On class (BQ) Operators of order n.

WANJALA VICTOR ${ }^{1}$, OYOMBE ALUALA ${ }^{2}$
${ }^{1,2}$ Department of Mathematics and computing, Kibabii University.

Abstract

In this paper, we extend the class of (BQ) operators acting on a complex Hilbert space H to the class of (BQ) of order n. An operator if $T \in$ $B(H)$ is said to belong to class $(B Q)$ of order n if T ${ }^{* 2 n} T^{2}$ commutes with $\left(T{ }^{* n} T\right)^{2}$ that is $\left[T{ }^{* 2 n} T^{2},(T\right.$ $\left.\left.{ }^{* n} T\right)^{2}\right]=0$. We examine properties that this class is honored to have. We examine the relation of this class to that of class (Q) order n.

Indexed Terms- Class (BQ) of order n, Class (BQ) operator, Normal operator of order n.

I. INTRODUCTION

Throughout this paper, H denotes the usual Hilbert space over the complex field and $B(H)$ the Banach algebra of all bounded linear algebra on an infinite dimensional separable Hilbert space H. An operator $T \in B(H)$ is said to be class (Q) if $\mathrm{T}^{* 2} \mathrm{~T}^{2}=(\mathrm{T} * \mathrm{~T})^{2}(1)$, class (Q) of order n if $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}^{2}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2}$, class (BQ) if $\mathrm{T}^{* 2} \mathrm{~T}^{2}(\mathrm{~T} * \mathrm{~T})^{2}=(\mathrm{T}$ $\left.{ }^{*} \mathrm{~T}\right)^{2} \mathrm{~T} \quad{ }^{* 2} \mathrm{~T} \quad{ }^{2} \quad$ (5). A conjugation on a Hilbert space H is an anti-linear operator C from Hilbert space H onto itself that satisfies

Cx, Cyi = hx, yi for every $x, y \in H$ and $C^{2}=I$. An operator T is said to be complex symmetric if $\mathrm{T}=\mathrm{CT}{ }^{*} \mathrm{C}$.

II. MAIN RESULTS

Theorem 1. Let $T \in B(H)$ be such that it's a (BQ) of order n , then the following are also equivalent; (i). $\lambda \mathrm{T}$ for any real λ (ii). Any $S \in B(H)$ that is unitarily equivalent to T. (iii). The restriction T-M to any closed subspace M of H.

Proof. (i). The proof is trivial. (ii). Let $S \in B(H)$ be unitarily equivalent to T, then there exists a unitary operator U $\in \quad B(H) \quad$ with $S=U * T U$ and $S^{*}=U * T * U$. Since $T \in B(Q)$ of order

(iii) . If T is in class (BQ) of order n , then; $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}^{2}\left(\mathrm{~T}{ }^{* n} \mathrm{~T}\right)^{2}=\left(\mathrm{T} \quad{ }^{* n} \mathrm{~T}\right)^{2} \mathrm{~T}^{* 2 \mathrm{n}} \mathrm{T} \quad{ }^{2}$ 。 Hence;

(T/M)	*2n	(T/M)	2	\{(T/M)			(T/M) $\}^{2}$
$=(\mathrm{T} / \mathrm{M})$	2			(M)			(T/M) ${ }^{2}$

$$
=(\mathrm{T} * 2 \mathrm{n} / \mathrm{M})\left(\mathrm{T}^{2} / \mathrm{M}\right)\left\{\left(\mathrm{T}^{* n} / \mathrm{M}\right)(\mathrm{T} / \mathrm{M})\right\}\left\{\left(\mathrm{T}^{* \mathrm{n}} / \mathrm{M}\right)(\mathrm{T} / \mathrm{M})\right\}
$$

$$
=\quad\left\{\left(\mathrm{T} \quad{ }^{* \mathrm{n}} \mathrm{~T}\right)^{2} / \mathrm{M}\right\} \quad\left\{\mathrm{T} \quad{ }^{* 2 \mathrm{n}} \mathrm{~T} \quad{ }^{2} / \mathrm{M}\right\}
$$

$$
=\left\{\left(\mathrm{T} \quad{ }^{* \mathrm{n}} / \mathrm{M}\right) \quad(\mathrm{T} / \mathrm{M})\right\}^{2}(\mathrm{~T} / \mathrm{M}) \quad{ }^{* 2 \mathrm{n}}(\mathrm{~T} / \mathrm{M})^{2}
$$

$$
\text { Thus } \quad \mathrm{T} / \mathrm{M} \quad \in(\mathrm{BQ}) \text { of order } \mathrm{n} .
$$ Theorem 2. If $T \in B(H)$ is in Class (Q) of order n, then $T \in \quad(B Q)$ of order $n \quad$. Proof. If $T \in(Q)$ of order n, then $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2} \quad=\quad\left(\mathrm{T} \quad{ }^{* n} \mathrm{~T}\right)^{2}$ post multiplying both sides by $\mathrm{T} *^{2 \mathrm{n}} \mathrm{T} \quad{ }^{2}$; $\mathrm{T} \quad{ }^{* 2 \mathrm{n}} \mathrm{T} \quad{ }^{2} \quad \mathrm{~T} \quad{ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2}=\left(\mathrm{T} \quad{ }^{* \mathrm{n}} \mathrm{T}\right)^{2} \quad \mathrm{~T} \quad *^{2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{2}$ $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T} \quad{ }^{2} \quad \mathrm{~T} \quad{ }^{* n} \mathrm{TT} \quad{ }^{* n} \mathrm{~T}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2} \quad \mathrm{~T} \quad{ }^{* 2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{2}$ $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2}\left(\mathrm{~T}{ }^{* n} \mathrm{~T}\right)^{2}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2}$ T ${ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2}$ 。 Theorem 3. Let $S, T \in(B Q)$ of order n. If both S and T are doubly commuting, then ST is in (BQ) of order n. Proof.

$(\mathrm{ST})^{* 2 \mathrm{n}} \quad(\mathrm{ST})^{2} \quad\left((\mathrm{ST})^{* \mathrm{n}} \quad(\mathrm{ST})\right)^{2}$ $=\mathrm{S}^{* 2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{* 2 \mathrm{n}} \quad \mathrm{S}^{2} \quad \mathrm{~T} \quad{ }^{2} \quad\left((\mathrm{ST})^{* n} \quad(\mathrm{ST})\right)\left((\mathrm{ST})^{* \mathrm{n}}(\mathrm{ST})\right)$ $=S^{* 2 n} T{ }^{* 2 n} S^{2} T^{2}\left(\left(S^{* n} T{ }^{* n}\right)(S T)\right)\left(\left(S^{* n} T{ }^{* n}\right)(S T)\right)$
 $=S^{* 2 n} T{ }^{* 2 n} S^{2} T^{2} S^{* n} \quad \mathrm{ST}{ }^{* n} \mathrm{TS}^{* n} \quad \mathrm{ST}{ }^{* n} \mathrm{~T}$ $=\begin{array}{llllllllll} & \mathrm{T} & & * 2 \mathrm{n} & \mathrm{T} & 2 & \mathrm{~S}^{* 2 \mathrm{n}} & \mathrm{S}^{2} & \mathrm{~S}^{* n} & \mathrm{SS}^{* n}\end{array} \quad \mathrm{ST} \quad{ }^{* n} \mathrm{TT} \quad{ }^{* n} \mathrm{~T}$
$=\begin{array}{lllllllll} & \mathrm{T} & \quad{ }^{* 2 \mathrm{n}} & \mathrm{T} & 2 & \mathrm{~S} * 2 \mathrm{n} & \mathrm{S} & 2 & \left(\mathrm{~S}^{* n} \mathrm{~S}\right)^{2} \mathrm{~T}\end{array} \quad{ }^{* n} \mathrm{~T} T \quad{ }^{* n} \mathrm{~T}$

```
=T *2n}\mp@subsup{T}{}{2}(\mp@subsup{S}{}{*n}S\mp@subsup{)}{}{2}\mp@subsup{S}{}{*2n}S\mp@subsup{S}{}{2}T\mp@subsup{T}{}{*n}TT *nT (Since S E (BQ)
of order n).
=(S*nS)2 T T *2n Tl 2
=(S*nS)
=(S*nS)
order n ).
=((S*n}S)(T\quad\mp@subsup{}{}{*n}\textrm{T})\mp@subsup{)}{}{2
=((S*nT T *n (ST))}\mp@subsup{)}{}{2
= ((ST)*n(ST)) 2 (ST)*2n}\quad(ST)\mp@subsup{)}{}{2
Thus ST E (BQ) of order n .
```

Theorem 4. Let $T \in B(H)$ be a class $(B Q)$ operator of order n such that $\mathrm{T}=\mathrm{CT}{ }^{* n} \mathrm{C}$ with C being a conjugation on H . If C is such that it commutes with T ${ }^{* 2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{2}$ and $\left(\mathrm{T}{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}$, then T is a class (Q) operator of order n . Proof. Let $T \in(B Q)$ of order n and complex symmetric, then we have; $\mathrm{T}^{* 2 \mathrm{n}} \mathrm{T}^{2}\left(\mathrm{~T}{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}=\left(\mathrm{T}{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}$

T			${ }^{* 2 \mathrm{n}} \mathrm{T}$	${ }^{2}$
and	T	$=$	CT	${ }^{* \mathrm{n}} \mathrm{C}$.

$\mathrm{T} \quad{ }^{* 2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{2}\left(\mathrm{~T} \quad{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}=\left(\mathrm{T} \quad{ }^{* \mathrm{n}} \mathrm{T}\right)^{2} \quad \mathrm{~T} \quad{ }^{* 2 \mathrm{n}} \quad \mathrm{T} \quad{ }^{2}$ T ${ }^{* 2 \mathrm{n}} \mathrm{T}^{2}$ CTCCT $^{* \mathrm{n}}$ CCTCCT ${ }^{* n} \mathrm{C}=\left(\mathrm{T}{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}$ CTCCT ${ }^{* \mathrm{n}}$ CCTCCT ${ }^{* n}$ C.
T ${ }^{* 2 \mathrm{n}} \mathrm{T}^{2} \mathrm{CTT}{ }^{* \mathrm{n}} \mathrm{TT}{ }^{* \mathrm{n}} \mathrm{C}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2} \mathrm{CTT}{ }^{* n} \mathrm{TT}{ }^{* n} \mathrm{C}$ $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2} \mathrm{CT}{ }^{2} \mathrm{~T}{ }^{* 2 \mathrm{n}} \mathrm{C}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2} \mathrm{CT}{ }^{* n} \mathrm{TT}{ }^{* n} \mathrm{TC}$ $\mathrm{T}{ }^{* 2 \mathrm{n}} \mathrm{T}{ }^{2} \mathrm{CT}{ }^{* 2 \mathrm{n}} \mathrm{T}^{2} \mathrm{C}=\left(\mathrm{T}{ }^{* n} \mathrm{~T}\right)^{2} \mathrm{C}\left(\mathrm{T}{ }^{* \mathrm{n}} \mathrm{T}\right)^{2} \mathrm{C}$. C commutes with $\mathrm{T}{ }^{* 2} \mathrm{~T}^{2}$ and $(\mathrm{T} * \mathrm{~T})^{2}$ thus we get ; $\mathrm{T} \quad{ }^{* 2 \mathrm{n}} \mathrm{T} \quad{ }^{2} \mathrm{~T} \quad{ }^{* 2 \mathrm{n}} \mathrm{T} \quad{ }^{2}=\left(\mathrm{T} \quad{ }^{* \mathrm{n}} \mathrm{T}\right)^{2} \quad\left(\mathrm{~T} \quad{ }^{* \mathrm{n}} \mathrm{T}\right)^{2}$. which implies $T{ }^{* 2 n} T^{2}=\left(T{ }^{* n} T\right)^{2}$ and hence $T \in(Q)$ of order n.

REFERENCES

[1] Jibril, A.A.S.., On Operators for which $T^{* 2}(T)^{2}=$ $(\mathrm{T} * \mathrm{~T})^{2}$, international mathematical forum, vol. 5(46) ,2255-2262.
[2] S. Paramesh, D. Hemalatha and V.J. Nirmala., A study on n-power class (Q) operators, international research journal of engineering and technology, vol.6(1), (2019) , 2395-0056.
[3] wanjala Victor and A.M. Nyongesa., On (α, β)class (Q) Operators, international journal of mathematics and its applications, vol. 9(2) (2021), 111-113.
[4] Wanjala Victor and Beatrice Adhiambo Obiero., On almost class (Q) and
class (M,n) operators ,international journal of mathematics and its applications ,vol . 9(2) (2021), 115-118.
[5] Wanjala Victor and Beatrice Adhiambo Obiero., On class (BQ) operators, Global Journal of Advanced Research, vol. 8(4) (2021), 118-120.

