© FEB 2023 | IRE Journals | Volume 6 Issue 8 | ISSN: 2456-8880

Coefficient Inequality for Close to Starlike Functions
Constructed Using Inverse Starlike Classes

BASANTA KR. SAHARIAH
Department of Physics, Tangla College, Tangla, Assam, India

Abstract- Here we will discuss a newly constructed
class of analytic functions and its subclasses by
which we will be obtaining sharp upper bounds of the
functional |a; —pa3| for the analytic function
f(z)=z+ Y,,a,z" |z| <1 belonging to these
classes and subclasses.

Indexed Terms- Univalent functions, Starlike
functions, Inverse Starlike functions and bounded
functions, Convex functions, Principle of
Subordination, Coefficient inequality.

I INTRODUCTION

Let A denote the class of functions of the form

f@@)=z+ ¥y,a,2" (11)

which are analytic in the unit disc E = {z: |z| < 1|}
Let S be the class of functions of the form (1.1), which
are analytic univalent in E.

In 1916, Bieber Bach ([7], [8] ) proved that |a,| < 2
for the functions f(z) €S. In 1923, Léwner [5] proved
that |a;| < 3 for the functions f(z) &S..

With the known estimates |a,| < 2 and |ag| < 3, it
was natural to seek some relation between a; and a,?
for the class S, Fekete and Szego[9] used Lowner’s
method to prove the following well known result for
the class S.

Let f(z) S, then

The inequality (1.2) plays a very important role in
determining estimates of higher coefficients for some
sub classes § (See Chhichra [1], Babalola [6]).

Let us define some subclasses of S.

We denote by S*, the class of univalent starlike
functions

9(2) =z + Xy bz €
A and satisfying the condition

zg(2)
Re (g(z)) >0,z € E. (1.3)

We denote by XK, the class of univalent convex
functions

h(z) = z+Yr ,cp2™,z € A

and satisfying the condition

(zn' @)
Re e >0,z € E. (1.4)

A function f(z) € A is said to be close to convex if
there exists g(z) € S$* such that

zf1(z)
Re (g(z))>0,zeIE. (1.5)

The class of close to convex functions is denoted by C
and was introduced by Kaplan [3] and it was shown by
him that all close to convex functions are univalent.

zf'(2) 1+Az

3 — 4y, if < 0; S*(A,B):{f(z)ecﬂ; < 2, -1<B<
las — paj| < 1+Zexp(£),if0 sus1 ASl,zeIE} (1.6)
4p—3,ifp=1.
(1.2)
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(zr'@)r < L

,—1<B<
f1(2) 1+Bz

¥ (A,B) = {f(Z) EA;

A<1lze ]E} (1.7)

It is obvious that S*(4,B) is a subclass of S* and
X (A, B) is a subclass of K.

We introduce a new subclass as

{f(z) €A (-a)—ZD 4 7@

27 f(2) dz f@)
S5
(13) ;Z € IE}
1-z

and we will denote this class as KS*~*(a, ).
It is to be noted that

e KS* Ya,1)=KS*!
o KS*TH0,6) =S5"1(8)
e KS*1(1,6) = S*(6)
o KS*10,1) =51

o KS*'(1,1)=S5"

Symbol < stands for subordination, which we define
as follows:

e Principle of Subordination: Let f(z) and F(z) be
two functions analytic in E. Then f(z) is called
subordinate to F(z) in E if there exists a function
w(z) analytic in E satisfying the conditions
w(0) =0and [w(z)]<1 such that f(z)=
F(w(2)); ze€ E and we write f(z) < F(2).

By U, we denote the class of analytic bounded
functions of the form

w(z) = Yo1dnz™,w(0) =0,|w(2)| < 1.(1.8)
Itis knownthat |[d;| < 1,|d,| <1 —|d.|*> (1.9)

. PRELIMINARY LEMMAS

1+A
Tﬁg =14+ (A-B)eyz+ (A-B)(c, —
Bc?)z? + — — — (2.1)

I, MAIN RESULTS

THEOREM 3.1: Let £(2) € KS*"!(a, 8) , then

las — ,ua%| <
482 (4a?+18a+5) 36p82 a?(46-4)+a(186-4)+(56-1)
[ (Ba+1)(2a+1)? - (2a+1)2 f - 98(3a+1)
48 a?(46-4)+a(185-4)+(56-1) a?(46+4)+a(185+4)+(56+1)

3a+1 < K <

36p6%  48%(4a+18a+5)

f 95(3a+1) 95(3a+1)
a?(46+4)+a(185+4)+(56+1)

if >
(2a+1)? (Ba+1)(2a+1)? lfu_ 95 (3a+1)
The results are sharp.

Proof: By definition of f(z) € KS*™*(a, §) , we have

_ 2f (2) 2f' (@) _ (1+w@)\?
(1 a) ZfOZf(z) dz ta fiz) (1—w(z)) ! W(Z) €U
(3.4)

Expanding the series (3.4), we get

a (23 + z* (gaz + 2a2) + 75 Ga3 +§a22 +

3a3) + ———————= ) +(1-a)z(z% +
2a,7% + a,%z* + 2a3z  + — —— — — — ) = (23 +
1 (o o) 54 (Gt ) -
=) (1 +28¢,2 + 28(c, + Pz +

ez - ) @9

Identifying terms in (3.5), we get

66cq -1

2=t » ¥F S (3.6)
_ 4 (8%ci?(4a’+18a+5) )
43 = 3 ( (2a+1)? +4c 3.7

From (3.6) and (3.7), we obtain

82(16a%+72a+20)-36u82(3a+1)
2 _ -2
03— et = 7 )

For0 < ¢ < 1, we write s Ba+1)(2a+1)?
w@) = ({2 e 39
so that
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Taking absolute value, (3.8) can be rewritten as

(52(16112+72a+20)—36u52(3a+1)|
Ba+1)(2a+1)?

(3.9)

las — na3| < ey |
48 ) 46
(Ba+1) Ba+1)

2
Casel: u > M. (3.9) can be rewritten as
9(3a+1)

-46%(4a%+18a+5) 46
Ba+1)(2a+1)2 3a+1

(3.10)

las — ua3| < ley]? (
3662 ) 48
(2a+1)2 (Ba+1)

Subcase | (2): 4 < a?(4a+4)+a(186+4)+56+1

46
3a+1

las — paj| < (3.14)

Thus, the theorem is proved. Extremal function for
(3.1) and (3.3) is defined by

fiz) =2z [1 +
463 (402 +18a+5)2
463 (4a?+18a+5)?-3(3a+1)?(2a+1)3 ]483(4a2+18a+5)2—3(3a+1)2(2a+1)3
§Ba+1)(2a+1)2(4a%+18a+5)

Extremal function for (3.2) is defined by f,(2) =
4
z(1 + 6z)3a+1

Corollary 3.2: Putting § = 1 in the theorem, we get

96(3a+1)
Using (1.8), (3.10) becomes lag — pa3l <
4(4a®+18a+5)  36p ifu < 14a+4
las — pa?| < 3662 48%(4a*+18a+5) (3.11) Ba+Da+1)?  (2a+1)? "= ;9(3a+1)
az — uaz| < 2a+1)? Ga+1)(2a+1)2 . 4 if l4a+4 8a“+22a+6
3a+1 9(3a+1) 9(3a+1)
2 36p  4(4a®+18a+s) | 8a2+22a+6
Subcase | (b): u <= (4a+4—l-;¢:§(1}i614)-4)+58+1 We Gar? ~ GarnGarn?z T M Z 5aar
obtain from (3.10) .
These are the results of the class KS* ™.
as —ua?| < 3.12 . .
las = pazl (Ba+1) (312) Corollary 3.3: Putting @ = 0 in the theorem, we get
. (4a%+18a+5) 2 . 56—1
Casell:u < T oGa+l) (20 — 36p)6 ifus ——
_ _ las — paz| < § 46 5';—;1 i 5(;—;1
Preceding as in case I, we get S5+l
(36u—20)62 ifu= o5
46%(4a?+18a+5) 48
laz — pa3l < |ci|? - -
: 2 ! ( GatD@a+1)?  3a+1 These are the results of the class $* 7 (&).
36u82 ) 48 (3 13)
2a+1)? Ba+1) ' ] .
Corollary 3.4: Putting @ = 1 in the theorem, we get
2(4a—4)+a(185—4)+55+1
Subcase 11 (a): p <<
9§ (3a+1) _ 2 35-1
B—4ws* ifus—7
36-1 36+1
(3.13) takes the form lag —padl < & = <u<=
(4p—3)82 if p>2H
las — pa?| < 46%(4a®+18a+5)  36p6> 45
a4z — Hazl = Ba+D)(2a+1)?2  (2a+1)?
These are the results of the class S*(8).
2(4a-4)+a(185—4)+55+1
Subcase Il (b): = <p< . .
() 98(3a+1) " Corollary 3.5: Putting « = 0,8 = 1 in the theorem,
(4a%+18a+5) we get
9(3a+1)
Preceding as in subcase I (a), we get
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20 — 364 ifp<z
lag —pa3| << 4 g<u<§
36u — 20 ifu=2

These are the results of the class $* 2.

Corollary 3.6: Putting @ = 1,8 = 1 in the theorem,
we get

3—4p ifu<s
las —pa3l <4 1 §<u<1
4p-3 ifu=>1

These estimates were derived by Keogh and Merkes
[8] and are results for the class of univalent starlike
functions.
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