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Abstract- Here we describe some classes of analytic 

functions and its subclasses by which we will be 

obtaining sharp upper bounds of the functional 

|𝒂𝟑 − µ𝒂𝟐
𝟐| for the analytic function 𝒇 𝒛 =  𝒛 +

  𝒂𝒏
∞
𝒏=𝟐 𝒛𝒏,  𝒛 < 𝟏 belonging to these classes and 

subclasses. 

 

Indexed Terms- Univalent functions, Starlike 

functions, Close to convex functions and bounded 

functions. 

 

I. INTRODUCTION 

 

Let 𝒜 denote the class of functions of the form 

𝑓 𝑧 =  𝑧 +   𝑎𝑛
∞
𝑛=2 𝑧𝑛     (1.1) 

which are analytic in the unit disc 𝔼 = {𝑧: |𝑧| < 1|}. 

Let 𝒮 be the class of functions of the form (1.1), 

which are analytic univalent in 𝔼.  

 

In 1916, Bieber Bach ([2]) proved that  𝑎2 ≤ 2 for 

the functions𝑓(𝑧)𝒮. In 1923, Löwner proved that 

 𝑎3 ≤ 3 for the functions𝑓(𝑧)𝒮.  

 

With the known estimates  𝑎2 ≤ 2and  𝑎3 ≤ 3, it 

was natural to seek some relation between 𝑎3 and 𝑎2
2 

for the class 𝒮,Fekete and Szegö[5] used Löwner’s 

method to prove the following  well known result for 

the class 𝒮.  

Let 𝑓(𝑧) 𝒮, then 

 𝑎3 − µ𝑎2
2 ≤

 

3 − 4µ, 𝑖𝑓 µ ≤ 0;                             

1 + 2 exp  
−2µ

1−µ
 , 𝑖𝑓 0 ≤ µ ≤ 1;

4µ − 3, 𝑖𝑓µ ≥ 1.                               

 (1.2) 

 

The inequality (1.2) plays a very important role in 

determining estimates of higher coefficients for some 

sub classes 𝒮 (See Chhichra, Babalola). Several 

researchers proved many results for various classes 

and subclasses ([8]-[66]). 

 

Let us define some subclasses of 𝒮. 

 

We denote by S*, the class of univalent starlike 

functions 
 

𝑔 𝑧 = 𝑧 +  𝑏𝑛𝑧𝑛

∞

𝑛=2

∈ 𝒜 and satisfying the condition  

𝑅𝑒  
𝑧𝑔 𝑧 

𝑔 𝑧 
 > 0, 𝑧 ∈ 𝔼.  (1.3) 

 

We denote by 𝒦, the class of  univalent convex 

functions𝑕 𝑧 =  𝑧 +  𝑐𝑛𝑧𝑛∞
𝑛=2 , 𝑧 ∈ 𝒜and 

satisfying the condition 

𝑅𝑒
 (𝑧𝑕 ′(𝑧) 

𝑕 ′ 𝑧 
> 0, 𝑧 ∈ 𝔼.  (1.4) 

 

A function 𝑓(𝑧) ∈ 𝒜 is said to be close to convex if 

there exists 𝑔 𝑧 ∈ 𝑆∗ such that  

𝑅𝑒  
𝑧𝑓 ′ 𝑧 

𝑔 𝑧 
 > 0, 𝑧 ∈ 𝔼.   (1.5) 

 

The class of close to convex functions is denoted by 

C and was introduced by Kaplan [3] and it was 

shown by him that all close to convex functions are 

univalent. 

𝑆∗ 𝐴, 𝐵 =  𝑓 𝑧 ∈ 𝒜;
𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
≺  

1+𝐴𝑧

1+𝐵𝑧
, −1 ≤ 𝐵 <

𝐴 ≤ 1, 𝑧 ∈ 𝔼 (1.6) 

𝒦 𝐴, 𝐵 =  𝑓 𝑧 ∈ 𝒜;
 𝑧𝑓 ′ 𝑧  ′

𝑓′ 𝑧 
≺  

1+𝐴𝑧

1+𝐵𝑧
, −1 ≤ 𝐵 <

𝐴 ≤ 1, 𝑧 ∈ 𝔼             (1.7)     

 

It is obvious that 𝑆∗(𝐴, 𝐵) is a subclass of 𝑆∗ and 

𝒦 (𝐴, 𝐵) is a subclass of 𝒦.  

We introduce a new subclassas 

 f z ∈ 𝒜; α
zf ′(z)

f(z)
+ (1 − α)

zf (z)

2  f z dz
z

0

≺ 
1+Az

1+Bz
; z ∈ 𝔼  

and we will denote this class as 

𝑓 𝑧 ∈ 𝒞 𝑆∗ −1[𝐴, 𝐵] ,  
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Symbol ≺ stands for subordination, which we define 

as follows: 

 

Principle of Subordination: Let 𝑓(𝑧) and 𝐹(𝑧) be two 

functions analytic in 𝔼. Then 𝑓(𝑧) is called 

subordinate to F(z) in 𝔼 if there exists a function 

𝑤(𝑧) analytic in 𝔼 satisfying the conditions 𝑤(0) =

0 and |𝑤(𝑧)| < 1 such that 𝑓(𝑧) = 𝐹(𝑤(𝑧));  𝑧 𝔼 

and we write 𝑓(𝑧)  ≺  𝐹(𝑧).By 𝒰, we denote the 

class of analytic bounded functions of the form  

𝑤(𝑧) =   𝑑𝑛𝑧𝑛∞
𝑛=1 , 𝑤(0) = 0, |𝑤(𝑧)| < 1.  (1.8) 

It is known that  𝑑1 ≤ 1,  𝑑2 ≤  1 −  𝑑1 2.  (1.9) 

 

II. PRELIMINARY LEMMAS 

 

For 0 <  𝑐 <  1, we write 𝑤(𝑧)  =  
𝑐+𝑧

1+𝑐𝑧
  so that 

1+𝐴𝑤 (𝑧)

1+𝐵𝑤(𝑧)
    =  1 +  𝐴 − 𝐵 𝑐1𝑧 +  𝐴 − 𝐵  𝑐2  −

𝐵𝑐1
2 𝑧2 + − − −(2.1) 

 

III. MAIN RESULT 

 

THEOREM 3.1: Let 𝑓(𝑧) =  𝑧 +  𝑎𝑘
∞
𝑘=2 𝑧𝑘  ∈

𝑆∗ 𝑓, 𝑓 ′, 𝛼, 𝛽, 𝛿 ., then 

 

 𝑎3 − 𝜇𝑎2
2 ≤  

𝑓 𝑔 − 4𝜇𝛿 𝛿, 𝑖𝑓𝜇 ≤  𝑤;
𝛿

3𝛼+𝛽−4𝛼𝛽
 𝑖𝑓𝑤 ≤ 𝜇 ≤ 𝑦; 

𝑓 4𝜇𝛿 − 𝑕 𝛿, 𝑖𝑓 𝜇 ≥  𝑦

   

 

Where     𝑓 =
1

  1−𝛼 𝛽+2𝛼(1−𝛽) 2 

 𝑤 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿

,  

𝑦 =

 
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿

, 

𝑔 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  
  

𝑕 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  

. 

The result is sharp in the sense that right hand side is 

the least upper bound of the result and extremal 

function exists.  

PROOF: By definition of 𝑆∗ 𝑓, 𝑓 ′, 𝛼, 𝛽, 𝛿 , we have 

 

 1 − 𝛼  
𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
 

𝛽

+ 𝛼  
 𝑧𝑓 ′ 𝑧  

′

𝑓′ 𝑧 
 

1−𝛽

=

 
1+𝑤(𝑧)

1−𝑤(𝑧)
 

𝛿

 ; 𝑤 𝑧 ∈ 𝒰.    (3.1) 

 

Expanding the series (3.1), we get      

 1 − 𝛼  1 + 𝛽𝑎2𝑧 + (2𝛽𝑎3+
𝛽(𝛽−3)

2
𝑎12

2 )𝑧2 + − −

− + 𝛼{1 + 2(1 − 𝛽)𝑎2𝑧 + 2(1 − 𝛽)(3𝑎3−(𝛽 +

2)𝑎2
2)𝑧2 + − − −} =  1 + 2𝛿𝑐1𝑧 + 2𝛿 𝑐2 +

𝛿𝑐1
2 𝑧2 + − − − .                  (3.2) 

Comparing the coefficients of like powers in equation 

(3.2), we get 

𝑎2 =
2𝛿

 1−𝛼 𝛽+2𝛼(1−𝛽)
𝑐1and 

𝑎3 =
𝛿

3𝛼+𝛽−4𝛼𝛽
𝑐2 +

 
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

 3𝛼+𝛽−4𝛼𝛽    1−𝛼 𝛽+2𝛼(1−𝛽) 2 𝑐1
2𝛿2.                     (

3.3) 

From equation (3.3), we obtain 

𝑎3 − 𝜇𝑎2
2 =

𝛿

3𝛼+𝛽−4𝛼𝛽
𝑐2 +  

8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

 3𝛼+𝛽−4𝛼𝛽    1−𝛼 𝛽+2𝛼(1−𝛽) 2 −

4

  1−𝛼 𝛽+2𝛼(1−𝛽) 2 𝜇 𝛿2𝑐1
2.                      (3.4) 

Taking absolute value, it can be rewritten as  

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
 𝑐2 +

1

  1−𝛼 𝛽+2𝛼(1−𝛽) 2  
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

 3𝛼+𝛽−4𝛼𝛽  
−

4𝜇 𝛿2|𝑐1
2 |.                                                 (3.5) 

Using (1.9), we get 

|𝑎3 − 𝜇𝑎2
2| ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
(1 − |𝑐1|2) +

1

  1−𝛼 𝛽+2𝛼(1−𝛽) 2  
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

 3𝛼+𝛽−4𝛼𝛽  
−

4𝜇 |𝑐1
2|𝛿2. 

=
𝛿

3𝛼+𝛽−4𝛼𝛽
+

1

  1−𝛼 𝛽+2𝛼(1−𝛽) 2   
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

 3𝛼+𝛽−4𝛼𝛽  
−

4𝜇 𝛿2 −
  1−𝛼 𝛽+2𝛼(1−𝛽) 2𝛿

3𝛼+𝛽−4𝛼𝛽
 |𝑐1|2.  

Case I: 
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𝜇 ≤
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2

4 3𝛼+𝛽−4𝛼𝛽  
. 

Above inequality can be rewritten as            

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
+

1

  1−𝛼 𝛽+2𝛼 1−𝛽  2  
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  
−

4𝜇𝛿 𝛿|𝑐1|2     (3.6) 

SubcaseI(a):𝜇 ≤ 𝑤, where  

𝑤 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
. 

Using (1.9), we get from inequality (3.6) that 

 𝑎3 − 𝜇𝑎2
2 ≤

1

  1−𝛼 𝛽+2𝛼 1−𝛽  2  
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  
−

4𝜇𝛿 𝛿     (3.7) 

Subcase I (b):𝜇 ≥ 𝑤,  

where 𝑤 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
. 

We obtain from inequality (3.6) that 

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
.              (3.8) 

CaseII: 

𝜇 

≥
8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 3𝛼𝛽 + 9𝛼2𝛽2

4 3𝛼 + 𝛽 − 4𝛼𝛽 
 

Preceding as in case I, we get  

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
+

1

  1−𝛼 𝛽+2𝛼 1−𝛽  2  4𝜇𝛿 −

 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  
 𝛿|𝑐1|2  

(3.9) 

Subcase II (a):𝜇 ≤ 𝑦, 

where 𝑦 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
 

It takes the form 

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
           (3.10) 

Combining results (3.8) of subcase I (b) and (3.10) of 

subcase II (a), we obtain 

 𝑎3 − 𝜇𝑎2
2 ≤

𝛿

3𝛼+𝛽−4𝛼𝛽
   𝑖𝑓𝑤 ≤ 𝜇 ≤ 𝑦      (3.11) 

Where, 

𝑤 =

 
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿−  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
 

and𝑦 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
 

Subcase II (b):𝜇 ≥ 𝑦, 

where, 𝑦 =
 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

4 3𝛼+𝛽−4𝛼𝛽  𝛿
 

Proceeding as in subcase I(a) , we get 

 𝑎3 − 𝜇𝑎2
2 ≤

1

  1−𝛼 𝛽+2𝛼 1−𝛽  2  4𝜇𝛿 −

 8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−3𝛼𝛽 +9𝛼2𝛽2 𝛿+  1−𝛼 𝛽+2𝛼 1−𝛽  2

 3𝛼+𝛽−4𝛼𝛽  
 𝛿.  

(3.12) 

Hence the theorem is proved. The result is sharp in 

the sense that right hand side is the least upper bound 

of the result and extremal function exists. Extremal 

function for first and third inequality is defined by  

𝑓1 𝑧 = 𝑧 1 +  𝑓 2𝛿 − 𝑔 𝑧 
2𝛿

2𝛿−𝑔  

Extremal function for second inequality is defined by 

𝑓2 𝑧 = 𝑧(1 +
1

3𝛼+𝛽−4𝛼𝛽
𝑧2)𝛿 . 

COROLLARY 3.2: Putting 𝛿=1,𝛼 = 1, 𝛽 = 0 in the 

theorem, we get  

 𝑎3 − 𝜇𝑎2
2 ≤

 
 
 

 
 1 − 𝜇, 𝑖𝑓𝜇 ≤  

2

3
; 

1

3
 𝑖𝑓

2

3
≤ 𝜇 ≤

4

3
;

𝜇 − 1, 𝑖𝑓 𝜇 ≥  
4

3

  

These estimates were derived by Keogh and Merkes 

[8] and are results for the class of univalent convex 

functions. 

COROLLARY 3.3:  Putting𝛿=1,𝛼 = 0, 𝛽 = 1 in the 

theorem, we get  

 𝑎3 − 𝜇𝑎2
2 ≤

 
 
 

 
 3 − 4𝜇, 𝑖𝑓𝜇 ≤  

1

2
;

1𝑖𝑓
1

2
≤ 𝜇 ≤ 1;

4𝜇 − 3, 𝑖𝑓 𝜇 ≥  1

  

These estimates were derived by Keogh and Merkes 

[8] and are results for the class of univalent starlike 

functions. 
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