function to the set 

of doubly stochastic matrices, and we reformulate the 

problem as a constrained continuous optimization 

problem, which we solve using numerical methods. 

Then we describe how the coefficients of the matrices 

CH and CV are computed so that the solution of the 

continuous optimization problem correlates well with 

the original combinatorial optimization problem. 

 

2.1 Global Matching Function 

 

In this section we show how Equation 1 can be 

reformulated as a homogeneous quadratic function of 

a square matrix, which allows us to relate the problem 

to a simpler continuous optimization problem. First of 

all, each permutation π of N elements can be 

represented as a permutation matrix, i.e., a binary 

square matrix P with exactly one entry equal to 1 in 

each row and in each column: 

 

With this notation we can reformulate the global 

function as follows 

 

where a generic term (P CP)ij , corresponding to the 

edge e = (i, j), is the element (ij) of the square matrix 

(P CP). Note that for each edge e = (i, j), the term (P 

CP) is a homogeneous non-negative quadratic 

function of elements of matrix P. It follows that the 

sum of all terms of ε(P) is also a homogeneous non-

negative quadratic function of P. If we represent the 

columns of the N × N matrix P as a vector p of 

dimension N2, we get where p is the vertical 

concatenation of the columns, p1,...,pN of P. We can 

reformulate Equation 4 in the canonical form pAp, 

where A is a symmetric N2 × N2 matrix, representing 

the Hessian of ε(P). In vector form and in coordinates: 

 

Even though in practice we never construct the matrix 

A explicitly, an analytic expression can be obtained. 

Since for a generic matrix C we can write and it 

follows that the coefficients of the matrix A can be 

accumulated by a simple linear traversal of matrices 

CH and CV . Fig. 1 illustrates the problem 

formulation. 

 

 
Fig. 1. Problem formulation. From left to right: tiles, 

locations with the two edge sets, and matrix A 
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represented as a block matrix. C H and C V are the 

transpose of matrices CH and CV , respectively, and 

each block of matrix A is a 6 × 6 matrix. 

 

III. PROPOSED METHOD 
 

3.1 Constrained Gradient Ascent  

 

Permutation matrices are special cases of doubly 

stochastic matrices [10]. A doubly stochastic matrix is 

a non-negative matrix such that the sum of all the 

elements in each row is equal to 1, and the sum of all 

the elements in each column is also equal to 1. In fact, 

the set of doubly stochastic matrices is the convex hull 

of the permutation matrices within the set of N × N 

matrices. Each doubly stochastic matrix satisfies N2 

inequality constraints, which specify that the elements 

Pij of P are non-negative; and 2N equality constraints, 

which specify that the sum of the rows and columns of 

P are equal to 1. By extending the domain of ε(P) to 

all the 64 doubly stochastic matrices, the problem 

reduces to solving the following quadratic 

optimization problem where there is a column vector 

of size N with all elements equal to one. We use a 

constrained gradient ascent algorithm, with gradient 

projection [11], to search for local maxima of this 

problem. Note that even though the objective function 

f(p) is positive on the feasible set, it is not necessarily 

concave because matrix A is not positive definite: all 

the diagonal values of A are 0 in our formulation, 

which violates the necessary conditions for positive 

definiteness, and also for positive semi-definiteness. 

Therefore, we cannot guarantee f(p) to attain a 

maximum at a permutation matrix. But in practice, we 

observe that we can get as close as possible to a 

solution by working with the constraints. To maximize 

Equation 8, we propose a modified constrained 

gradient ascent approach, with gradient projection 

[11]. To locate a local maxima of a function, we need 

to update the variables in steps proportional to the 

gradient at the current point, while projecting the 

gradient. In our approach we maintain a set of active 

variables. An inactive variable is one that is at the 

boundary of the feasible region and cannot be further 

updated. The method starts from pkl = 1 N , 1 ≤ k,l ≤ 

N, and with all variables active, active kl = true, where 

active indicates if a variable is active or not. The ascent 

direction, d = ∇f(p) = A ∗ p, at the current estimate p, 

in general does not satisfy the linear constraints, so we 

must project it onto the space orthogonal to the 

subspace defined by the linear equality constraints 

[11], resulting in the constrained ascent direction c. 

Fig. 2 illustrates a 2D simplification of the process of 

projecting the grad 

 

 
Fig. 2. Projection of the gradient onto the space 

orthogonal to the space defined by the linear equality 

constraints. With the constrained ascent direction c, 

the method can update the previously feasible point to 

a new feasible point p: pkl = pkl + step ∗ c, for 1 ≤ k,l 

≤ N, and active kl = true, where step is the maximum 

value so that 0 ≤ pkl ≤ 1 

 

When one of the variables reaches the boundary of the 

feasible region, we should update the constraints so 

that this variable stays at the boundary. However, in 

practice, maintaining a group of modifying and 

orthogonal constraints implies high computational 

costs and storage. Instead, we reinitialize p every time 

there is no direction to maximize the energy inside the 

feasible region. In order to do this, we deactivate the 

variables that are on the limit of the feasible region, 

i.e., the ones that are equal to either zero or one. The 

process of deactivating a variable on the upper limit 

corresponds to assigning the corresponding tile to the 

most probable location. We then restart p without the 

inactive variables, i.e., pkl = 1 N − nFixedTiles , for 1 

≤ k,l ≤ N, and active = true, where nFixedTiles is the 

number of tiles that have been assigned to a location. 

Then we repeat these steps until all the tiles have been 

assigned to a location. Algorithm 1 shows the pseudo-

code for the ascent gradient approach that maximizes 

Equation 

 

3.2 Compatibility between tiles 

The compatibility between pairs of tiles has been 

studied before [8], [9], and plays an important role in 
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solving the image puzzle. Demaine et al. [1] showed 

that if it is locally possible to tell whether two tiles fit 

together in the final solution, then trying to join 

together all pairs of tiles in a greedy manner solves the 

puzzle in polynomial time. But, in natural images, it is 

easy to find examples of tiles with ambiguous 

neighboring tiles. In this work, we consider the 

prediction based compatibility proposed by Pomeranz 

et al. [9]. The horizontal dissimilarity between a left 

hand side tile right hand side tile tj is defined as 

 

where tiles ti and tj are regarded as T × T × 3 matrices, 

variables p and q are tunable parameters, and the color 

difference is measured in the normalized LAB color 

space. The vertical matching error DVij is computed 

in a similar fashion. Based on the predicted values, the 

compatibility between tiles ti and tj is defined as [9] 

 

where quartile(i) is the quartile of the dissimilarity 

among all other tiles and tile ti. Unfortunately, the 

local matching dissimilarity (Equation 9) does not 

provide enough information to solve the puzzle 

globally. This is illustrated in Fig. 3, where it is shown 

the dissimilarities considering only correctly assigned 

neighboring tiles. We can see that in some constant 

parts of the image (the sky, for example), the 

dissimilarity among all tiles is lower than in other non-

constant parts and thus they are not comparable. The 

problem gets worse when we consider the errors 

between every possible pair of tiles. 

 

 
Due to this difficulty, we present a new compatibility 

measure, based on [9], that imposes a stronger global 

order to the tiles’ dissimilarities. The horizontal 

compatibility between tiles ti and tj is defined as 

 

 

3.3 Implementation  

 

In the implementation of the gradient ascent method, 

the memory footprint is a major concern, because 

matrices CH and CV , vector p, and the ascent 

direction c have N × N entries each. To save up 

memory, we observed that the term ϕ(i) (Equation 11) 

makes the compatibility values really small when 

distant neighbors of it are considered. Thus, using a 

safe threshold (10−6) we can zero out compatibility 

values that are already almost zero. By doing this, 

matrices CH and CV become sparse. In the optimal 

case, CH will have Nrows(Ncols − 1) non-zero entries 

and CV will have Ncols(Nrows − 1) non-zero entries, 

a drastic reduction in memory usage. In terms of 

computational complexity, our algorithm runs in 

quadratic time in the number of tiles, i.e, PSQP is 

O(n2). The ascent direction computation is done by 

traversing matrices CH and CV , and the projection of 

the ascent direction is done by traversing the 

corresponding vector two times. In practice, we have 

two problems that were not discussed before. First, the 

constant tiles – groups of tiles that have equal feature 

vectors on all sides – impose a hard problem to solve. 

These tiles have total compatibility among them and 

to the neighboring non-constant tiles. To address this, 

we simply do not take them into account by zeroing 

out their compatibility. By doing this, the constant tiles 

will fit in the holes left by the optimization process. 

Note that, because they are equal, it doesn’t matter 

which permutation will be adopted among them. The 

second problem is the non-convexity property of the 

energy function that we want to maximize. There is no 

guarantee that the maximum provided by the 

Constrained Gradient Ascent algorithm is the global 

maximum, only a local one. For a few puzzles, 

especially the ones that contain constant tiles (and the 

compatibility values were altered), the final 

permutation does not represent a global maximum, but 

a local maximum that is a shift of the global 

permutation (Fig. 4). 
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(b) Permutation associated with a local maximum.  

(c) Permutation associated with the global maxima.  

 

Fig. 4. Example of the non-concavity property of the 

global matching function. Note that this puzzle 

contains several constant (white) tiles.  

 

IV. RESULTS 

 

 
Fig.1 Image for medium option in the shuffle puzzle 

play online 

 

 
Fig.2 Image for “Hard” option in the shuffle puzzle 

play online 

 

 
Fig.3 Results after the successful implementation of 

the puzzle 

 

CONCLUSION 
 

We introduced a new formulation for solving image 

jigsaw puzzle problems, the method PSQP – Puzzle 

Solving by Quadratic Programming. In our 

formulation, a solved puzzle is a one-to-one 

assignment of tiles to locations, according to an energy 

function. Since this is a hard combinatorial problem, 

we reformulate it as a quadratic programming 

approach, where we can find an approximate solution 

by means of a gradient ascent algorithm. We compared 

PSQP to the current state-of-the-art and it provided 

superior results according to the used metrics. PSQP 

also has some advantages. First, it can solve puzzles 

not only with square tiles, but also with rectangular 

ones. Second, it is deterministic and although several 

parameter sets have to be tested, the method always 

yields the same results, while the current state-of-the-

art method has to be executed several times to attain a 

certain accuracy. For the size of the puzzles tested, 

PSQP is faster, considering all the necessary 

executions in both methods. By analyzing the results, 

we observed that image puzzles that contain constant 

tiles are a weakness of PSQP. Constant tiles are 

difficult to order in a global sense, so we cannot 

consider them as a normal piece. We also observed 

that the right parameter set for each image may be 

determined a priori by analyzing the image and tiles 

properties. These two observations will be included in 

future studies. 
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