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Abstract—Long term evolution (LTE) main 

objectives are to provide a high data rate, low 

latency and packet optimized radio access 

technology supporting flexible bandwidth 

deployments. LTE network architecture is designed 

to support packet-switched traffic with seamless 

mobility and great quality of service. 

Notwithstanding these gains, its system 

performance is hampered by load imbalance due to 

uneven distribution among neighboring cells. As a 

remedy to the above stated problem, automated 

inter-cell optimization is required. It is necessary for 

the network to conduct inter-cell optimization 

dynamically and adaptively according to its 

environments. Several techniques have been 

proposed in the past to solve the problem of load 

imbalance in an LTE network. This research seeks 

to use fuzzy logic controller and Q-learning 

technique to achieve load balancing in such a 

network. Using as inputs to the fuzzy controller the 

reference receivesignal quality (RSRQ) and load 

difference between adjacent cells. While the output 

of the controller is a crispy power value use to alter 

the cell transmit power for a better load 

performance. Using Q-learning techniques, the 

output power is optimized to obtain the best possible 

power increment considering the current state of the 

network in terms of quality and load and also keep 

the transmit power within acceptable range. The 

results obtained showed a remarkable improvement 

in the load fairness index with a mean value of 0.99 

all through the simulation period and a 48% 

reduction in the number of unsatisfied users from 

its unbalance state. 

 

Indexed Terms—Fuzzy logic, Load balancing, 

Long-term evolution, Q-learning, Self- organizing 

networks  

 

I. INTRODUCTION 

 

LTE main objectives were to provide a high data rate, 

low latency and packet optimized radio access 

technology supporting flexible bandwidth 

deployments. LTE network architecture is designed 

to support packet-switched traffic with seamless 

mobility and great quality of service. The high 

spectrum efficiency achieved by LTE network is due 

to the use of flat network architecture (Orthogonal 

frequency division multiple access (OFDMA) and a 

robust physical layer techniques multiple input 

multiple output (MIMO) antennas).Orthogonal 

Frequency Division Multiple Accessis a variant of 

Orthogonal Frequency Division Multiplexing 

(OFDM). It performs well in frequency selective 

fading channels and provides a feasible and 

affordable solution with its low complexity in the 

implementation as well as allows high spectral 

efficiency by means of compatibility with advanced 

receiver and antenna technologies. Hence, it is 

chosen for the downlink (DL) of Evolved UMTS 

Terrestrial Radio Access Network (E-UTRAN) as 

selected before in wireless technologies, such as Wi-

Fi, WiMAX, LTE; and wired technologies [11]. 

 

LTE System Architecture Evolution standardized by 

third generation partnership project (3GPP), increases 

data efficiency, and minimizes the number of nodes 

with respect to the second and third generation 

systems. Intermediate nodes such as the Radio 

Network Controller (RNC), the Serving GPRS 

Support Node (SGSN) and the Gateway GPRS 

Support Node (GGSN) are removed and replaced by 

the System Architecture Evolution (SAE) Gateway 

(GW), for the reduction of inter-node data traffic 

delays. In SAE, the central control functions of the 

RNC are distributed between the evolved NodeB 

(eNodeB) and the Mobility Management Entity 
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(MME) as eNodeBscan communicate with each other 

using a new logical inter-eNodeB interface, called 

X2. Thus, the eNodeB has more control functions 

than a 3G Node B. The S1 interface is a multiple 

interface that connects a pool of eNodeBs to a pool of 

mobility management entities and gateways [11]. 

 

“Reference [6]”proposed a load balancing scheme 

which can select a proper serving NodeB (SeNB) 

among the multiple tergetNodeB (TeNB) for each 

user based on the load difference and the Signal to 

Interference plus Noise Ratio (SINR). Performance 

evaluation was conducted in the network simulator 

OPNET. The simulation results demonstrated that the 

proposed scheme can get a lower end-to-end delay. 

[8] Proposed a handover off-set based load balancing 

algorithm using the parameter “cell specific offset” to 

force users to handover from the overload eNodeB to 

the target eNodeB. The main goal of the proposed 

algorithm is to find the optimal hand over offset that 

allows the maximum number of users to change cell 

without any admission rejection at the target eNodeB. 

A directional cell breathing based reactive congestion 

control algorithm was proposed, where the coverage 

area of a cell can be dynamically extended towards a 

nearby loaded cell when it is under-loaded.  

 

“Reference [2]”applied Neuro-Encoded Fuzzy model 

to achieve load balancing using two Key 

Performance Indicators (KPIs) to increase system 

performance, thereby justifying the load balancing 

process. The load indicators are: Virtual load (VL) of 

eNodeBs and their Overall Load State (OS). The first 

model is based on a KPI termed Load Distribution 

Index (LDI) while the second one is premised on the 

number of unsatisfied users in the cell and is termed 

Unsatisfied Users (USU) model. In another related 

work, [1] proposes the use of soft computing, 

precisely adaptive neuro- fuzzy inference system for 

dynamic QoS-aware load balancing in 3GPP LTE. 

Three key performance indicators (i.e., number of 

satisfied user, virtual load and fairness distribution 

index) were used to adjust hysteresis task of load 

balancing. “Reference [5]”presents an optimization 

framework for load balancing in LTE HetNets, by 

means of cell range assignment using cell-specific 

offset. For any given offset setting, the resulting cell 

load is effectively approached via the solution of a 

system of non-linear equations characterizing the 

load-coupling relation between cells. A 

computationally efficient bounding scheme was 

presented to approximate the solution of the non-

linear system and provide theoretical insights into the 

monotonicity and convergence of the scheme. The 

bounding scheme is embedded into an algorithm 

based on the principle of design of experiments 

(DOE) for cell offset optimization. Simulation results 

demonstrate the effectiveness of the optimization 

process for LTE load balancing with HetNet 

elements.  

 

“Reference [10]”presented a unified self-management 

mechanism based on Fuzzy Logic and Reinforcement 

Learning. The proposed algorithm modifies handover 

parameters to optimize the main Key Performance 

Indicators related to load balancing (LB) and 

handover optimization (HOO). The results show that 

the proposed scheme effectively provides better 

performance than independent entities running 

simultaneously in the network. [6] Proposed a load 

balancing scheme which can adapt to the network 

conditions and achieve a better network performance 

by appropriately distributing the load among the 

neighbouring cells. The proposed scheme can select a 

proper SeNB among the multiple TeNB for each user 

based on the load difference and the Signal to 

Interference plus Noise Ratio (SINR). The 

performance evaluation was conducted in the 

network simulator OPNET. “Reference [4]”evaluated 

mobility load balancing (MLB) in terms of efficient 

Pico cell utilization and macro layer load balancing. 

The analysis focuses on video streaming traffic due 

to specific service characteristics (e.g., play-out 

buffer delay/ jitter protection) that might make any 

mobility performance degradation transparent to the 

end user performance. The Results showed that the 

proposed MLB scheme can significantly improve the 

overall network resources utilization by eliminating 

potential load imbalances amongst the deployment 

layers and consequently enhance user experience. 

However this occurs at the cost of increased Radio 

Link Failures (RLF), a fact that might be critical if 

appliedin real-time conversational services without 

additional mobility optimization and interference 

management techniques.  
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II. PROPOSED STRUCTURE OF THE LOAD 

BALANCING AND OPTIMIZATION SCHEME  

The proposed fuzzy inference model for LTE load 

balancing comprises of a fuzzy logic controller block, 

Q-learning optimization block and a heterogeneous 

LTE network block as shown in Fig.1. The inputs to 

the fuzzy logic controller are the load difference and 

reference signal receive quality difference of any two 

adjacent cells. Other variables of interest such as 

alarms, counters, and/or any other key performance 

indicators (KPIs) acquired from network statistics or 

call traces can equally be used as inputs. The outputs 

propose to the cellular network the new reconfigured 

parameters in this case incremental cell transmit 

power which could be positive or negative. The 

output from the fuzzy controller is first optimized 

with the Q-learning optimizer before being applied to 

the network. 

 

Fig.1.  Fuzzy Inference Model for LTE Load 

Balancing. 

The proposed model modifies the service area of the 

network cells by adjusting its transmit power, PTX(i). 

A higher/lower transmit power in a base station is 

directly linked to higher/lower received signal levels 

in that cell, which has an influence on cell dominance 

areas. Re-sizing the service areas of a cell can also be 

achieved by tuning Hand-Over (HO) margins. The 

HO margin parameter from cell i to cell j, 

MarginPBGT(i,j), defines by how much the signal 

level received from a neighbour cell j must exceed 

that of the serving cell i to trigger a power budget 

(PBGT) HO from i to j. Thus, a PBGT HO is 

triggered when, 

𝑅𝑆𝑅𝑃𝑗 − 𝑅𝑆𝑅𝑃𝑖 ≥ 𝑀 𝑎𝑟𝑔 𝑖 𝑛𝑃𝐵𝐺𝑇(𝑖 ,𝑗 ) (1) 

Where, 𝑅𝑆𝑅𝑃𝑖 and 𝑅𝑆𝑅𝑃𝑗are the average reference 

signal received power from the serving cell i and 

neighbour cellj in dBm, respectively, and 

MarginPBGT(i,j) is the margin in (dB). As observed in 

(1), margins are defined on an adjacency basis. 

Therefore, adjusting this parameter in a single 

adjacency only has an influence on that adjacency. 

Thus, cell service areas cannot only be re-sized but 

also re-shaped. To avoid instabilities in the HO 

process, a hysteresis region can be maintained by 

synchronizing changes in both directions of the 

adjacency (i.e., if the margin from cell i to j is 

increased by + X dB, the margin from j to i is 

reduced by −X dB). Unlike margins, transmit power 

is defined on a cell basis, so that all neighbours are 

equally affected by changes in the transmit power of 

a cell. The modification of cell service areas also has 

an impact on network connection quality. As a result, 

a user might not be served by the closest base station 

providing the minimum path-loss which might impair 

connection quality. Although adaptive modulation 

and coding in LTE partly alleviates this problem, the 

link adaptation capability is limited. Therefore, load 

balancing must be performed carefully to keep 

Quality-of-Service in a satisfactory level [12]. 

 

A.Network Model 

 

The proposed algorithm in this research is applicable 

to all type of LTE network but for ease of 

presentation, a hexagonal network topology will be 

adopted. A hexagonal topology with seven cells 

numbering 1,2,….7 respectively is shown in Fig. 2, 

[27]. 
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Fig.2.Network Model 

Each cell is controlled by a central eNodeB. Cell 1 is 

assumed to be over-loaded with more users than 

other cells. Its cell-edge users a, b and c can also be 

served by cells 3, 4, 5, 2 and 7, respectively. Cell and 

eNodeB will be used interchangeably throughout this 

research work and the following assumptions are 

made: 

i. Each user knows the instantaneous signal 

strength from its serving cell and all the 

neighboring cells through pilot measurements. 

All users send them back to their respective 

serving eNodeBs periodically. 

ii. Each eNodeB allocates power equally to all 

the physical resource blocks (PRB) being 

used. 

iii. Neighboring eNodeBs can exchange their load 

status information periodically through the X2 

interface  

iv. Twelve adjacent subcarriers are grouped 

into a physical resource block (PRB), which 

is the smallest unit that can be allocated to 

each user in a subframe (1ms) [22]. 

v. All time t mentioned in this research 

represents the time point to conduct load 

balancing handover, and the span between any 

t and t + 1 is a load balancing cycle, which is 

much larger than a subframe. 

vi. C, K and Ki are used to denote the sets of cells, 

users and users served by cell i, respectively. 

A cell-user connection variable Ii;k(t) is 

defined, which equals 1 when user k which is a 

member of the set  K is served by cell i a 

member of set C at time t, and 0 otherwise. 

 

B Link Model 

The average received SINR at the base station of cell 

k from user i at time slot, t is given by: 

𝑆𝐼𝑁𝑅𝑖 ,𝑘(𝑡) =

𝑃𝑖(𝑡)
𝐿𝑖 ,𝑘(𝑡) 

 
𝑃𝑗 (𝑡).𝜌𝑘

𝐿𝑗 ,𝑘(𝑡) +𝑁𝑗≠𝑖

 (2) 

Where, Pi(t) and Pj(t)represents the transmit power 

of the user i at time slot t,Li,krepresents the path loss 

from the user i to the base station taking into account 

the distance between them, and N represents the 

power of Additive White Gaussian Noise (AWGN). 

ρ
k
 Represents the physical resource block (PRB) 

utilization ratio of cell k. The data rate Si,k(t) at time 

slot t can be calculated using Shannon Hartley 

theorem expressed in as: 

𝑆𝑖 ,𝑘(𝑡) = 𝑥𝑖 ,𝑘(𝑡)
𝐵

𝑀
𝑙𝑜𝑔2( 1 + 𝑆𝐼𝑁𝑅𝑖 ,𝑘(𝑡))(3)  

Where, B represents the total bandwidth for the 

eNodeB, M is the total number of PRBs for the 

eNodeB, and xi,k(t)   represents the number of PRBs 

allocated to user i by cell k at time slot t . 

 

From the above it can be seen that the data rate 

depends on the channel condition between the users 

and the eNodeB. Which means that to send the same 

amount of the traffic, the user with a better channel 

condition will consume a smaller number of the 

resource blocks than the user with a worse channel 

condition. The different load distribution of each 

eNodeB in an LTE network can be represented by: 

𝜌𝑘(𝑡) =
 𝑥𝑖 ,𝑘 (𝑡)𝑖∈𝐿

𝑀
  (4)  

Where ρk(t) is the physical resource block 

utilization ratio denoting the ratio between the 

number of the allocated PRBs and the total number 

of the PRBs in cell k at time slot t. A larger ρ
k

(t) 

indicates a higher percentage of PRB utilization in 

cell k, and thus a higher level of load in cell k. 

Assuming all cells have the same number of PRBs, 

denoted by M, L represents the set of users in the 

whole network. xi,k(t)   is the number of PRBs that 

cell k allocates to user i at time slot t which is same 

as the load of user i. One assumes that the length of 

the time slot is much larger than the subframe 

duration (e.g., 1ms). Hence the load or the average 

PRB utilization ratio of the entire network at time 

slot t is given by: 

𝜌(𝑡) =
1

 𝐾 
 𝜌𝑘𝑘∈𝐾 (𝑡)  (5) 

Where, K is the set of the cell in the network and  𝐾  
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is the number of cells in K. 

However, at any given point in time the total load 

must not exceed the total capacity of the eNodeB. 

The load balancing index is given by fairness index 

of (6)[11]. 

𝛼(𝑡) =
  𝜌𝑘 (𝑡)𝑘∈𝐾  2

 𝐾   𝜌𝑘 (𝑡)2
𝑘∈𝐾  

  (6) 

Note that the range of 𝛼(𝑡)is  1 𝑀 ≤ 𝛼 ≤ 1 

 

A larger 𝛼(𝑡) is an indication that the load is balance 

among cells and a small 𝛼(𝑡) indicate a greater load 

imbalance among cells. At the point where 𝛼(𝑡)=1 

means all cell in the network have equal load 

distribution at time slot t. 

 

C System Model 

 

The HO is the procedure that preserves the 

connection when the user moves around the network. 

As LTE is being deployed with a frequency reuse of 

one (i.e. the same frequency is shared by all cells), 

the intra-frequency HO is very common in these 

networks. More specifically, the most widely 

extended algorithm for the HO-triggering decision is 

the 3GPP A3 event [22]. This algorithm triggers the 

execution of an HO if the neighbouring cell becomes 

off set better than the serving cell during a specific 

period determined by the time to trigger (TTT) 

parameter. Formally, it is expressed as:  

𝑅𝑆𝑅𝑃𝑗 > 𝑅𝑆𝑅𝑃𝑖 + 𝐻𝑂𝑀𝑖_𝑗  (7) 

 

Where RSRPi and RSRPj are the averaged values of 

the Reference Signal Received Power (RSRP) 

measured for serving celli and target cellj 

respectively, and HOMi-j is the handover margin 

(HOM). From celli to cellj. Note that the symmetric 

HOMj-I is also defined in the opposite direction of the 

adjacency (i.e., a Pair of cells that are neighbours). In 

contrast with HO-triggering decisions based on 

absolute comparisons (e.g. The serving/neighbouring 

cells below/above a threshold), the A3 event consists 

of a relative comparison that simplifies the 

configuration of its parameters since they are 

independent of the absolute received power levels, 

which may depend on diverse factors. However, the 

HOM in [7] is broken down into several terms by the 

3GPP, so that:  

𝐻𝑂𝑀𝑖_𝑗 = 𝐻𝑦𝑠 + 𝑂𝑓𝑖 − 𝑂𝑓𝑗 + 𝑂𝑐𝑖 − 𝑂𝑐𝑗 +

𝑂𝑓𝑓(8) 

Where Hys and Off are the hysteresis and off set 

parameters respectively for this event. Ofi and Oci 

are the frequency and cell specific offsets 

respectively for serving celli. And Ofj and Ocj are the 

frequency and cell specific offsets respectively for 

neighbouringcellj. While only one value of Hys and 

Off corresponding to the A3 event can be used for all 

the cells and deployed frequencies in the network.Oci 

and Ocj can be defined per cell and Ofi and Ofj can 

be defined per frequency layer. In addition to this, the 

definition of Hys implies the existence of another 

inequality in which this term has opposite sign:  

𝑅𝑆𝑅𝑃𝑗 < 𝑅𝑆𝑅𝑃𝑖 − 𝐻𝑦𝑠 + 𝑂𝑓𝑖 − 𝑂𝑓𝑗 + 𝑂𝑐𝑖 −

𝑂𝑐𝑗 + 𝑂𝑓𝑓. (9) 

 

This inequality is called the leaving condition for this 

event. If the entering condition given by (7) was 

previously satisfied, the leaving condition must be 

satisfied to reset the TTT parameter. By optimizing 

Hys, the impact of signal fluctuations on the 

handover process can be effectively reduced. In 

general, the HOO function is directly related to the 

parameter Hys, so that its optimization could only be 

performed at the event level. Conversely, load 

balancing function is more related to HO parameters 

that are defined at the cell level(e.g., Oci and Ocj). In 

practice, different parameters are optimized for 

different cell pairs. The main network level 

functionalities are admission control and handover. 

The admission control is responsible for checking the 

availability of free Physical Resource Blocks (PRBs) 

in the candidate cell before accepting a call. A worst-

case criterion has been taken to accept calls, i.e., the 

user is finally accepted if the highest number of PRBs 

needed to maintain a connection (worst-case PRB 

requirement) is less than or equal to the number of 

PRBs available in the candidate cell. If the condition 

is not satisfied by any candidate cell, then the user 

connection is blocked. On the other hand, the 

handover allows user mobility across the network. 

The call dropping model plays an important role 

because the optimization algorithm attempts to 

control the occurrence of this event. A call is dropped 

when a percentage of data packets are dropped during 

a specific time interval. Packet dropping may occur 

not only because there is a poor connection quality, 

but also because there are not any available resources 

to be scheduled. 
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III.  SYSTEM MEASUREMENT 

 

The most important outcome derived from sharing 

traffic between cells is that the call blocking is 

reduced, especially in those cells highly loaded. To 

quantify the call blocking, network operators usually 

use the call blocking ratio (CBR) for such 

measurements. However, load balancing based on 

CBR algorithm is not a suitable optimum load 

balancing algorithm for the following reasons:  the 

proposed CBR indicator provides valuable 

information once the network already presents an 

accessibility issue. A prediction of this inconvenient 

situation would be desirable to avoid or reduce users’ 

dissatisfaction as soon as possible [3]. Load 

difference between adjacent cells instead of CBR is 

best used as one of the input indicators instead of call 

blocking ratio. Load difference is related to 

bandwidth, by measuring the current cell capacity in 

radio resource terms, the load balance is performed 

based on the occupied physical resource block 

(PRB); The PRB is a basic unit of LTE radio 

resources that provides instantaneous information 

about cell load. Accordingly, the key network 

indicator for this system is represented as the 

following function, which is calculated for each cell 

as shown in (10) [12]: 

𝐿𝑜𝑎𝑑𝐷𝑖𝑓𝑓 = 𝐿𝑜𝑎𝑑(𝑐𝑒𝑙𝑙) −
1

 𝐾 
 𝐿𝑜𝑎𝑑(𝑖)𝐾

𝑖=1 (10) 

Usually LTE cells are designed to support specific 

number of users in connection mode either voice or 

data traffic. Considering the load difference which is 

related to bandwidth alone is insufficient.  

 

For that reason, PRB activity may not be always an 

appropriate indicator for balancing traffic in LTE 

network where most of the time there could be free 

resources to allocate user data but cannot be 

processed due to the limit in the number of accepted 

users. Hence considering a second input as the 

number of connected users in the network is required 

as one of the main parametersto offload temporary 

congested cells [3].  

 

The input indicator of the fuzzy logic controller(FLC) 

is defined as the ratio of users in connected mode, 

i.e., the number of simultaneous users in connected 

mode Nactive _ users to the cell user limitation 

Ncell _ user _ limitation of the studied cell User(c), in 

relation to the same ratio averaged in its 

neighbouring cells User(i): 

𝑈𝑠𝑒𝑟𝐷𝑖𝑓𝑓 = 𝑈𝑠𝑒𝑟(𝑐) −
1

 𝐾 
 𝑈𝑠𝑒𝑟(𝑖)𝐾

𝑖=1  (11) 

Where K is the number of neighbouring cells and 

User(c) is defined for a cell c as: 

𝑈𝑠𝑒𝑟(𝑐) =
𝑁𝐴𝑐𝑡𝑖𝑣𝑒 _𝑢𝑠𝑒𝑟 (𝑐)

𝑁𝑀𝑎𝑥 _𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 _𝑢𝑠𝑒𝑟𝑠 (𝑐)
 (12) 

Power load and user sharing as proposed by [3] used 

as input cell load and active users to achieve load 

balancing, but the work didn’t consider network 

quality as a priority. Hence active user was a priority 

regardless of the network quality. This researchput 

into consideration the quality of the network 

connection in achieving load balancing.  The two 

inputs used for the FLCare cell load and reference 

signal receive quality (RSRQ). In LTE network, a UE 

measures two parameters on reference signal: RSRQ 

and reference signal received power (RSRP). 

 

A. Received Signal Strength Indicator (RSSI) 

The carrier receive strength signal indicator (RSSI) 

measures the average total received power observed 

only in OFDM symbols containing reference symbols 

for antenna port 0 (i.e., OFDM symbol 0 & 4 in a 

slot) in the measurement bandwidth over M resource 

blocks. The total received power of the carrier RSSI 

includes the power from co-channel serving and non-

serving cells, adjacent channel interference, thermal 

noise, etc. RSSI is the total power measured over 12-

subcarriers including reference signal (RS) from 

serving cell and traffic in the serving cell. 

 

B. Reference Signal Received Power (RSRP) 

Is the power of the LTE reference signals spread over 

the full bandwidth and narrowband. A minimum of -

20dB SINR (of the S-Synch channel) is needed to 

detect the ratio of RSRP to RSRQ. In other 

words,RSRP is the average power of resource 

elements (RE) that carry cell specific reference 

signals over the entire bandwidth, so RSRP is only 

measured in the symbols carrying RS. UE measures 

the power of multiple resource elements used to 

transfer the reference signal but then takes an average 

of them rather than summing them.     

 

RSRP does a better job of measuring signal power 

from a specific sector while potentially excluding 

noise and interference from other sectors. RSRP 
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levels for usable signal typically range from about -

75dBm close to an LTE cell site to -120dBm at the 

edge of LTE coverage. The reporting range of RSRP 

is defined from -140dBm to - 44dBm with 1 dB 

resolution. The mapping of measured quantities is 

defined in Table I[14].   

 

Table I: Mapping of Measured Quantities for RSRP 

Reported value Measured value(dBm) 

RSRP_00 RSRP<-140 

RSRP_01 -140<=RSRP<-139 

RSRP_02 -139<=RSRP<-138 

………. ……... 

………. …….. 

RSRP_95 -46<=RSRP<-45 

RSRP_96 -45<=RSRP<-44 

RSRP_97 -44<=RSRP 

  

 

C.  Reference Signal Received Quality (RSRQ) 

RSRQ is a channel indicator type of measurement, 

and it indicates the quality of the received reference 

signal. The RSRQ measurement provides additional 

information when RSRP is not sufficient to make a 

reliable handover or cell reselection decision. In the 

procedure of handover, the LTE specification 

provides the flexibility of using RSRP, RSRQ, or 

both measured over the same bandwidth: 

𝑅𝑆𝑅𝑄 =
𝑀×𝑅𝑆𝑅𝑃

𝑅𝑆𝑆𝐼
 . (13) 

Where, M is the number of physical resource blocks 

(PRBs) over which the RSSI is measured and its 

typically equal to system bandwidth. RSSI is pure 

wide band power measurement, including intra-cell 

power, interference, and noise. The reporting range 

of RSRQ is defined from -3dB to -19.5dB as shown 

in Table II [14].   

 

Table II: Mapping of Measured Quantities of RSRQ 

Reported value Measured value(dBm) 

RSRQ_00 RSRQ<-19.5 

RSRQ_01 -19.5<=RSRQ<-19.0 

RSRQ_02 -19.0<=RSRQ<-18.5 

………. ……... 

………. …….. 

RSRQ_32 -4.0<=RSRQ<-3.5 

RSRQ_33 -3.5<=RSRQ<-3.0 

RSRP_34 -3.0<=RSRQ 

 

The radio frequency (RF) condition for a wireless 

network is categorized as shown in Table III. 

 

Table III: RF Conditions Categorization for 

Wireless Network 

RF 

Conditions 

RSRP 

(dBm) 

RSRQ 

(dB) 

SINR 

(dB) 

Excellent >= -80 >= -10 >= -20 

Good -80 to -90 -10 to -15 13 to 20 

Mid Cell -90 to -

100 

-15 to -20 0 to 13 

Cell Edge <= -100 < -20 <= 0 

 

Using (14), Table IV is generated which is used to 

create the membership function for the RSRQDiffinput 

to the fuzzy logic. 

𝑅𝑆𝑅𝑄𝐷𝑖𝑓𝑓 =  𝑅𝑆𝑅𝑄 𝑖 −  𝑅𝑆𝑅𝑄 𝑗  (14) 

 

Table IV: RSRQDiff 

|RSRQi| (dB) |RSRQj|(dB) 

|RSRQi|(dB) - 

|RSRQj|(dB) 

20 10 10 

15 10 5 

20 15 5 

10 10 0 

15 15 0 

20 20 0 

10 15 -5 

15 20 -5 

10 20 -10 

 

Based on expert knowledge, and in order to get a 

moderate level of details and a simple fuzzy control 

rules, an acceptable number of membership function 

have been selected for each input and output 

variables as shown in Fig. 3, 4, and 5. The labels and 

values are as follows: ‘Very Negative’ and −6 dB, 

‘Negative’ and −3 dB, ‘Zero’ and 0 dB, ‘Positive’ 

and +3 dB, and ‘Very Positive’ and +6 dB. The 

summarized label and values for the input variables 

RSRQdiff and Loaddiff as well as the output δPTx(cell) 

is as shown in Table V. 

 

For simplicity and computational efficiency, the 

employed membership functions are triangular and 

trapezoidal. The fuzzy rules are defined based on 

these two indicators and the expert knowledge. 
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Table VI presents the set of control rules 

implemented in this system. These rules prioritize the 

KPIRSRQdiff over the Loaddiff. 

 

IV. REALIZATION OF FUZZY LOGIC 

CONTROLLER FOR LTE LOAD BALANCING  

The inputs to the fuzzy logic controller as shown in 

Fig. 3 and 4 are Loaddiff and RSRQdiff. The output of 

the FLC is the power increment δPTx(cell) as shown 

in (15). 

𝛥𝑃𝑇𝑥(𝑐𝑒𝑙𝑙) = 𝑃𝑇𝑥𝑚𝑎𝑥(𝑐𝑒𝑙𝑙) − [𝑃𝑇𝑥(𝑐𝑒𝑙𝑙) +

𝛿𝑃𝑇𝑥(𝑐𝑒𝑙𝑙)]      (15) 

Where, ΔPTx(cell) is the current power deviation, 

PTxmax(cell) is the default (maximum) transmit 

power of the cell,PTx(cell) is the current transmit 

power of the cell and δPTx output control power 

increment. 

A. Universe of Discourse for Loaddiff, RSRQdiff and 

Output Control  

The universe of discourse for Loaddiff, RSRQdiff and 

δPTxassociated with the fuzzy rule in Table V are as 

given in(10), (14), and (15).  Fig. 3, 4 and 5 gives 

detailed descriptions of the membership functions. 

The ranges for each of the variables are expressed 

by(16), (17), and (18).  

𝐿𝑜𝑎𝑑𝑑𝑖𝑓𝑓 = −1 ≤ 𝑃𝑅𝐵 ≤ +1  (16) 

𝑅𝑆𝑅𝑄𝑑𝑖𝑓𝑓 = −10𝑑𝐵 ≤ 𝑅𝑆𝑅𝑄 < +10𝑑𝐵     (17) 

𝛿𝑃TX = −6𝑑𝐵𝑚 < 𝛿𝑃TX < +6𝑑𝐵𝑚(18) 

 

Table V: Label and Values for Input and Output 

Variables  

 

Parameter 
µy(RSRQdiff) 

(dB) 

µx(Load

diff) 

(RB) 

μx(δPTx 

(dBm)  

Very 

Negative 
-2.5 to -10 

-0.25 to -

.00 
-6 

Negative 0.0 to -5.0 
0.00 to -

0.50 
-3 

Zero 2.5 to -2.5 
0.25 to -

0.25 
0 

Positive 0.0 to 5.0 
0.00 to 

0.50 
3 

Very 

Positive 
2.5 to 10 

0.25 to 

1.00 
6 

 

 

Table VI: Fuzzy Rules for QLUS Load 

Balancing 

Rules 

No. 

Input1: 

µy(RSRQdiff) 

(dB) 

Input2: 

µx(Loaddiff) 

(RB) 

Output: 

μx(δPTx 

(dBm) 

1 Negative Negative 

Very 

Positive 

2 Negative Positive Zero 

3 Negative 

Very 

Negative 

Very 

Positive 

4 Negative Very Positive Zero 

5 Negative Zero Positive 

6 Positive Negative Negative 

7 Positive Positive 

Very 

Negative 

8 Positive 

Very 

Negative Negative 

9 Positive Very Positive 

Very 

Negative 

10 Positive Zero 

Very 

Negative 

11 

Very 

Negative Negative 

Very 

Positive 

12 

Very 

Negative Positive Zero 

13 

Very 

Negative 

Very 

Negative 

Very 

Positive 

14 

Very 

Negative Very Positive Zero 

15 

Very 

Negative Zero Positive 

16 Very Positive Negative Negative 

17 Very Positive Positive 

Very 

Negative 

18 Very Positive 

Very 

Negative Negative 

19 Very Positive Very Positive 

Very 

Negative 

20 Very Positive Zero 

Very 

Negative 

21 Zero Negative Positive 

22 Zero Positive Negative 

23 Zero 

Very 

Negative 

Very 

Positive 

24 Zero Very Positive 

Very 

Negative 

25 Zero Zero Zero 
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Fig. 3: Membership Function of Load Difference 

Between Cell A and Cell B 

 

 
Fig.4:Membership Function of RSRQ Difference 

Between Cell A and Cell B 

 

 

 
Fig. 5:Membership Function of Incremental Power 

Output From Fuzzy Logic 

 

V.   Network Model Implementation 

 

The following assumptions were made in the 

computation: 

i. For the purpose of explanation and clarity, 

two hexagonally shaped adjacent cells were 

used as the service area. 

ii. The bandwidth of the cells is the same, but 

the maximum allowable load can be varied. 

In this case 20MHz is used with a maximum 

number of resource block of 100. 

iii. A normal cyclic prefix, FDD mode is used 

giving the OFDM symbols to be 7 per slot, 

subcarrier spacing of 15kHz and 12 

subcarrier per resource block. 

iv. All loses along the path of transmission 

from the eNodeB to the end user was 

assumed negligible. 

A. LTE Cell Block 

For an LTE eNodeB with normal cyclic prefix and 

frequency division duplexing (FDD) mode with a 

bandwidth (BW) of 20MHz. Each resource block 

(RB) consists of 12 subcarriers (Nrb_sc) each with 

subcarrier spacing (deltaF) of 15kHz with 7 OFDM 

per slot [7]. Hence: 

𝑅𝐵 =  𝑑𝑒𝑙𝑡𝑎𝐹 ×  𝑁𝑟𝑏_𝑠𝑐 =  15 𝑘𝐻𝑧 ×  12 =

 180 𝑘𝐻𝑧.    (19) 

For bandwidth between 3MHz to 20MHz, the 

resource block occupies 90% of the bandwidth. Total 

number of resource block for a bandwidth of 20MHz 

is therefore given by (20). 

𝑁𝑟𝑏 =  (0.9 ×  𝐵𝑊)/𝑅𝐵 =  (0.9 ×  20𝑀𝐻𝑧) /

 180 𝑘𝐻𝑧 =  100  (20) 

 

B. Mobile Users Block 

Five mobile user groups are specified with same data 

usage in terms of resource block requirement. The 

minimum usable resource block per user (Ue) is two. 

Resource blocks are allocated to each user (Ue) 

uniformly in a random pattern. The users arrive at 

different rates as shown in Table VII.  

 

Table VII: End Users Arrival Rate  

User group Arrival rate No of users 

1 Rate1 28 

2 Rate2 9 

3 Rate3 12 

4 Rate4 7 

5 
Guaranteed user with 

fixed RB 
5 

 

The maximum number of resource block that can be 

allocated to a user group is:  

𝑈𝑒 =  𝑅𝑎𝑡𝑖𝑜 ×  𝑁𝑟𝑏 ×  𝑅𝑎𝑡𝑒  (21) 

The arrival rate of users in each group is generated 

uniformly at random at a sample rate of 100s.  

 

C. Cell Power Allocation Block 

As mentioned above, each resource block (RB) 

consists of 12 subcarriers out of which two are 

referred to as reference signal receive element 

(RSRE) because they carry the reference signal for 
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that resource block. The remaining ten subcarriers or 

elements are called resource block receive element 

(RBRE) because they carry the actual data for that 

resource block. [7]. The reference signal receive 

element power is given by: 

𝑅𝑆𝑅𝐸𝑝𝑜𝑤𝑒𝑟 =  𝑝𝑜𝑤𝑒𝑟𝑖𝑛𝑑𝐵𝑚
–  10 ×  𝐿𝑜𝑔  12 ×

 𝑁𝑟𝑏𝑈𝑒  +  𝑃𝑏(22) 

Where; 

Powerin dBm
= Power from a single antenna port in 

dBm, 

Pb= Power boosting factor, Nrb = Number of 

resource block per cell. 

The resource block receive element power is given 

by:   

𝑅𝐵𝑅𝐸𝑝𝑜𝑤𝑒𝑟 =  𝑃𝑜𝑤𝑒𝑟𝑖𝑛𝑑𝐵𝑚
− 10 ×  𝐿𝑜𝑔 12 ×

 𝑁𝑟𝑏𝑈𝑒  −  0.25 ×  𝑃𝑏 + 𝐼𝑛𝑡𝑓 (23) 

Where; 

Intf = Is the interference factor from neighbouring 

cells [20]. 

D. Cell Channel Status Indication (CSI) 

The total received signal strength indicator (RSSI) for 

a specified number of resource block assigned to 

users  NrbUe  is calculated as shown in (24). 

𝑅𝑆𝑆𝐼 =  𝑁𝑟𝑏𝑈𝑒  10 ×  𝑅𝐵𝑅𝐸𝑝𝑜𝑤𝑒𝑟 +  2 ×

 𝑅𝑆𝑅𝐸𝑝𝑜𝑤𝑒𝑟  . (24). 

Reference signal received power (RSRP) is equal to 

the reference signal received element (RSRE)  [14].  

𝑅𝑆𝑅𝑃 = 𝑅𝑆𝑅𝐸𝑝𝑜𝑤𝑒𝑟 . (25). 

Reference signal receive quality is as shown in(26). 

𝑅𝑆𝑅𝑄 =
𝑅𝑆𝑅𝑃

𝑅𝑆𝑆𝐼
    (26). 

 

E. Q-learning Block 

In Q-learning, the agent maintains a table of Q[S,A], 

where S is the set of states and A is the set of actions. 

The agent can use the temporal difference equation 

(27) to update its estimate for Q(s,a). 

𝑄 = 𝑄𝑛  +  𝛼(𝑟 +  𝛾𝑚𝑎𝑥(𝑄𝑛, 𝑄𝑛_1)         (27) 

WhereQ is the optimized value, Qn is the current 

value, Qn_1 is the previous value, α is the learning 

rate, r is the reward, γ is the discount factor [4]. 

 

For an FDD with channel bandwidth greater than 

10MHz, the maximum antenna output power is 

specified at 64dBm with a power control range of 

20dB. The Q-Learning optimizer is to keep the cell 

transmit power within a specified range. For this 

research, the cell transmit power was maintained 

within 46dBm plus or minus 6dBm.  

The Q-learning algorithm was written and 

implemented with the MATLAB software. This was 

used to optimize the output from the fuzzy logic 

controller.  

𝑟 =  𝛿𝑃𝑇𝑥.      (28) 

From (15), cell transmit power is being optimized 

with the incremental power from the fuzzy controller 

as shown in (29). 

𝑃𝑇𝑥 = 𝑃𝑇𝑥 𝑐𝑒𝑙𝑙 + 𝛿𝑃𝑇𝑥 𝑐𝑒𝑙𝑙 . (29) 

Modifying (27) with (28): 

𝑄 = 𝑄𝑛  +  𝛼(𝛿𝑃𝑇𝑥 + 𝛾 𝑚𝑎𝑥 𝑄𝑛, 𝑄𝑛1 ) (30) 

The output from the Q-learning algorithm as 

expressed in (30), is the optimized incremental power 

output to be feedback to the LTE network. Hence(29) 

is modified as: 

𝑃𝑇𝑥 = 𝑃𝑇𝑥 𝑐𝑒𝑙𝑙 + 𝑄 (31) 

The cell transmit power is increased or decreased 

based on the input response from the fuzzy controller 

to the network load and receive signal reference 

quality at its inputs. But there is an upper and lower 

limit bound constraining the amount of power that 

can be pushed in or taken out from the cell 

transmitter. Practical RF LTE antennas have 500w 

(57dBm) as the maximum output power it can 

produce and a minimum as low as -50dBm in some 

cases. For this research, a default transmit power of 

46dBm has been chosen with a plus or minus 6dBm 

as its control range to keep the cells from overshoot 

to neighbouring cells. 

 

From the above stated facts, the equality constraint is 

given as: 

40𝑑𝐵𝑚 ≤ 𝑃𝑇𝑥 𝑐𝑒𝑙𝑙  ≤ 52𝑑𝐵𝑚(32) 

0 ≤ 𝛾 ≤ 1 (33) 

0 ≤ 𝛼 ≤ 1 (34) 

Solving (30) and (31) with the three constrains in 

(32), (33), and (34) analytically is practically 

cumbersome and almost impossible since there are 

more variables than equation. But with written script 

in MATLAB, the plotted returned the best values of α 

as 0.2 while that of γ is 0.2. 

 

F. Satisfied/Unsatisfied Users 

This indicator relates to the number of users in the 

cell that can achieve the desired bit rate in terms of 

resource block required despite resource limitations. 



© DEC 2022 | IRE Journals | Volume 6 Issue 6 | ISSN: 2456-8880 

 

IRE 1703913           ICONIC RESEARCH AND ENGINEERING JOURNALS 55 

(35) and (36) show users satisfaction in the network 

[2]. 

𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑈𝑆𝐸𝑅𝑆 = 𝑈 ×  𝑚𝑖𝑛( 1, 1
𝜌   (35) 

𝑈𝑛𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑈𝑆𝐸𝑅𝑆 = 𝑈 × (𝑚𝑎𝑥( 0, (1 − 1
𝜌 ))(36) 

Where, 𝜌 is the virtual load as given by (5) and 𝑈 is 

the total number of users in the cell. 

If 𝜌< 1 implies all the users are satisfied.  

VI. SIMULATION RESULTS 

 

Load balancingyielded an increase in the overall 

performance of the network. Some of the measurable 

indexeshighlighted are number of satisfied and 

unsatisfied users from the customer’s perspective and 

load distribution index from the service provider 

perspective. 

 

A. Simulation of the Load Distributions without Fuzzy 

Logic Controller and Q-learning Optimizer 

 

Fig. 6, 7, and 8shows simulation result of the load 

distribution from cell A and cellB without the 

application of the proposed quality and load user 

system (QLUS). The variation of the load on both 

cells is obviously unbalance as can be seen from the 

load differences depicted in the plots of Fig.6. 

 

 
Fig.6: LTE Cell A and Cell B load Distribution 

without QLUS and Q Learning Optimizer 

 

B. Simulation results of cell A connected 

usersand users’ satisfaction  

The number of satisfied and unsatisfied users in the 

network are measured using (35) and (36). 

 

 
 

Fig. 7: Simulation Results of Cell A Connected Users 

Load and Users Satisfaction 

 

 
Fig.8: Simulation results of Cell B Connected Users, 

Load and Users Satisfaction 

 

From Fig. 7 and 8, the total number of unsatisfied 

users in cell A and cell B before load balancing is 

applied are 6 and 157 respectively. Cell B is assumed 

to be in a very busy environment with high demand 

for network resources hence the high volume of 

traffic causing congestion in its network during peak 

periods resulting to very high number of unsatisfied 

users. While cell B is congested forsome given 

period, its adjacent cell A has excess and idle 

resources that can accommodate the demands of 

some of the users in cell B.   

 

A congested cell has an impact on the quality 

ofservice the users are experiencing as shown in Fig. 

9 and 10. The further the network quality degrades, 

the more the number of unsatisfied users. The effect 

is more pronounced on cell B because it is more 

congested than cell A. If the trend continues 

unchecked, it will get to a point where the network 

service provider will start losing its customers to 
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other networks with better quality resulting to 

revenue losses. 

 
Fig. 9: LTE Cell A Unsatisfied Users and Network 

Quality 

 

 
Fig. 10:  LTE Cell B Unsatisfied Users and Network 

Quality 

 

C. Simulation of the Load Distributions with 

Fuzzy Logic Controller and Q-learning 

Optimizer 

Fig. 11, 12 and 13 shows the load distribution for cell 

A and cell B after the application of the proposed 

Quality and Load user System (QLUS) and Q 

learning algorithm to balance and optimized the loads 

on both cells. It can be seen from Fig. 11 that the load 

difference between the two cells have been reduced 

as much as possible compared to the load difference 

seen in Fig.6. The simulation resultsshow the 

effective performance of the Quality and Load user 

System to achieve load balancing in LTE network. 

The number of unsatisfied users was significantly 

reduced in both cells. Hence the cells are more 

balanced load wise. Each cell takes advantage of idle 

resources of its neighbour when in need of it.  

 

The load balancing cycle is a planned process which 

first seeks a target cell with free resources to 

accommodate some or all its unsatisfied users due to 

constrained resources with the condition not to 

overload the target cell itself.   

 

 
Fig. 11: LTE Cells A and B load Distribution with 

QLUS 

 

 

 
Fig. 12: Simulation results of Cell A Connected 

Users, Balanced Loads and Users Satisfaction 

 

 

 
Fig. 13: Simulation results of Cell B Connected 

Users, Balanced Loads and Users Satisfaction 
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D. Satisfied/unsatisfied users after load 

balancing cycle.  

 

The number of unsatisfied users can be seen to have 

greatly reduced in both cell A and cell B because of 

load balancing done with QLUS. This action also 

effectively improved the quality of service of more 

users. This is a win-win situation for both the end 

users and the network service provider. In cell A, the 

number of unsatisfied users dropped from 6 to 1 

which indicates 83% improvement. This is shown in 

Fig. 12. While cell B which had 157 number of 

unsatisfied users also had some improvement with 

the figure dropping to 84 as shown in Fig. 13. This 

value indicates a 47% improvement from its 

unbalance state. For the entire network there is a 48% 

improvement as the number of unsatisfied users 

dropped from 163 to 85. These indicators are 

necessary for network forecasting and planning. If a 

cell still experiences congestion after load balancing 

and the number of unsatisfied users is reasonably 

high over a considerable period, physical network 

infrastructural expansion will have to be carried out 

to take care to expand the network capacity. Also, 

product promotion can be initiated to encourage 

usage during off peak periods to decongest the cells.  

 

 
Fig. 14: LTE Cell A Unsatisfied Users and Network 

Quality with QLUS 

 

 
Fig. 15:  LTE Cell B Unsatisfied Users and Network 

Quality with QLUS 

E. Simulation of the Network Performance as 

Indicated by the Load Balancing 

Index𝛼(Alpha) with and without Q-learning 

Optimizer 

The load balancing index given by the fairness index 

in (7)was also simulated to measure the stability and 

effectiveness of the propose QLUS.  A larger 𝛼 value 

is an indication that the load is balance among the 

cells while a small 𝛼 value indicate a greater load 

imbalance among cells. At the point where𝛼 is equal 

to unity, means all cells in the network have equal 

load distribution [11]. Fig. 16 shows the variation of 

the fairness index before and after load balancing and 

the application of Q learning optimizer. The index 

value ranged from0.8 to 1 with a standard deviation 

of 0.05 from its unbalanced load. The result indicates 

the degree of uneven load distribution in the 

cellwithin the simulated time frame. While great 

improvement can be seen after load balancing was 

carried out, the fairness index can be seen 

approaching unity with a standard deviation of 0.01 

which is almost negligible. 

 

 

 
Fig. 16: LTE Cell Load Fairness Index 

 

F. Simulation of the Network Performance as 

Indicated by Call Blocking Ratio (CBR) 

 

The call blocking ratio indicating how efficiently the 

available network resources are use can be seen to 

have improved greatly after the load balancing cycle. 

As shown in Fig.17. CellA experienced 83% 

improvement while cell B experienced 48% 

improvement, this result is in consonant with the user 

satisfaction. The fewer the calls that are blocked, the 

more satisfied users will be. 
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Fig.17: Call Blocking Ratio (CBR) 

CONCLUSION  

This research presents a successful application of 

FLC to balance the load on adjacent cells in an LTE 

network simulated in MATLAB/Simulink 

environment freeing upresources forusage in the 

entire network. A hexagonal shaped having specific 

number of resource block (RB) based on the 

bandwidth of the eNodeB with varying number of 

users arriving at a uniform but random rate. The users 

having various resource requirement whose sum is 

equal to the load on the cell they are latched on.  The 

load difference of two adjacent cells as shown in 

Fig.11. can be seen to have reduced after the 

application of Quality and Load user System (QLUS) 

and Q learning optimizer. 

The main load balancing indicator in any network is 

determined by the measurement of the fairness index 

α(t)of the network shown in Fig.16.oscillate between 

0.8 and 1 for the unbalanced network. This indicates 

a wide disparity in the load distribution in the various 

cells of the network. With the application of the 

fuzzy logic controller and Q learning optimizer, the 

fairness index approaches a value of unity throughout 

the simulation period. This indicates the effectiveness 

of the proposed Quality and Load user System 

(QLUS) and Q learning optimizer to achieving load 

balancing in the networks. 

 

The quality and load user system (QLUS) can be 

seen to have performed better as compared to the 

work done by [15]. The overload distribution index 

increases monotonically from about 0.6 to a 

maximum value of 0.85. The upward trend of the 

load fairness index in his work indicated that there is 

a large degree of load imbalance at the early stage of 

the simulation showing that some cell could have 

been congested already before load balancing was 

achieved at the later stage. While this research shows 

the load distribution index with a mean value of 0.99 

which is attributed to the fact that load balancing was 

carried out right from the onset before the cells starts 

getting congested. This gives a better all-round 

customer experience.  
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