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Abstract- Lack of sufficient mass testing tools for 

viral infectious diseases such as Influenza, common 

cold, covid-19, mumps, Ebola and many others has 

contributed to the accelerated spread of the 

epidemics. Containment of this rapid viral spread 

requires an extensive testing of the affected 

individuals in any given society. Current tests for 

infectious diseases are administered on one – at – a 

– time basis. These tests are expensive and are 

limited due to the lack of resources and time. This 

paper provides a very simple and efficient testing 

strategy which can significantly reduce the total 

number of tests compared to individual tests of the 

entire population. It has been observed that 

multistage group testing strategy is more 

economical and efficient in detecting the presence 

of the virus in a mixed sample of specimens. 

Multistage method starts by choosing a group from 

the population to be tested, performing a test on the 

combined sample from the entire group, and 

progressively splitting the group further into 

subgroups. In this paper we develop an adaptive 

multistage group testing design with the view of 

studying the behavior of the efficiency of the 

estimator as the number of stages increases. The 

method of maximum likelihood estimator is 

discussed and for comparison with other established 

estimators, properties of the constructed estimator 

have also been discussed. From the results it is 

evident that the asymptotic relative efficiency 

increases with each additional stage. This proposed 

design is efficient and simple to be deployed in 

containment of any infectious disease. 

 

Indexed Terms- Group testing, multistage, 

asymptotic relative efficiency. 

 

 

 

I. INTRODUCTION 

 

The rapid spread of manyviral infectious diseases 

such as Influenza, chickenpox, covid-19, mumps, 

Ebola and many othersin many developing countries 

such as Kenya urges the concerned authorities to take 

urgent measures in order to contain the disease or at 

least, to reduce its spread.  

 

Even though a lot of research is currently being 

carried out towards a cure of this infectious diseases, 

to date, the most effective reasonable measure against 

its spread is the tracing and subsequent isolation of 

positive cases[9].For instance, at present, the standard 

tests for the detection of the corona virus is: nucleic 

acid amplification tests (NAAT), such as the 

quantitative transcription polymerase chain reaction 

(qt-PCR). These bio-chemical tests are based on 

samples from lower or upper respiratory tract of 

tested individuals [10]. The former is too delicate of 

an operation to be widely applicable and only visible 

for hospitalized patients. In the routine laboratory 

diagnosis, however, sampling the upper respiratory 

tract with nasal swabs is much more preferred. 

Therefore the demand for this type of viral testing, is 

drastically increasing in many health care systems, 

resulting in shortages of necessary materials to 

conduct the test [11]. 

 

As proposed by a large number of scholars, a primary 

way to make better use of the available capacities is 

to mix samples of different individuals before testing, 

and to first perform the test on these mixtures, the so 

called pools, as if it was only one sample. Group 

testing is the procedure of performing joint tests on 

mixture of samples from several individuals pooled 

and tested together using a single test [3], thereby 

requiring significantly fewer tests than the number of 

individuals to be tested. When a pool tests negative, 
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this is interpreted as a negative result for all pooled 

specimens.Only when a group result is positive do 

the samples need to be tested individually. 

 

In this paper, we will demonstrate and systematically 

develop a simple testing procedure that can lead to a 

significant reduction in number of tests hence 

expanding the capacity of the available infrastructure 

when large numbers of individuals are to be tested. 

 

II. GROUP TESTING 

 

The testing of pooled samples of biological 

specimens for disease has a long history, beginning 

with [3] seminal work consisting of pooling into 

groups (e.g pooling blood, urine, nasal swabs) and 

test only those pooled samples first to detect or 

identify traces of virus. In the second stage, only 

individuals that belonged to positive groups are tested 

individually.This procedure is described 

diagrammatically below in Figure 1. 

 

Groups 

 

 
Figure 1: Dorfman (1943) Group testing procedure 

 

Group testing conceals the identity of the subject, 

since individual units are pooled together hence the 

identity of the subject is not known in case of a fatal 

trait [4], thereby preventing stigmatization.  

 

Because of limited information contained in positive 

response, it is required to test certain units multiple 

times – either in parallel for all the units or 

sequentially with additional testing for those units 

with positive test results. Sequential test designs in 

which pooling of samples into groups in each stage 

depend on the results of the former stages, are called 

adaptive. For non – adaptive methods, in contrast, all 

the sample poolings are specified in advance, which 

translates into a one stage design as shown in Figure 

1 [3].A special class of adaptive test designs is a 

hierarchical test, where in the first stage the 

population is grouped into ‘n’ homogeneous groups 

and each group is subjected to a single test, and in 

every subsequent stage, groups with positive results 

are split into smaller groups and retested, units 

contained in groups with negative results are 

discarded. This procedure is shown diagrammatically 

in Figure 2 as proposed by [3] which is an 

improvement on the original Dorfman test described 

in Figure 1. 

 

 
Figure 2: Monzon et. al. (1992) Group testing 

procedure 

 

The proposed testing scheme is a generalization of 

this procedure. 

 

III. THE MODEL 

 

The population N understudy is assumed herein as 

sufficient for the experiment to be considered. Firstly, 

the population is split into n1 homogeneous pools 

each of size k1. The n1 constructed pools are subjected 

to testing for the presence or absence of virus. 

Positive results indicate the presence of at least one 

positive individual and the negative reading indicates 

the absence of the virus in all the individuals. The 

pools that tested positive at stage one are split into 

smaller sub groups of size k2 (k2<k1) that forms pools 

for testing at stage two, in total we shall have n2 pools 

each of size k2 for testing in stage two. The pools that 

tests positive at stage two are further split into 

smaller pools of size k3 (k3<k2) for testing in stage 

three and in total we have n3 pools that are 

constructed in this stage. The procedure is repeated 

up to m stage where at this stage nm sub pools of size 

km (km<km-1) are constructed for testing. The 

amalgamated m – stage group testing is shown in 

Figure 3 below. 
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Figure 3:m-stage Group Testing Model. 

 

First we consider the classification an i
th

group in the 

h
th

stage, since h will be allowed to vary from 1 to m 

as discussed above with the objective of constructing 

the probability of positive reading at this stage. 

Notice that , this forms a 

filtration therefore we shall employ the theory of 

Martingale [1].  

 

The probability of classifying a j
th

individual from an 

i
th

pool in theh
th

 stage is obtained as follows: The j
th

 

unit is subjected to testing for the presence of virus, 

the unit can test positive or negative. 

Let  

 
for simplicity the random variable  gives binary 

results with probability of success  

(cf Dorfman, 1943). Thus it reduces to 

.  (1) 

Now computing the probability of classifying thei
th

 

group itself. This will be (1) for thei
th

 group scenario. 

 Let  

 
Also we note that   is a Bernoulli random variable 

with probability of success  

 (cf Dorfman, 1943). Hence 

       (2) 

The subgroups used at theh
th

stage come from positive 

sub groups in stage h – 1. The probability of interest 

that is the probability of classifying the i
th

 group as 

positive given that it comes from a positive sub-

group in stage h – 1 is 

  

  (3) 

Reorganizing this conditional probability we have 

 

 (4) 

 

Notice that  , this implies that 

 (5) 

 

From Equation (5) we obtain the probabilities of 

interest at the h
th

 stage in the model. 

 

We recall that the i
th

group is positive if at least one of 

the units in the group is positive, hence 

  (6) 

Equations (6) is a truncated probability distribution 

model which is the probability of classifying an i
th

 

group in the h
th

 as positive. This probability isvital 

the formulation of our model; 

 

 (7) 

 

 

 



© DEC 2022 | IRE Journals | Volume 6 Issue 6 | ISSN: 2456-8880 

IRE 1703914          ICONIC RESEARCH AND ENGINEERING JOURNALS 64 

 The Likelihood Function 

The likelihood function at this stage is anchored on 

Equation (7). Thus utilizing the indicator 

function as proposed above the likelihood function 

at the h
th

 stage will be 

 

 ,   (8) 

(8) is a truncated Binomial probability density model. 

Notice that h = 1, 2, . . . ,m, in model (8) thus the M – 

stage likelihood function is 

  (9) 

Equation (9) holds with , this is true 

because at initial stage  is equal to the entire 

population which is large and  

as  where k0 = N. 

Upon setting m = 1 in (9) the model reduces to that of 

[4]. 

 

 The Estimator 

In this section we determine the estimator of the 

constructed design by using the maximum likelihood 

estimate (MLE) method. Mathematically given as   

  

We define 

    

   (10) 

The optimal pcan be obtained by Newton – Raphson 

iteration method. 

     

 (11) 

The iteration ceases if , for some 

arbitrary .The estimator  obtained in (11) is the 

estimate of p. 

 

 Asymptotic Variance 

For a very population say N , the asymptotic 

variance of an estimator is obtained by use of the 

Cramer – Rao lower bound method [8]. 

Mathematically given as 

  (12) 

Upon utilizing (12) on (9) we get the asymptotic 

variance of the model as 

 (13) 

This equation is vital in the simulation of the 

asymptotic variance. 

 

 Confidence Interval  

The confidence interval gives the limits within which 

a good estimator lies. We shall consider the closeness 

of , the unbiased estimator of  at the h
th

 stage. 

Hence without loss of generality we provide the 

confidence interval of the estimator, , as  

     

 (14) 

Where Z  and  and  are by 

provided by the solutions to Equations (11) and (13) 

respectively, it follows from Equation (14) that 

and by the 

law of central limit theorem we have 

  

 

IV. RESULTS 

 

 Computation of Asymptotic Variance 

In this section we illustrate the computation of the 

asymptotic variance using a population of size N = 

640 individuals initially subdivided into ten groups 

composed of k1 = 64 at stage one and, at each 

successive stage, the positive groups were split into 

two subgroups by using halving method and tested in 

parallel. In the computation of the asymptotic 

variance we utilized Equation (13) and developed R- 

codes. The codes were used to generate the 

asymptotic variance for various values of p. These 

values are shown in Table 1. 
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Stage     No. of individuals 

              per group (kh) 

pt 

0.01                 0.02                  0.03                0.04           0.05 

1                    64              

2                    32 

3                    16 

4                      8 

5                      4 

15.534  49.583  130.480 356.27    326.3 

9.6142  27.550  61.484  127.26   260.12 

7.9441  21.632  44.933  83.981   148.14 

7.2808  19.341  38.850  69.446   115.61 

6.9823  18.323  36.215  63.399   102.84 

Table 1: Simulated asymptotic variance for selected values of pt, where 

 

Table 1 gives an illustration of the asymptotic 

variance of the constructed estimator. It is evident 

from the table that the asymptotic variance decreases 

with increase in the number of stages almost three-

fold, for instance at stage one the asymptotic variance 

is  and at stage five it is  

when . It can also be observed that the 

asymptotic variance increases with increase in the 

prevalence of the virus. This means that the precision 

of group testing models decreases with increase in 

viral prevalence. 

 

Asymptotic Relative Efficiency (ARE) 

   (15) 

Clearly from Equation (15) we have 

 

 

 
implying ARE . Thus, theoretically our model 

outperforms [10] strictly for . Furthermore to 

illustrate the above implication/observation we have 

computed the asymptotic relative efficiency (ARE) 

for various values of m as provided in Table 2. 

 

Stage     No. of individuals 

              per group (kh) 

pt 

0.01                 0.02                  0.03                0.04           0.05 

1                    64              

2                    32 

3                    16 

4                      8 

5                      4 

1.0000  1.0000  1.0000  1.0000   1.0000 

1.6157  1.7997  2.1222  2.7995   5.0988 

1.9554  2.2921  2.9039  4.2423   8.9530 

2.1336  2.5636  3.3586  5.1307 11.4722 

2.2248  2.7061  3.6029  5.6195 12.8967 

Table 2: AREs of , after successive stages. 

 

Table 2 provides generated asymptotic relative 

efficiency values of the estimator at stages 1, 2, 3, 4 

and 5 of an M-Stage pooling study for a range of 

values of p. From this table, we observe that the 

efficiency of the estimator increases with increase in 

the number of stages. 
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CONCLUSION 

 

In this paper, we developed an M-Stage group 

testing procedure for testing the presence of the 

virus in a population and constructed a prevalence 

estimator based on multistage pooling algorithm. 

The maximum likelihood estimator (MLE) 

procedure was used in developing the estimator . 

The properties of the maximum likelihood estimator 

such as the asymptoticvariance and relative 

efficiency are provided in the discussion.  

 

From our discussion in the previous section, it is 

clear that the accuracy of the estimator in an M-

Stage group testing scheme increases with each 

additional stage when the prevalence of the virus in 

the population is rare. 

As highlighted in section 4 the asymptotic relative 

efficiency values are all greater than one for m> 1 

showing evidently that the M-stage estimator 

outperforms the already established estimator by [2, 

5]. Results from this section shows that the 

constructed estimator gains efficiency with each 

additional stage. This therefore makes the M-Stage 

adaptive testing scheme more ideal than the two 

stage testing scheme in estimating presence of the 

virus in the population.  

 

In summary, the results for the study can be 

generalized as follows; as the number of stages 

increases the proposed testing scheme becomes 

more precise and efficient than the already 

established scheme with small values of p. It also 

shows how each test can be amplified by applying it 

to a mixture of samples (blood, urine, nasal swabs 

etc.) from several individuals thus leading to a 

significant reduction in the number of tests in 

estimating the presence of a viral infection in a 

population. 

 

RECOMMENDATIONS 

 

In view of the foregoing, it would therefore be 

imperative to recommend the adoption of the M-

Stage group testing model in estimating the 

prevalence of infectious viral diseases in order to 

significantly reduce the number of tests so that the 

available facilities are not overstretched and control 

its rapid spread. 
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