
© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 417

Deployment of A Programmed Graphic User Interface

(GUI) For Analysing Digital Filters Using Matlab-

Algorithm

AKWUKWAEGBU ISDORE ONYEMA
1
, OBICHERE JUDE-KENNEDY CHIBUZO

2
, MFONOBONG

ELEAZAR BENSON
3
, PAULINUS-NWAMMUO CHIEDOZIE FRANCIS

4

1, 2, 3, 4
 Federal University of Technology Owerri, Nigeria

Abstract- The time and frequency domains are

confronted with unwanted noise, maximum ripple

errors, voltage magnitude variations, slow data

acquisition, poor distortions from frequency, phase,

or delay, and harmonics. The work covers the

development of the digital filter design program that

helped to design low-pass, high-pass, band-pass,

and band-reject filters in order to satisfy various

constraints such as cutoff frequencies and

maximum ripple errors. Matlab codes, commands,

and syntax are used to program graphical user

interface (GUI) filter design software for analyzing

finite impulse response (FIR) and infinite impulse

response (IIR) digital filters using the Hamming

type of window and Parks-McClellan design

methods. The corresponding magnitude response,

phase response, impulse response, and pole-zero

plot of the digital filters are displayed. A simulated

real-time procedure and its varying responses due to

varied input parameters are well highlighted or

displayed in a graphic user interface (GUI)

environment. The results revealed that the

Hamming type of window deployed in the design of

FIR digital filters recorded cutoff frequencies of

1000Hz, 1500Hz, 1500–2500Hz, and 1000–3000Hz

for low-pass, high-pass, band-pass, and band-reject

filters, respectively, with a sampling frequency of

8000Hz and an order of 20. Also, the magnitude-

frequency response results of finite impulse

response (IIR) digital filters designed using the

Parks-McClellan design method in 9 iterations and

the auto order of 20 recorded passband frequencies

ranging from 1000–3000Hz and stopband

frequencies ranging from 1000–4000Hz for these

digital filters are presented.

Indexed Terms- Graphic User Interface (GUI),

Finite Impulse Response (FIR) filters, Infinite

Impulse Response(IIR) digital filters, Hamming

type of Window design method, Parks-McClellan

design method, Magnitude-Frequency Responses,

Maximum ripple errors.

I. INTRODUCTION

Digital signal processing (DSP) refers to anything

that can be done to a signal using code on a computer

or DSP chip. To reduce certain sinusoidal frequency

components in a signal's amplitude, digital filtering is

done [1]. One may want to obtain the integral of a

signal. If the signal comes from a tachometer, the

integral gives the position. If the signal is noisy, then

filtering the signal to reduce the amplitude of the

noise frequencies improves the signal quality. For

example, noise may occur from wind or rain at an

outdoor music presentation. Filtering out sinusoidal

components of the signal that occur at frequencies

that cannot be produced by the music itself results in

recording the music with little wind and rain noise.

Sometimes the signal is corrupted not by noise, but

by other signal frequencies that are of no present

interest [2]. If the signal is an electronic measurement

of a brain wave obtained by using probes applied

externally to the head, other electronic signals are

picked up by the probes, but the physician may be

interested only in signals occurring at a particular

frequency. By using digital filtering, the signals of

interest can only be presented to the physician [3].

Originally, signal processing was done only on

analog or continuous-time signals using analog signal

processing (ASP) [4]. Until the late 1950s, digital

computers were not commercially available. When

they became commercially available, they were large

and expensive, and they were used to simulate the

performance of analog signal processing to judge its

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 418

effectiveness. These simulations, however, led to

digital processor code that simulated or performed

nearly the same task on samples of the signals that

the analog systems did on the signals [5]. After a

while, it was realized that the simulation coding of

the analog system was actually a DSP system that

worked on samples of the input and output at discrete

time intervals. But implementing signal processing

digitally, instead of using analog systems, was still

out of the question [6]. The first problem was that an

analog input signal had to be represented as a

sequence of samples of the signal, which were then

converted to the computer’s numerical representation

[7].

The same process would have to be applied in reverse

to the output of the digitally processed signal. The

second problem was that, because the processing was

done on very large, slow, and expensive computers,

practical real-time processing between samples of the

signal was impossible [8].

The development of faster, cheaper, and smaller input

signal samplers, Analogue to Digital Converters

(ADCs) and output converters from digital data to

analog data, Digital to Analogue Converters (DACs),

began to make real-time digital signal processing

(DSP) practical. Also, the processors were becoming

smaller, faster, and cheaper and used more bits. Real-

time replacements for analog systems may be just as

small, cheap, and accurate and be able to process at a

sample rate adequate for many analog signals [9].

However, testing and modification of the coding for

DSP systems led to DSP systems that have no analog

signal processing equivalents, yet sometimes perform

the signal processing better than the DSP coding

developed to replace analog systems.

The objective of this work is to design Finite Impulse

Response (FIR) and Infinite Impulse Response (IIR)

digital filters with their low-pass, high-pass, band-

pass, and band-reject responses using a user-friendly

Graphic User Interface (GUI) based working

environment on the MATLAB platform. The codes

are written in MATLAB syntax, as is the use of its

GUI platform. The required system equations and

expressions are incorporated into the program codes,

and the operational flowcharts are designed for the

sequential lines of code [10].

The significance of this work depends on its ability to

perform mathematical operations on a sampled,

discrete-time signal to reduce or enhance certain

aspects of that signal in electronics, computer

science, and mathematics. The program developed is

useful in the effective teaching of filter design and

analysis in electrical and electronic engineering. The

graphic user interface (GUI) displays a simulated

real-time procedure and its varying responses due to

varied input parameters.

There are different methods of designing digital

filters according to the types of filters involved. For

finite impulse response (FIR) filters, the Remez

exchange method or convolution method is used. In

the Remez exchange algorithm, the user specifies a

desired frequency response, a weighting function for

errors from this response, and a filter order N. The

algorithm then finds the set of N coefficients that

minimizes the maximum deviation from the ideal

response. Intuitively, this finds the filter that is as

close to the desired response as possible given that

you can use only N coefficients [11]. The

convolution method involves mixing the input signals

with the digital filter’s impulse response (called the

filter kernel). From this convolution, all possible

linear filters’ responses can be achieved.

Then, for infinite impulse response (IIR) filters, the

recursion design method is deployed. When a filter is

implemented by convolution, each sample in the

output is calculated by weighting the samples in the

input and adding them together. Recursion is an

extension of the convolution method that uses

previously calculated values from the output signal

and then adds them to the input signal of the filter.

Therefore, instead of using a filter kernel, recursive

filters are defined by a set of recursion coefficients

[12].

II. REVIEW OF LITERATURE

The tone control circuit in an ordinary car radio is a

filter, as are the bass, midrange, and treble boosts in a

stereo preamplifier [13]. Further examples of useful

filters in audio are graphic equalizers, reverberators,

echo devices, phase shifters, and speaker crossover

networks. There are also examples of undesirable

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 419

filtering, such as the uneven reinforcement of certain

frequencies in a room with bad acoustics.

A digital filter is just a filter that operates on digital

signals, such as sound represented on a computer. It

is a computation that takes one sequence of numbers

(the input signal) and produces a new sequence of

numbers (the filtered output signal) [14]. It is

important to realize that a digital filter can do

anything that a real-world filter can do [15].

Digital filters are used for two general purposes,

namely signal separation and signal restoration.

Analog (electronic) filters can be used for these same

tasks. However, digital filters can achieve far

superior results. Signal separation is needed when a

signal has been contaminated with interference,

noise, or other signals. For example, imagine a device

for measuring the electrical activity of a baby's heart

(EKG) while still in the womb. The raw signal will

likely be corrupted by the breathing and heartbeat of

the mother. A filter might be used to separate these

signals so that they can be individually analyzed.

Signal restoration is used when a signal has been

distorted in some way. For example, an audio

recording made with poor equipment may be filtered

to better represent the sound as it actually occurred.

Another example is the deblurring of an image

acquired with an improperly focused lens or a shaky

camera [16].

It is common in digital signal processing (DSP) to

say that a filter's input and output signals are in the

time domain. This is because signals are usually

created by sampling at regular intervals of time. But

this is not the only way sampling can take place.

The second most common method of sampling is at

equal intervals in space. For example, imagine taking

simultaneous readings from an array of strain sensors

mounted at one-centimeter increments along the

length of an aircraft wing. Many other domains are

possible, but time and space are by far the most

common. When the term "time domain" is seen in

DSP, it is remembered that it may actually refer to

samples taken over time, or it may be a general

reference to any domain that the samples are taken in

[17].

Every linear filter has an impulse response, a step

response, and a frequency response. Each of these

responses contains complete information about the

filter, but in a different form. If one of the three is

specified, the other two are fixed and can be directly

calculated. All three of these representations are

important because they describe how the filter will

react under different circumstances.

The most straightforward way to implement a digital

filter is by convolution of the input signal with the

digital filter's impulse response. All possible linear

filters can be made in this manner. When the impulse

response is used in this way, filter designers give it a

special name called the filter kernel.

There is also another way to make digital filters

called recursion. When a filter is implemented by

convolution, each sample in the output is calculated

by weighting the samples in the input and adding

them together. Recursive filters are an extension of

this, using previously calculated values from the

output as well as points from the input. Instead of

using a filter kernel, recursive filters are defined by a

set of recursion coefficients [18].

To find the impulse response of a recursive filter,

simply feed in an impulse and see what comes out.

The impulse responses of recursive filters are

composed of sinusoids that exponentially decay in

amplitude. In principle, this makes their impulse

responses infinitely long. However, the amplitude

eventually drops below the round-off noise of the

system, and the remaining samples can be ignored.

Because of this characteristic, recursive filters are

also called Infinite Impulse Response or IIR filters. In

comparison, filters carried out by convolution are

called Finite Impulse Response (FIR) filters.

It is known that the impulse response is the output of

a system when the input is an impulse. In this same

manner, the step response is the output when the

input is a step or an edge response. Since the step is

the integral of the impulse, the step response is the

integral of the impulse response. This provides two

ways to find the step response, namely, feeding a step

waveform into the filter and seeing what comes out;

or integrating the impulse response. Continous

integration is used with continuous signals, while

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 420

discrete integration (a running sum) is used with

discrete signals [19]. Frequency response can be

found by taking the digital Fourier transform (DFT)

using the fast Fourier transform (FFT) algorithm of

the impulse response.

2.1 BRIEF THEORY OF FILTER

The most important part of any DSP task is to

understand how information is contained in the

signals you are working with. There are many ways

that information can be contained in a signal. This is

especially true if the signal is man-made. For

instance, consider all of the modulation schemes that

have been devised: AM, FM, single-sideband, pulse-

code modulation, pulse-width modulation, etc.

Fortunately, there are only two ways that are

common for information to be represented in

naturally occurring signals. These will be called

"information represented in the time domain" and

"information represented in the frequency domain."

Information represented in the time domain describes

when something occurs and what the amplitude of

the occurrence is. For example, imagine an

experiment to study the light output of the sun. The

light output is measured and recorded once every

second. Each sample in the signal indicates what is

happening at that instant and the level of the event. If

a solar flare occurs, the signal directly provides

information on the time it occurred, the duration, the

development over time, etc. Each sample contains

information that is interpretable without reference to

any other sample. Even if only one sample from this

signal is known, something about what is being

measured is known. This is the simplest way for

information to be contained in a signal.

In contrast, information represented in the frequency

domain is more indirect. Many things in our universe

show periodic motion. For example, a wine glass

struck with a fingernail will vibrate, producing a

ringing sound; the pendulum of a grandfather clock

swings back and forth; stars and planets rotate on

their axis and revolve around each other, and so forth.

By measuring the frequency, phase, and amplitude of

this periodic motion, information can often be

obtained about the system producing the motion. The

fundamental frequency and harmonics of the periodic

vibration relate to the mass and elasticity of the

material. A single sample, in itself, contains no

information about the periodic motion and therefore

no information about the wine glass. The information

is contained in the relationship between many points

in the signal.

The step response is useful in time domain analysis

because it matches the way humans view the

information contained in the signals. The step

function is the purest way of representing a division

between two dissimilar regions. It can mark the start

of an event or the end of an event. It shows that

whatever is on the left is somehow different from

whatever is on the right. This is how the human mind

views time-domain information: as a group of step

functions dividing the information into regions of

similar characteristics. The step response, in turn, is

important because it describes how the dividing lines

are being modified by the filter. Digital filters are less

standardized, and it is common to see 99%, 90%,

70.7%, and 50% amplitude levels defined as the

cutoff frequency [20].

Frequency domain filters are generally used to pass

certain frequencies (the passband) while blocking

others (the stopband). The four basic frequency

responses are low-pass, high-pass, band-pass, and

band-reject. High-pass, band-pass, and band-reject

filters are designed by starting with a low-pass filter

and then converting it into the desired response. For

this reason, most discussions on filter design only

give examples of low-pass filters. There are two

methods for the low-pass to high-pass conversion:

spectral inversion and spectral reversal. Both are

equally useful [12, 21].

Digital filters can be implemented in two ways: by

convolution (also called finite impulse response, or

FIR) and by recursion (also called infinite impulse

response, or IIR). Filters carried out by convolution

can have far better performance than filters using

recursion, but they execute much more slowly. The

moving average is used in the time domain, the

windowed-sinc is used in the frequency domain, and

the finite impulse response (FIR) custom is used

when something special is needed. Fast Fourier

Transform (FFT) convolution is an algorithm for

increasing the speed of convolution, allowing FIR

filters to execute faster. The single-pole recursive

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 421

filter is used in the time domain, while the

Chebyshev is used in the frequency domain.

Recursive filters with a custom response are designed

by iterative techniques [22].

The moving average filter is optimal for a common

task: reducing random noise while retaining a sharp

step response. This makes it the premier filter for

time-domain encoded signals. However, the moving

average is the worst filter for frequency domain

encoded signals, with little ability to separate one

band of frequencies from another. Relatives of the

moving average filter include the Gaussian,

Blackman, and multiple-pass moving averages. These

have slightly better performance in the frequency

domain, at the expense of increased computation time

[23].

The moving average filter operates by averaging a

number of points from the input signal to produce

each point in the output signal. The equation for the

moving average filter is written as:

(1)

Where x = input signal, y = output signal, and M =

the number of points used in the moving average.

This equation only uses points on one side of the

output sample being calculated. Not only is the

moving average filter very good for many

applications, it is optimal for a common problem,

reducing random white noise while keeping the

sharpest step response [24].

2.0 DESIGN AND ANALYSIS OF FIR AND IIR

DIGITAL FILTERS

The techniques used to generate the filter system's

syntax representation, as well as the theoretical

deductions for the areas under consideration, are

highlighted. It is the first step towards translating the

required formulas into executable MATLAB codes.

The MATLAB compiler is made up of several

phases, and these phases are all implemented as

software modules that must be properly interfaced

with the developed GUI’s in order to produce the

desired outputs. This involves translating the design

specifications into lines of executable code while at

the same time checking for possible errors and

reporting them back to the programmer [25]. The

following design procedures are considered in the

program:

3.1 WINDOWED-SINC FILTERS

Windowed-sinc filters are used to separate one band

of frequencies from another. They are very stable,

produce few surprises, and can be pushed to

incredible performance levels. These exceptional

frequency domain characteristics are obtained at the

expense of poor performance in the time domain,

including excessive ripple and overshoot in the step

response. When carried out by standard convolution,

windowed-sinc filters are easy to program, but slow

to execute. The Inverse Fourier The transform of this

ideal frequency response produces the ideal filter

kernel or impulse response. Equation (2) gives the

sinc function, or sin(x)/x of the windowed – sinc.

(2)

Where: h = sinc function and fc = cutoff frequency

Convolving an input signal with this filter kernel

provides a perfect low-pass filter. The problem is, the

sinc function continues to both negative and positive

infinity without dropping to zero amplitude. While

this infinite length is not a problem for mathematics,

it is a show stopper for computers [26]. Several

different windows are available, most of them named

after their original developers in the 1950s. Only two

are worth using, namely the Hamming window and

the Blackman window. The Hamming window is

given by equation (3).

(3)

Where: M = even numbers, W = Hamming window

and i = Integer.

The Hamming windows run from i = 0 to M, for a

total of M%1 points.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 422

(4)

The BlackMan window is given by the equation (4).

3.2 RECURSIVE FILTERS

Recursive filters are an efficient way of achieving a

long impulse response without having to perform a

long convolution. They execute very rapidly, but

have less performance and flexibility than other

digital filters. Recursive filters are also called Infinite

Impulse Response (IIR) filters, since their impulse

responses are composed of decaying exponentials.

This distinguishes them from digital filters carried

out by convolution, called Finite Impulse Response

(FIR) filters. This is an introduction to how recursive

filters operate and how simple members of the family

can be designed [27].

Recursive filters are useful because they bypass long

convolutions. For instance, consider what happens

when a delta function is passed through a recursive

filter. The output is the filter's impulse response and

will typically be a sinusoidal oscillation that

exponentially decays. Since this impulse response is

infinitely long, recursive filters are often called

infinite impulse response (IIR) filters.

3.3 PHASE RESPONSE

The zero phase filter is characterized by animpulse

response that is symmetrical around sample zero. The

actual shapedoesn't matter, only that the negative

numbered samples are a mirror image ofthe positive

numbered samples.

3.4 CHEBYSHEV FILTERS

Chebyshev filters are used to separate one band of

frequencies from another. Although they cannot

match the performance of the windowed-sinc filter,

they are more than adequate for many applications.

The primary attribute of Chebyshev filters is their

speed, typically more than an order of magnitude

faster than windowed-sinc. This is because they are

carried out by recursion rather than convolution. The

design of these filters is based on a mathematical

technique called the z-transform [29].

The Chebyshev response is a mathematical strategy

for achieving a faster roll-off by allowing ripples in

the frequency response. Analog and digital filters that

use this approach are called Chebyshev filters. These

filters are named after their use of the Chebyshev

polynomials, developed by the Russian

mathematician Pafnuti Chebyshev (1821–1894) [30].

Chebyshev filters achieve a faster roll-off by

allowing ripples in the passband. When the ripple is

set to 0%, it is called a maximally flat or Butterworth

filter. The Chebyshev filters here are called type 1

filters, meaning that the ripple is only allowed in the

passband. In comparison, type2 Chebyshev filters

have ripple only in the stopband. Type 2 filters are

seldom used.

Type 1 Chebyshev filters are the most common

Chebyshev filters. The gain (or amplitude) response

as a function of angular frequency of the nth order

low-pass filter is given by equation (5).

 (5)

Where: is the ripple factor, ωi is the cutoff

frequency and Tn is a Chebyshev polynomial of the

nth order.

The transfer function is then given by

 (6)

Where are only those poles with a negative

sign in front of the real term in the above equation for

the poles.

Type 2 Chebyshev filters are known as inverse

Chebyshev. The type 2 is less common because it

does not roll off as fast as type I, and requires more

components. It has no ripple in the passband, but

equiripple is present in the stopband. The gain is

given by equation (7).

(7)

The poles of gain of the type II Chebyshev filter will

be the inverse of the poles of the type I filter:

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 423

 (8)

The transfer function will be given by the poles in the

left half plane of the gain function, and will have the

same zeroes but these zeroes will be single rather

than double zeroes.

Butterworth filter showed that low pass filters could

be designed whose frequency response (gain) is given

by equation (9).

 (9)

Normalized Butterworth polynomials resulted to

equation (10).

for n even

for n odd (10)

III. IMPLEMENTATION OF THE DIGITAL

FILTER PROGRAM

The digital filter design is a program that designs

low-pass, high-pass, band-pass, and band-reject

filters to satisfy various constraints such as cutoff

frequencies and maximum error. In addition to the

infinite impulse response (IIR) Kaiser filters, finite

impulse response (FIR) filters are equally designed

using the Windows and Parks-McClellan design

methods, with their corresponding magnitude

response, phase response, impulse response, and

pole-zero plot displayed.

Procedures involved in an algorithm for the digital

filter development program are presented as follows:

1. Users can specify filter constraints such as

sampling frequency, pass band and stop band

cutoff frequencies, as well as pass band and stop

band errors.

2. Tolerance indicators, denoted by red lines, can be

moved around by selecting them and pulling the

mouse around, with an instant update of the

filter's frequency response.

3. The filter's numerator and denominator

coefficients can be either exported to an external

file or exported to the workspace when variable

names are specified by the user.

4. Various plots for phase, pole-zero, and impulse

responses are available as context menus.

5. Various plot options enable the tool to be

effectively used as a lecture aid in a classroom

environment; that is, the width and color of the

lines in the plots can be changed. The filter can be

either of the options to 'zoom-in' or 'grid-on' are

also provided [31].

The MATLAB-algorithm program for the

implementation of this work is shown in figure 1.

The first four steps of the filter design process relate

to the filter specifications object, while the last two

steps involve the filter implementation object. Both

of these objects are discussed in more detail in the

following sections. Step 5: The Design of the Filter is

the transition step from the filter specifications object

to the implementation object. The analysis and

verification step are completely optional. It provides

a means for the filter designer to ensure that the filter

complies with all design criteria. Depending on the

results of this verification, steps 3 and 4 can be

looped together, to either choose a different

algorithm, or customize the current one. Figure 1

illustrates the help command for each step. Enter the

help line at the MATLAB command prompt to

receive instructions and further documentation links

for the particular step.

Not all of the steps have to be executed explicitly.

For example, you could move step 1 directly to step

5, and then the interim three steps are done by the

Filter Design Toolbox. The details of each of the

steps taken are discussed as follows[32, 33, 34, 35,

36]:

Step 1: Selecting a Response: If help

fdesign/responses are typed at the MATLAB

command prompt, a complete list of all possible filter

responses available in the Filter Design Toolbox will

be seen. After a response is chosen, say band-pass,

the design of the Specifications Object is started by

typing the following: d = fdesign.band-pass. This step

cannot be skipped, nor is it automatically completed

for the designer by the Filter Design Toolbox. A

response is selected to initiate the filter design

process.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 424

Step 2: Decide on a SpecificationA specification is an

array of design parameters for a given filter. The

specification itself is a property of the specification

object. It can be noted that a specification is not the

same as the specifications object, but rather a

specifications object contains a specification as one

of its properties. When a filter response is selected,

there are a number of different specifications

available, each containing a different combination of

design parameters. In the following example, first set

the filter response and then ask for the specifications

listing.

Step 3: Choose an AlgorithmThe availability of

algorithms depends on both the chosen filter response

and the design parameters. In other words, for the

same low-pass filter, changing the specification string

also changes the available algorithms.

Step 4: Customizing the Algorithm: The

customization options available for any given

algorithm depend not only on the algorithm itself,

selected in Step 1, but also on the specification

selected in Step 2. To explore all the available

options, type the following at the MATLAB

command prompt:

Step 5: Designing the Filter: This next task

introduces a new object, the filter object, or dfilt.To

create a filter, the design command is used.

Step 6: Design Analysis: The filter is designed and

then analyzed to determine if all the design criteria

are satisfied. In the filter design toolbox, analysis is

broken into the following three main sections:

1. frequency domain analysis, which includes

magnitude response, group delay, and poll zero.

2. Time domain analysis, which includes impulse

response,

3. Step response implementation analysis, which

includes quantization noise and cost.

Step 7: Realize or Apply the Filter to Input Data:

After the filter is designed and optimized, it can be

used to filter actual input data. The basic filter

command takes input data x, filters it through the

Filter Object, and produces output y: >> y = filter

(FilterObj, x).

Figure 1: Program Flowchart for Implementation of

Digital Filter Using MATLAB.

IV. RESULTS AND DISCUSSION

Some of the possible results of the filter design

program are represented graphically and then

discussed as follows:

1. Magnitude-Frequency Response of Finite Impulse

Response (FIR) digital filters using the Hamming

type of window design method

The results of magnitude-frequency responsesof

Finite Impulse Response (FIR) digital low-pass, high-

pass, band-pass, and band-reject filters generated

using the Hamming type of window design method

and an arbitrary chosen sampling frequency of

8000Hz and cut-off frequencies are presented

graphically in figures 2 to 5 respectively.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 425

a) Low-pass Filter Design using the Hamming Type

of Window Design Method

Figure 2: Magnitude-Frequency response of FIR

(low-pass) filters using window design method.

The response displayed in figure 2 shows a Finite

Impulse Response (FIR) filter of a low-pass

characteristics that passes frequencies lower than the

cut-off frequency (i.e. Fcutoff = 1000Hz) with a little

guard band and attenuates frequencies higher than the

cut-off frequency.

b) High-pass Filter Design using Hamming Type of

Window Design Method:

Figure 3: Magnitude-Frequency response of FIR

(high-pass) filters using window design method.

The response displayed in figure 3 shows a Finite

Impulse Response (FIR) filter of a high-pass

characteristics that blocks frequencies lower than the

cut-off frequency (i.e. Fcutoff = 1500Hz) with a little

guard band and passes frequencies higher than the

cut-off frequency. The cut-off frequency recorded is

1500Hz (0< Fcutoff<0.5*Fsamp) with order of 20.

c) Band-pass Filter Design using Hamming Type of

Window Design Method:

The response displayed in figure 4 shows a Finite

Impulse Response (FIR) filter of band-pass

characteristics that blocks frequencies within a

specified frequency band (1500-2500Hz) and passes

frequencies within the specified band. The result of

magnitude-frequency response of FIR band-pass

filter using hamming type of window design method

maintained the cut-off frequencies 1 and 2 ranging

from 1500Hz (0< Fcutoff<0.5*Fsamp) to 2500Hz (0<

Fcutoff<0.5*Fsamp) with the order of 20.

Figure 4: Magnitude-Frequency response of FIR

(band-pass) filters using window design method.

d) Band-reject Filter Design using Hamming Type

of Window Design Method:

The response displayed in figure 5 shows a Finite

Impulse Response (FIR) filter of band-pass

characteristics that blocks frequencies within a

specified frequency band (1000-3000Hz) and passes

frequencies outside the specified band. The cut-off

frequencies 1 and 2 recorded in band-pass ranged

from 1000Hz (0< Fcutoff<0.5*Fsamp) to 3000Hz (0<

Fcutoff<0.5*Fsamp) with the order of 20.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 426

Figure 5: Magnitude-Frequency response of FIR

(band-reject) filters using window design method.

2. Magnitude-Frequency Response of Finite Impulse

Response (FIR) filters using Parks-McClellan

design method:

The results of the magnitude-frequency response of

the Finite Impulse Response (FIR) low-pass, high-

pass, band-pass, and band-reject digital filters

generated using the Parks-McClellan design method

and an arbitrary chosen sampling frequency of

8000Hz, cut-off, passband, and stopband filter

frequencies are shown graphically in figures 6 to 9

respectively.

(a) Low-pass Filter Design using the Parks-

McClellan design method

The response displayed in Figure 6 shows a Finite

Impulse Response (FIR) filter of low-pass

characteristics that passes frequencies within the

passband (1000Hz) and blocks frequencies above the

stopband. A finite impulse response filter of low-pass

digital filter designed in 9 iterations with the auto

order of 20 recorded passband and stopband

frequencies of 1000Hz and 1500Hz, respectively,

with the same maximum ripple error value of

0.043545 in passband (pass)and stopband (stop) for an

extremal frequency of 12.

Figure 6: Magnitude-Frequency response of FIR

(low-pass) filters using Parks-McClellan design

method.

(b) High-pass Filter using Parks-McClellan Design

Method:

The response displayed in Figure 7 shows a Finite

Impulse Response (FIR) filter of high-pass

characteristics that passes frequencies higher than the

passband frequency (1500Hz) and blocks frequencies

lower than the stopband frequency (1000Hz). A finite

impulse response filter with a high-pass filter

operation and design in 9 iterations with an auto

order of 20 recorded passband and stopband

frequencies of 1500Hz and 1000Hz, with the same

maximum ripple error value of 0.0433545 in both the

passband (pass) and stopband (stop) for an extremal

frequency of 12.

Figure 7: Magnitude-Frequency response of FIR

(high-pass) filters using Parks-McClellan design

method.

(c) Band-pass Filter using Parks-McClellan Design

Method:

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 427

The response displayed in figure 8 shows a Finite

Impulse Response (FIR) filter of band-pass

characteristics that passes frequencies within a

specified frequency band (1500-2500Hz) and blocks

frequencies outside the specified band. A finite

impulse response filter of high-pass filter operation

and design in 9 iterations with auto order of 20

recorded passband frequencies ranging from 1500-

2500Hz, Stopband Frequencies ranging from 0-

1000Hz and 3000-4000Hz, the same maximum ripple

error value of 0.045162 in both passband (δpass) and

stopband (δstop) for extremal frequency of 12.

Figure 8: Magnitude-Frequency response of FIR

(band-pass) filters using Parks-McClellan design

method.

(d) Band-reject Filters using Parks-McClellan Design

Method:

The response displayed in figure 9 shows a Finite

Impulse Response (FIR) filter of band-reject

characteristics that passes frequencies outside a

specified frequency band (1000-3000Hz) and blocks

frequencies within the specified band. A finite

impulse response filter of band-reject filter operation

and design in 9 iterations with auto order of 20

recorded passband frequencies ranging from 1000-

3000Hz, Stopband Frequencies ranging from 0-

1000Hz and 3000-4000Hz, the same maximum ripple

error value of 0.045162 in both passband (δpass) and

stopband (δstop) for extremal frequency of 6.

Figure 9: Magnitude-Frequency response of FIR

(band-reject) filters using Parks-McClellan design

method.

1. Magnitude-Frequency Response of Infinite

Impulse Response (IIR) filters:

The results of magnitude-frequency Response of

Infinite Impulse Response (IIR) filters of arbitrary

chosen sampling frequency of 8000Hz, cut-off,

passband, stopband, maximum ripple errors for both

passband and stopband filter frequencies are shown

graphically in figures 10 to 13 respectively.

(a) Butterworth Low-pass Filter:

The response displayed in figure10 shows an Infinite

Impulse Response (IIR) filter of a Butterworth low-

pass characteristics that passes frequencies lower

than the passband frequency (i.e. Fpass = 1000Hz)

with a little guard band up to stopband frequency

(1500Hz) and attenuates frequencies higher than the

stopband frequency. An infinite impulse response

(IIR) filter of a Butterworth low-pass filter recorded

the same maximum ripple error value of 0.04 in both

passband (δpass)and stopband (δstop) with auto order of

10.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 428

Figure 10: Magnitude-Frequency Response of IIR

Butterworth (low-pass) filters.

(b) Butterworth High-pass Filter:

The response displayed in figure11 shows an Infinite

Impulse Response (IIR) filter of a Butterworth high-

pass characteristics that passes frequencies higher

than the passband frequency (i.e. Fpass = 1500Hz)

with a little guard band up to stopband frequency

(1000Hz) and attenuates frequencies lower than the

stopband frequency. An infinite impulse response

(IIR) filter of a Butterworth high-pass filter recorded

the same maximum ripple error value of 0.04 in both

passband (δpass)and stopband (δstop) with auto order of

10.

Figure 11: Magnitude-Frequency Response of IIR

Butterworth (high-pass) filters.

(c) Butterworth Band-pass Filter:

The response displayed in figure 12 shows an Infinite

Impulse Response (IIR) filter of a Butterworth band-

pass characteristics that passes frequencies within a

specified frequency band (1500-2500Hz) and blocks

frequencies outside the specified band. An infinite

impulse response (IIR) filter of a Butterworth band-

pass filter recorded stopband frequencies ranging

from 1000-3500Hz and the same maximum ripple

error value of 0.04 in both passband (δpass)and

stopband (δstop) with auto order of 10.

Figure 12: Magnitude-Frequency Response of IIR

Butterworth (band-pass) filters.

(d) Butterworth Band-reject Filter:

The response displayed in figure 13 shows an Infinite

Impulse Response (IIR) filter of a Butterworth band-

reject characteristics that blocks frequencies within a

specified frequency band (1500-2500Hz) and passes

frequencies outside the specified band. An infinite

impulse response (IIR) filter of a Butterworth band-

reject filter recorded stopband frequencies ranging

from 1000-3500Hz and the same maximum ripple

error value of 0.04 in both passband (δpass)and

stopband (δstop) with auto order of 16.

Figure 13: Magnitude-Frequency Response of IIR

Butterworth (band-reject) filters.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 429

The diagrams (filter responses) shown in figures 2 to

13 are only magnitude-frequency response of the

different types of the digital filters (low-pass, high-

pass, band-pass, band-reject, Butterworth low-pass,

Butterworth high-pass, Butterworth band-pass,

Butterworth band-reject). The filter design program is

also deployed to analyze phase, impulse and pole-

zero plot of the different types of the digital filters

discussed in this paper, as illustrated in figures 14 to

16 respectively.

(a) Phase Response of Low-pass Filter:

The response displayed in figure 14 shows a phase-

frequency response of a Finite Impulse Response

(FIR) filter that passes frequencies lower than the

cut-off frequency (i.e. Fcutoff = 1000Hz) with a little

guard band and attenuates frequencies higher than the

cut-off frequency. Hamming type of window design

method is deployed to design and analyze the phase-

frequency response of FIR (low-pass) filter with

sampling frequency (Fsamp) of 8000Hz and order of

10.

Figure 14: Phase-Frequency Response of FIR (low-

pass) filters.

(b) Impulse Response of Low-pass Filter:

The response displayed in figure15 shows an Impulse

Response of a Finite Impulse Response (FIR) filter

that passes frequencies lower than the cut-off

frequency (i.e. Fcutoff = 1000Hz) with a little guard

band and attenuates frequencies higher than the cut-

off frequency. Hamming type of window design

method is deployed to design and analyze the phase-

frequency response of FIR (low-pass) filter with

sampling frequency (Fsamp) of 8000Hz and order of

20.

Figure 15: Impulse Response of FIR (low-pass)

filters.

(c) Pole-Zero Plot of Low-pass Filter:

The response displayed in figure 16 shows a Pole-

Zero Plot of a Finite Impulse Response (FIR) filter

that passes frequencies lower than the cut-off

frequency (i.e Fcutoff = 1000Hz) with a little guard

band and attenuates frequencies higher than the cut-

off frequency. Hamming type of window design

method is deployed to design and analyze the pole-

zero plot of FIR (low-pass) filters with the sampling

frequency (Fsamp) of 8000Hz and order of 20.

Figure 16: Pole-Zero Plot of FIR (low-pass) filters.

CONCLUSION

Matlab codes, commands, and syntax are deployed to

program graphical user interface (GUI) filter design

software for analyzing different types of digital

filters, especially finite impulse response (FIR) and

infinite impulse response (IIR) filters using the

Hamming type of window and Parks-McClellan

design methods. The work covered the graphical

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 430

programming and evaluation of the magnitude-

frequency responses of the different types of digital

filters (low-pass, high-pass, band-pass, band-reject,

Butterworth low-pass, Butterworth high-pass,

Butterworth band-pass, Butterworth band-reject). The

phase, impulse, and pole-zero plot of the different

types of digital filters are also analyzed and evaluated

in this paper.

The programming results revealed that the low-pass

filter and high-pass filter recorded the same

maximum ripple error value of 0.043545, whereas the

band-pass filter and band-reject filter equally

recorded the same maximum ripple error value of

0.045162 in both the passband (pass)and stopband (stop)

for the extremal frequency range of 6-12. The

magnitude-frequency responses of the infinite

impulse response (IIR) filters of the Butterworth low-

pass, high-pass, band-pass, and band-reject filters at

an arbitrary sampling frequency of 8000Hz recorded

the same maximum ripple error value of 0.04 in both

the passband (pass)and the stopband (stop), with pass

frequencies ranging from 1000-2500Hz and stopband

frequencies ranging from 1000-3500Hz. The phase-

frequency, impulse and pole-zero plot responses of

finite impulse response (FIR) low-pass filters

presented the cut-off frequency of 1000Hz with the

sampling frequency of 8000Hz and the order ranging

from 10–20.

REFERENCES

[1] J. O Smith III, Introduction to Digital Filters

with Audio Applications, Center for Computer

Research in Music and Acoustics (CCRMA),

Stanford University, September 2018 Edition.

[2] www.wikipedia.org/digital filter, 2021.

[3] A. Antoniou, Digital filters: Analysis, Design,

and Applications, New York, NY McGraw-Hill,

1993.

[4] Sigmon, K., MATLAB Primer, Department of

Mathematics, University of Florida, 2020.

[5] Phillips and Nagle, Digital Signal Processing

Systems Analysis and Design, Prentice Hall,

2018.

[6] Brogan, William L, Modern Control Theory,

3rd Edition, ISBN 0135897637, 1999.

[7] Dorf and Bishop, Modern Signal Processing

Systems, 10th Edition, Prentice Hall, 2005.

[8] Chen, Chi-Tsong, Linear System Theory and

Design, 3rd Edition, ISBN 0195117778, 2000.

[9] The MathWorks, Getting Started with Signal

Processing Systems Toolbox 8, The

MathWorks, Natick, MA, 2013–2020.

[10] The Mathworks, Getting Started with MATLAB

Version 7, The MathWorks, Natick, MA, 2015–

2020.

[11] The Mathworks, Using Simulink Version 6, The

MathWorks, Natick, MA, 2017–2020.

[12] The Mathworks, Getting Started with Simulink1

Control Design 2, The MathWorks, Natick,

MA, 2016–2020.

[13] Getting Started with MATLAB, The

MathWorks, Inc., 2018.

[14] D. Hanselman and B. Littlefield, Mastering

MATLAB 5, A Comprehensive Tutorial and

Reference, Prentice Hall, Upper Saddle River,

NJ, 2018.

[15] K. Sigmon, MATLAB Primer, CRC Press, Boca

Raton, 2018.

[16] Using MATLAB, the MathWorks, Inc., 2018.

[17] B.D. Hahn, Essential MATLAB for Scientists

and Engineers, John Wiley & Sons, 2019.

[18] D.R. Hill and D.E. Zitarelli, Linear Algebra

Labs with MATLAB, Prentice Hall, 2020.

[19] D. Hanselman and B. Littlefield, Mastering

MATLAB 5, A Comprehensive Tutorial and

Reference, Prentice Hall, 2020.

[20] P. Marchand, Graphics and GUIs with

MATLAB, CRC Press, 2020.

[21] Using MATLAB, the MathWorks, Inc., 2020.

[22] Using MATLAB Graphics, the MathWorks,

Inc., 2020.

[23] B.D. Hahn, Essential MATLAB for Scientists

and Engineers, John Wiley & Sons, New York,

NY, 1997.

[24] D.R. Hill and D.E. Zitarelli, Linear Algebra

Labs with MATLAB, Prentice Hall, 2018.

[25] B. Kolman, Introductory Linear Algebra with

Applications, Prentice Hall,1997.

[26] R.E. Larson and B.H. Edwards, Elementary

Linear Algebra, Third edition, D.C. Heath and

Company, Lexington, MA, 1996.

[27] S.J. Leon, Linear Algebra with Applications,

Fifth edition, Prentice Hall, Upper Saddle River,

NJ, 1998.

[28] G. Strang, Linear Algebra and Its Applications,

Academic Press, FL, 2020.

© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880

IRE 1704239 ICONIC RESEARCH AND ENGINEERING JOURNALS 431

[29] The MathWorks Inc. MATLAB 7.0 (R14SP2),

The MathWorks Inc., 2020.

[30] S. J. Chapman, MATLAB Programming for

Engineers, Thomson, 2019.

[31] C. B. Moler, Numerical Computing with

MATLAB, Siam, 2019.

[32] C. F. Van Loan, Introduction to Scientic

Computing, Prentice Hall, 2020.

[33] D. J. Higham and N. J. Higham, MATLAB

Guide, Siam, 2020.

[34] SIMULINK User’s Guide, the MathWorks Inc,

2020.

[35] Leonard, N. E. and W. S. Levine, Using

MATLAB to Analyze and Design Signal

Processing Systems, The Benjamin/Cummings

Publishing Company, Inc, 2020.

[36] MATLAB User’s Guide, the MathWorks Inc,

2020.

