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Abstract- The time and frequency domains are 

confronted with unwanted noise, maximum ripple 

errors, voltage magnitude variations, slow data 

acquisition, poor distortions from frequency, phase, 

or delay, and harmonics. The work covers the 

development of the digital filter design program that 

helped to design low-pass, high-pass, band-pass, 

and band-reject filters in order to satisfy various 

constraints such as cutoff frequencies and 

maximum ripple errors. Matlab codes, commands, 

and syntax are used to program graphical user 

interface (GUI) filter design software for analyzing 

finite impulse response (FIR) and infinite impulse 

response (IIR) digital filters using the Hamming 

type of window and Parks-McClellan design 

methods. The corresponding magnitude response, 

phase response, impulse response, and pole-zero 

plot of the digital filters are displayed. A simulated 

real-time procedure and its varying responses due to 

varied input parameters are well highlighted or 

displayed in a graphic user interface (GUI) 

environment. The results revealed that the 

Hamming type of window deployed in the design of 

FIR digital filters recorded cutoff frequencies of 

1000Hz, 1500Hz, 1500–2500Hz, and 1000–3000Hz 

for low-pass, high-pass, band-pass, and band-reject 

filters, respectively, with a sampling frequency of 

8000Hz and an order of 20. Also, the magnitude-

frequency response results of finite impulse 

response (IIR) digital filters designed using the 

Parks-McClellan design method in 9 iterations and 

the auto order of 20 recorded passband frequencies 

ranging from 1000–3000Hz and stopband 

frequencies ranging from 1000–4000Hz for these 

digital filters are presented. 

 

Indexed Terms- Graphic User Interface (GUI), 

Finite Impulse Response (FIR) filters, Infinite 

Impulse Response(IIR) digital filters, Hamming 

type of Window design method, Parks-McClellan 

design method, Magnitude-Frequency Responses, 

Maximum ripple errors. 

 

I. INTRODUCTION 

 

Digital signal processing (DSP) refers to anything 

that can be done to a signal using code on a computer 

or DSP chip. To reduce certain sinusoidal frequency 

components in a signal's amplitude, digital filtering is 

done [1]. One may want to obtain the integral of a 

signal. If the signal comes from a tachometer, the 

integral gives the position. If the signal is noisy, then 

filtering the signal to reduce the amplitude of the 

noise frequencies improves the signal quality. For 

example, noise may occur from wind or rain at an 

outdoor music presentation. Filtering out sinusoidal 

components of the signal that occur at frequencies 

that cannot be produced by the music itself results in 

recording the music with little wind and rain noise. 

Sometimes the signal is corrupted not by noise, but 

by other signal frequencies that are of no present 

interest [2]. If the signal is an electronic measurement 

of a brain wave obtained by using probes applied 

externally to the head, other electronic signals are 

picked up by the probes, but the physician may be 

interested only in signals occurring at a particular 

frequency. By using digital filtering, the signals of 

interest can only be presented to the physician [3]. 

 

Originally, signal processing was done only on 

analog or continuous-time signals using analog signal 

processing (ASP) [4]. Until the late 1950s, digital 

computers were not commercially available. When 

they became commercially available, they were large 

and expensive, and they were used to simulate the 

performance of analog signal processing to judge its 
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effectiveness. These simulations, however, led to 

digital processor code that simulated or performed 

nearly the same task on samples of the signals that 

the analog systems did on the signals [5]. After a 

while, it was realized that the simulation coding of 

the analog system was actually a DSP system that 

worked on samples of the input and output at discrete 

time intervals. But implementing signal processing 

digitally, instead of using analog systems, was still 

out of the question [6]. The first problem was that an 

analog input signal had to be represented as a 

sequence of samples of the signal, which were then 

converted to the computer’s numerical representation 

[7]. 

 

The same process would have to be applied in reverse 

to the output of the digitally processed signal. The 

second problem was that, because the processing was 

done on very large, slow, and expensive computers, 

practical real-time processing between samples of the 

signal was impossible [8]. 

 

The development of faster, cheaper, and smaller input 

signal samplers, Analogue to Digital Converters 

(ADCs) and output converters from digital data to 

analog data, Digital to Analogue Converters (DACs), 

began to make real-time digital signal processing 

(DSP) practical. Also, the processors were becoming 

smaller, faster, and cheaper and used more bits. Real-

time replacements for analog systems may be just as 

small, cheap, and accurate and be able to process at a 

sample rate adequate for many analog signals [9]. 

However, testing and modification of the coding for 

DSP systems led to DSP systems that have no analog 

signal processing equivalents, yet sometimes perform 

the signal processing better than the DSP coding 

developed to replace analog systems. 

 

The objective of this work is to design Finite Impulse 

Response (FIR) and Infinite Impulse Response (IIR) 

digital filters with their low-pass, high-pass, band-

pass, and band-reject responses using a user-friendly 

Graphic User Interface (GUI) based working 

environment on the MATLAB platform. The codes 

are written in MATLAB syntax, as is the use of its 

GUI platform. The required system equations and 

expressions are incorporated into the program codes, 

and the operational flowcharts are designed for the 

sequential lines of code [10]. 

The significance of this work depends on its ability to 

perform mathematical operations on a sampled, 

discrete-time signal to reduce or enhance certain 

aspects of that signal in electronics, computer 

science, and mathematics. The program developed is 

useful in the effective teaching of filter design and 

analysis in electrical and electronic engineering. The 

graphic user interface (GUI) displays a simulated 

real-time procedure and its varying responses due to 

varied input parameters. 

 

There are different methods of designing digital 

filters according to the types of filters involved. For 

finite impulse response (FIR) filters, the Remez 

exchange method or convolution method is used. In 

the Remez exchange algorithm, the user specifies a 

desired frequency response, a weighting function for 

errors from this response, and a filter order N. The 

algorithm then finds the set of N coefficients that 

minimizes the maximum deviation from the ideal 

response. Intuitively, this finds the filter that is as 

close to the desired response as possible given that 

you can use only N coefficients [11]. The 

convolution method involves mixing the input signals 

with the digital filter’s impulse response (called the 

filter kernel). From this convolution, all possible 

linear filters’ responses can be achieved. 

 

Then, for infinite impulse response (IIR) filters, the 

recursion design method is deployed. When a filter is 

implemented by convolution, each sample in the 

output is calculated by weighting the samples in the 

input and adding them together. Recursion is an 

extension of the convolution method that uses 

previously calculated values from the output signal 

and then adds them to the input signal of the filter. 

Therefore, instead of using a filter kernel, recursive 

filters are defined by a set of recursion coefficients 

[12]. 

 

II. REVIEW OF LITERATURE 

 

The tone control circuit in an ordinary car radio is a 

filter, as are the bass, midrange, and treble boosts in a 

stereo preamplifier [13]. Further examples of useful 

filters in audio are graphic equalizers, reverberators, 

echo devices, phase shifters, and speaker crossover 

networks. There are also examples of undesirable 
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filtering, such as the uneven reinforcement of certain 

frequencies in a room with bad acoustics. 

 

A digital filter is just a filter that operates on digital 

signals, such as sound represented on a computer. It 

is a computation that takes one sequence of numbers 

(the input signal) and produces a new sequence of 

numbers (the filtered output signal) [14]. It is 

important to realize that a digital filter can do 

anything that a real-world filter can do [15]. 

 

Digital filters are used for two general purposes, 

namely signal separation and signal restoration. 

Analog (electronic) filters can be used for these same 

tasks. However, digital filters can achieve far 

superior results. Signal separation is needed when a 

signal has been contaminated with interference, 

noise, or other signals. For example, imagine a device 

for measuring the electrical activity of a baby's heart 

(EKG) while still in the womb. The raw signal will 

likely be corrupted by the breathing and heartbeat of 

the mother. A filter might be used to separate these 

signals so that they can be individually analyzed. 

 

Signal restoration is used when a signal has been 

distorted in some way. For example, an audio 

recording made with poor equipment may be filtered 

to better represent the sound as it actually occurred. 

Another example is the deblurring of an image 

acquired with an improperly focused lens or a shaky 

camera [16]. 

 

It is common in digital signal processing (DSP) to 

say that a filter's input and output signals are in the 

time domain. This is because signals are usually 

created by sampling at regular intervals of time. But 

this is not the only way sampling can take place. 

 

The second most common method of sampling is at 

equal intervals in space. For example, imagine taking 

simultaneous readings from an array of strain sensors 

mounted at one-centimeter increments along the 

length of an aircraft wing. Many other domains are 

possible, but time and space are by far the most 

common. When the term "time domain" is seen in 

DSP, it is remembered that it may actually refer to 

samples taken over time, or it may be a general 

reference to any domain that the samples are taken in 

[17]. 

Every linear filter has an impulse response, a step 

response, and a frequency response. Each of these 

responses contains complete information about the 

filter, but in a different form. If one of the three is 

specified, the other two are fixed and can be directly 

calculated. All three of these representations are 

important because they describe how the filter will 

react under different circumstances. 

 

The most straightforward way to implement a digital 

filter is by convolution of the input signal with the 

digital filter's impulse response. All possible linear 

filters can be made in this manner. When the impulse 

response is used in this way, filter designers give it a 

special name called the filter kernel. 

 

There is also another way to make digital filters 

called recursion. When a filter is implemented by 

convolution, each sample in the output is calculated 

by weighting the samples in the input and adding 

them together. Recursive filters are an extension of 

this, using previously calculated values from the 

output as well as points from the input. Instead of 

using a filter kernel, recursive filters are defined by a 

set of recursion coefficients [18]. 

 

To find the impulse response of a recursive filter, 

simply feed in an impulse and see what comes out. 

The impulse responses of recursive filters are 

composed of sinusoids that exponentially decay in 

amplitude. In principle, this makes their impulse 

responses infinitely long. However, the amplitude 

eventually drops below the round-off noise of the 

system, and the remaining samples can be ignored. 

Because of this characteristic, recursive filters are 

also called Infinite Impulse Response or IIR filters. In 

comparison, filters carried out by convolution are 

called Finite Impulse Response (FIR) filters. 

 

It is known that the impulse response is the output of 

a system when the input is an impulse. In this same 

manner, the step response is the output when the 

input is a step or an edge response. Since the step is 

the integral of the impulse, the step response is the 

integral of the impulse response. This provides two 

ways to find the step response, namely, feeding a step 

waveform into the filter and seeing what comes out; 

or integrating the impulse response. Continous 

integration is used with continuous signals, while 
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discrete integration (a running sum) is used with 

discrete signals [19]. Frequency response can be 

found by taking the digital Fourier transform (DFT) 

using the fast Fourier transform (FFT) algorithm of 

the impulse response. 

 

2.1 BRIEF THEORY OF FILTER 

The most important part of any DSP task is to 

understand how information is contained in the 

signals you are working with. There are many ways 

that information can be contained in a signal. This is 

especially true if the signal is man-made. For 

instance, consider all of the modulation schemes that 

have been devised: AM, FM, single-sideband, pulse-

code modulation, pulse-width modulation, etc. 

Fortunately, there are only two ways that are 

common for information to be represented in 

naturally occurring signals. These will be called 

"information represented in the time domain" and 

"information represented in the frequency domain." 

 

Information represented in the time domain describes 

when something occurs and what the amplitude of 

the occurrence is. For example, imagine an 

experiment to study the light output of the sun. The 

light output is measured and recorded once every 

second. Each sample in the signal indicates what is 

happening at that instant and the level of the event. If 

a solar flare occurs, the signal directly provides 

information on the time it occurred, the duration, the 

development over time, etc. Each sample contains 

information that is interpretable without reference to 

any other sample. Even if only one sample from this 

signal is known, something about what is being 

measured is known. This is the simplest way for 

information to be contained in a signal. 

 

In contrast, information represented in the frequency 

domain is more indirect. Many things in our universe 

show periodic motion. For example, a wine glass 

struck with a fingernail will vibrate, producing a 

ringing sound; the pendulum of a grandfather clock 

swings back and forth; stars and planets rotate on 

their axis and revolve around each other, and so forth. 

By measuring the frequency, phase, and amplitude of 

this periodic motion, information can often be 

obtained about the system producing the motion. The 

fundamental frequency and harmonics of the periodic 

vibration relate to the mass and elasticity of the 

material. A single sample, in itself, contains no 

information about the periodic motion and therefore 

no information about the wine glass. The information 

is contained in the relationship between many points 

in the signal. 

 

The step response is useful in time domain analysis 

because it matches the way humans view the 

information contained in the signals. The step 

function is the purest way of representing a division 

between two dissimilar regions. It can mark the start 

of an event or the end of an event. It shows that 

whatever is on the left is somehow different from 

whatever is on the right. This is how the human mind 

views time-domain information: as a group of step 

functions dividing the information into regions of 

similar characteristics. The step response, in turn, is 

important because it describes how the dividing lines 

are being modified by the filter. Digital filters are less 

standardized, and it is common to see 99%, 90%, 

70.7%, and 50% amplitude levels defined as the 

cutoff frequency [20]. 

 

Frequency domain filters are generally used to pass 

certain frequencies (the passband) while blocking 

others (the stopband). The four basic frequency 

responses are low-pass, high-pass, band-pass, and 

band-reject. High-pass, band-pass, and band-reject 

filters are designed by starting with a low-pass filter 

and then converting it into the desired response. For 

this reason, most discussions on filter design only 

give examples of low-pass filters. There are two 

methods for the low-pass to high-pass conversion: 

spectral inversion and spectral reversal. Both are 

equally useful [12, 21]. 

 

Digital filters can be implemented in two ways: by 

convolution (also called finite impulse response, or 

FIR) and by recursion (also called infinite impulse 

response, or IIR). Filters carried out by convolution 

can have far better performance than filters using 

recursion, but they execute much more slowly. The 

moving average is used in the time domain, the 

windowed-sinc is used in the frequency domain, and 

the finite impulse response (FIR) custom is used 

when something special is needed. Fast Fourier 

Transform (FFT) convolution is an algorithm for 

increasing the speed of convolution, allowing FIR 

filters to execute faster. The single-pole recursive 
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filter is used in the time domain, while the 

Chebyshev is used in the frequency domain. 

Recursive filters with a custom response are designed 

by iterative techniques [22]. 

 

The moving average filter is optimal for a common 

task: reducing random noise while retaining a sharp 

step response. This makes it the premier filter for 

time-domain encoded signals. However, the moving 

average is the worst filter for frequency domain 

encoded signals, with little ability to separate one 

band of frequencies from another. Relatives of the 

moving average filter include the Gaussian, 

Blackman, and multiple-pass moving averages. These 

have slightly better performance in the frequency 

domain, at the expense of increased computation time 

[23]. 

 

The moving average filter operates by averaging a 

number of points from the input signal to produce 

each point in the output signal. The equation for the 

moving average filter is written as: 

 

(1) 

 

 

 

 

Where x = input signal, y = output signal, and M = 

the number of points used in the moving average. 

This equation only uses points on one side of the 

output sample being calculated. Not only is the 

moving average filter very good for many 

applications, it is optimal for a common problem, 

reducing random white noise while keeping the 

sharpest step response [24]. 

 

2.0 DESIGN AND ANALYSIS OF FIR AND IIR 

DIGITAL FILTERS 

The techniques used to generate the filter system's 

syntax representation, as well as the theoretical 

deductions for the areas under consideration, are 

highlighted. It is the first step towards translating the 

required formulas into executable MATLAB codes. 

The MATLAB compiler is made up of several 

phases, and these phases are all implemented as 

software modules that must be properly interfaced 

with the developed GUI’s in order to produce the 

desired outputs. This involves translating the design 

specifications into lines of executable code while at 

the same time checking for possible errors and 

reporting them back to the programmer [25]. The 

following design procedures are considered in the 

program: 

 

3.1 WINDOWED-SINC FILTERS 

Windowed-sinc filters are used to separate one band 

of frequencies from another. They are very stable, 

produce few surprises, and can be pushed to 

incredible performance levels. These exceptional 

frequency domain characteristics are obtained at the 

expense of poor performance in the time domain, 

including excessive ripple and overshoot in the step 

response. When carried out by standard convolution, 

windowed-sinc filters are easy to program, but slow 

to execute. The Inverse Fourier The transform of this 

ideal frequency response produces the ideal filter 

kernel or impulse response. Equation (2) gives the 

sinc function, or sin(x)/x of the windowed – sinc. 

 

 

(2) 

 

 

 

Where:  h = sinc function and fc = cutoff frequency 

 

Convolving an input signal with this filter kernel 

provides a perfect low-pass filter. The problem is, the 

sinc function continues to both negative and positive 

infinity without dropping to zero amplitude. While 

this infinite length is not a problem for mathematics, 

it is a show stopper for computers [26]. Several 

different windows are available, most of them named 

after their original developers in the 1950s. Only two 

are worth using, namely the Hamming window and 

the Blackman window. The Hamming window is 

given by equation (3). 

 

(3) 

 

Where: M = even numbers, W = Hamming window 

and i = Integer. 

 

The Hamming windows run from i = 0 to M, for a 

total of M%1 points. 
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(4) 

 

The BlackMan window is given by the equation (4). 

 

3.2 RECURSIVE FILTERS 

Recursive filters are an efficient way of achieving a 

long impulse response without having to perform a 

long convolution. They execute very rapidly, but 

have less performance and flexibility than other 

digital filters. Recursive filters are also called Infinite 

Impulse Response (IIR) filters, since their impulse 

responses are composed of decaying exponentials. 

This distinguishes them from digital filters carried 

out by convolution, called Finite Impulse Response 

(FIR) filters. This is an introduction to how recursive 

filters operate and how simple members of the family 

can be designed [27]. 

 

Recursive filters are useful because they bypass long 

convolutions. For instance, consider what happens 

when a delta function is passed through a recursive 

filter. The output is the filter's impulse response and 

will typically be a sinusoidal oscillation that 

exponentially decays. Since this impulse response is 

infinitely long, recursive filters are often called 

infinite impulse response (IIR) filters. 

 

3.3 PHASE RESPONSE 

The zero phase filter is characterized by animpulse 

response that is symmetrical around sample zero. The 

actual shapedoesn't matter, only that the negative 

numbered samples are a mirror image ofthe positive 

numbered samples. 

 

3.4 CHEBYSHEV FILTERS 

Chebyshev filters are used to separate one band of 

frequencies from another. Although they cannot 

match the performance of the windowed-sinc filter, 

they are more than adequate for many applications. 

The primary attribute of Chebyshev filters is their 

speed, typically more than an order of magnitude 

faster than windowed-sinc. This is because they are 

carried out by recursion rather than convolution. The 

design of these filters is based on a mathematical 

technique called the z-transform [29]. 

 

The Chebyshev response is a mathematical strategy 

for achieving a faster roll-off by allowing ripples in 

the frequency response. Analog and digital filters that 

use this approach are called Chebyshev filters. These 

filters are named after their use of the Chebyshev 

polynomials, developed by the Russian 

mathematician Pafnuti Chebyshev (1821–1894) [30]. 

Chebyshev filters achieve a faster roll-off by 

allowing ripples in the passband. When the ripple is 

set to 0%, it is called a maximally flat or Butterworth 

filter. The Chebyshev filters here are called type 1 

filters, meaning that the ripple is only allowed in the 

passband. In comparison, type2 Chebyshev filters 

have ripple only in the stopband. Type 2 filters are 

seldom used. 

 

Type 1 Chebyshev filters are the most common 

Chebyshev filters. The gain (or amplitude) response 

as a function of angular frequency of the nth order 

low-pass filter is given by equation (5). 

 

 (5) 

 

Where:   is the ripple factor, ωi is the cutoff 

frequency and Tn is a Chebyshev polynomial of the 

nth order. 

 

The transfer function is then given by 

 

 (6) 

Where   are only those poles with a negative 

sign in front of the real term in the above equation for 

the poles. 

 

Type 2 Chebyshev filters are known as inverse 

Chebyshev. The type 2 is less common because it 

does not roll off as fast as type I, and requires more 

components. It has no ripple in the passband, but 

equiripple is present in the stopband. The gain is 

given by equation (7). 

 

(7) 

 

The poles of gain of the type II Chebyshev filter will 

be the inverse of the poles of the type I filter: 
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  (8) 

The transfer function will be given by the poles in the 

left half plane of the gain function, and will have the 

same zeroes but these zeroes will be single rather 

than double zeroes. 

 

Butterworth filter showed that low pass filters could 

be designed whose frequency response (gain) is given 

by equation (9). 

   (9) 

Normalized Butterworth polynomials resulted to 

equation (10). 

for n even 

 
for n odd                              (10) 

 

III. IMPLEMENTATION OF THE DIGITAL 

FILTER PROGRAM 

 

The digital filter design is a program that designs 

low-pass, high-pass, band-pass, and band-reject 

filters to satisfy various constraints such as cutoff 

frequencies and maximum error. In addition to the 

infinite impulse response (IIR) Kaiser filters, finite 

impulse response (FIR) filters are equally designed 

using the Windows and Parks-McClellan design 

methods, with their corresponding magnitude 

response, phase response, impulse response, and 

pole-zero plot displayed. 

 

Procedures involved in an algorithm for the digital 

filter development program are presented as follows: 

1. Users can specify filter constraints such as 

sampling frequency, pass band and stop band 

cutoff frequencies, as well as pass band and stop 

band errors. 

2. Tolerance indicators, denoted by red lines, can be 

moved around by selecting them and pulling the 

mouse around, with an instant update of the 

filter's frequency response. 

3. The filter's numerator and denominator 

coefficients can be either exported to an external 

file or exported to the workspace when variable 

names are specified by the user. 

4. Various plots for phase, pole-zero, and impulse 

responses are available as context menus. 

5. Various plot options enable the tool to be 

effectively used as a lecture aid in a classroom 

environment; that is, the width and color of the 

lines in the plots can be changed. The filter can be 

either of the options to 'zoom-in' or 'grid-on' are 

also provided [31]. 

 

The MATLAB-algorithm program for the 

implementation of this work is shown in figure 1. 

The first four steps of the filter design process relate 

to the filter specifications object, while the last two 

steps involve the filter implementation object. Both 

of these objects are discussed in more detail in the 

following sections. Step 5: The Design of the Filter is 

the transition step from the filter specifications object 

to the implementation object. The analysis and 

verification step are completely optional. It provides 

a means for the filter designer to ensure that the filter 

complies with all design criteria. Depending on the 

results of this verification, steps 3 and 4 can be 

looped together, to either choose a different 

algorithm, or customize the current one. Figure 1 

illustrates the help command for each step. Enter the 

help line at the MATLAB command prompt to 

receive instructions and further documentation links 

for the particular step. 

 

Not all of the steps have to be executed explicitly. 

For example, you could move step 1 directly to step 

5, and then the interim three steps are done by the 

Filter Design Toolbox. The details of each of the 

steps taken are discussed as follows[32, 33, 34, 35, 

36]: 

Step 1: Selecting a Response: If help 

fdesign/responses are typed at the MATLAB 

command prompt, a complete list of all possible filter 

responses available in the Filter Design Toolbox will 

be seen. After a response is chosen, say band-pass, 

the design of the Specifications Object is started by 

typing the following: d = fdesign.band-pass. This step 

cannot be skipped, nor is it automatically completed 

for the designer by the Filter Design Toolbox. A 

response is selected to initiate the filter design 

process. 
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Step 2: Decide on a SpecificationA specification is an 

array of design parameters for a given filter. The 

specification itself is a property of the specification 

object. It can be noted that a specification is not the 

same as the specifications object, but rather a 

specifications object contains a specification as one 

of its properties. When a filter response is selected, 

there are a number of different specifications 

available, each containing a different combination of 

design parameters. In the following example, first set 

the filter response and then ask for the specifications 

listing. 

Step 3: Choose an AlgorithmThe availability of 

algorithms depends on both the chosen filter response 

and the design parameters. In other words, for the 

same low-pass filter, changing the specification string 

also changes the available algorithms. 

Step 4: Customizing the Algorithm: The 

customization options available for any given 

algorithm depend not only on the algorithm itself, 

selected in Step 1, but also on the specification 

selected in Step 2. To explore all the available 

options, type the following at the MATLAB 

command prompt: 

Step 5: Designing the Filter: This next task 

introduces a new object, the filter object, or dfilt.To 

create a filter, the design command is used. 

Step 6: Design Analysis: The filter is designed and 

then analyzed to determine if all the design criteria 

are satisfied. In the filter design toolbox, analysis is 

broken into the following three main sections: 

1. frequency domain analysis, which includes 

magnitude response, group delay, and poll zero. 

2. Time domain analysis, which includes impulse 

response, 

3. Step response implementation analysis, which 

includes quantization noise and cost. 

Step 7: Realize or Apply the Filter to Input Data: 

After the filter is designed and optimized, it can be 

used to filter actual input data. The basic filter 

command takes input data x, filters it through the 

Filter Object, and produces output y:    >> y = filter 

(FilterObj, x). 

 

 
Figure 1: Program Flowchart for Implementation of 

Digital Filter Using MATLAB. 

 

IV. RESULTS AND DISCUSSION 

 

Some of the possible results of the filter design 

program are represented graphically and then 

discussed as follows: 

1. Magnitude-Frequency Response of Finite Impulse 

Response (FIR) digital filters using the Hamming 

type of window design method 

 

The results of magnitude-frequency responsesof 

Finite Impulse Response (FIR) digital low-pass, high-

pass, band-pass, and band-reject filters generated 

using the Hamming type of window design method 

and an arbitrary chosen sampling frequency of 

8000Hz and cut-off frequencies are presented 

graphically in figures 2 to 5 respectively. 
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a) Low-pass Filter Design using the Hamming Type 

of Window Design Method 

 

 
Figure 2: Magnitude-Frequency response of FIR 

(low-pass) filters using window design method. 

 

The response displayed in figure 2 shows a Finite 

Impulse Response (FIR) filter of a low-pass 

characteristics that passes frequencies lower than the 

cut-off frequency (i.e. Fcutoff = 1000Hz) with a little 

guard band and attenuates frequencies higher than the 

cut-off frequency. 

 

b) High-pass Filter Design using Hamming Type of 

Window Design Method: 

 

 
Figure 3: Magnitude-Frequency response of FIR 

(high-pass) filters using window design method. 

 

The response displayed in figure 3 shows a Finite 

Impulse Response (FIR) filter of a high-pass 

characteristics that blocks frequencies lower than the 

cut-off frequency (i.e. Fcutoff = 1500Hz) with a little 

guard band and passes frequencies higher than the 

cut-off frequency. The cut-off frequency recorded is 

1500Hz (0< Fcutoff<0.5*Fsamp) with order of 20. 

 

c) Band-pass Filter Design using Hamming Type of 

Window Design Method: 

The response displayed in figure 4 shows a Finite 

Impulse Response (FIR) filter of band-pass 

characteristics that blocks frequencies within a 

specified frequency band (1500-2500Hz) and passes 

frequencies within the specified band. The result of 

magnitude-frequency response of FIR band-pass 

filter using hamming type of window design method 

maintained the cut-off frequencies 1 and 2 ranging 

from 1500Hz (0< Fcutoff<0.5*Fsamp) to 2500Hz (0< 

Fcutoff<0.5*Fsamp) with the order of 20. 

 

 
Figure 4: Magnitude-Frequency response of FIR 

(band-pass) filters using window design method. 

 

d) Band-reject Filter Design using Hamming Type 

of Window Design Method: 

The response displayed in figure 5 shows a Finite 

Impulse Response (FIR) filter of band-pass 

characteristics that blocks frequencies within a 

specified frequency band (1000-3000Hz) and passes 

frequencies outside the specified band. The cut-off 

frequencies 1 and 2 recorded in band-pass ranged 

from 1000Hz (0< Fcutoff<0.5*Fsamp) to 3000Hz (0< 

Fcutoff<0.5*Fsamp) with the order of 20. 
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Figure 5: Magnitude-Frequency response of FIR 

(band-reject) filters using window design method. 

 

2. Magnitude-Frequency Response of Finite Impulse 

Response (FIR) filters using Parks-McClellan 

design method: 

 

The results of the magnitude-frequency response of 

the Finite Impulse Response (FIR) low-pass, high-

pass, band-pass, and band-reject digital filters 

generated using the Parks-McClellan design method 

and an arbitrary chosen sampling frequency of 

8000Hz, cut-off, passband, and stopband filter 

frequencies are shown graphically in figures 6 to 9 

respectively. 

 

(a) Low-pass Filter Design using the Parks-

McClellan design method 

The response displayed in Figure 6 shows a Finite 

Impulse Response (FIR) filter of low-pass 

characteristics that passes frequencies within the 

passband (1000Hz) and blocks frequencies above the 

stopband. A finite impulse response filter of low-pass 

digital filter designed in 9 iterations with the auto 

order of 20 recorded passband and stopband 

frequencies of 1000Hz and 1500Hz, respectively, 

with the same maximum ripple error value of 

0.043545 in passband (pass)and stopband (stop) for an 

extremal frequency of 12. 

 

 
Figure 6: Magnitude-Frequency response of FIR 

(low-pass) filters using Parks-McClellan design 

method. 

 

(b) High-pass Filter using Parks-McClellan Design 

Method: 

The response displayed in Figure 7 shows a Finite 

Impulse Response (FIR) filter of high-pass 

characteristics that passes frequencies higher than the 

passband frequency (1500Hz) and blocks frequencies 

lower than the stopband frequency (1000Hz). A finite 

impulse response filter with a high-pass filter 

operation and design in 9 iterations with an auto 

order of 20 recorded passband and stopband 

frequencies of 1500Hz and 1000Hz, with the same 

maximum ripple error value of 0.0433545 in both the 

passband (pass) and stopband (stop) for an extremal 

frequency of 12. 

 

 
Figure 7: Magnitude-Frequency response of FIR 

(high-pass) filters using Parks-McClellan design 

method. 

 

(c) Band-pass Filter using Parks-McClellan Design 

Method: 
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The response displayed in figure 8 shows a Finite 

Impulse Response (FIR) filter of band-pass 

characteristics that passes frequencies within a 

specified frequency band (1500-2500Hz) and blocks 

frequencies outside the specified band. A finite 

impulse response filter of high-pass filter operation 

and design in 9 iterations with auto order of 20 

recorded passband frequencies ranging from 1500-

2500Hz, Stopband Frequencies ranging from 0-

1000Hz and 3000-4000Hz, the same maximum ripple 

error value of 0.045162 in both passband (δpass) and 

stopband (δstop) for extremal frequency of 12. 

 

 
Figure 8: Magnitude-Frequency response of FIR 

(band-pass) filters using Parks-McClellan design 

method. 

 

(d) Band-reject Filters using Parks-McClellan Design 

Method: 

The response displayed in figure 9 shows a Finite 

Impulse Response (FIR) filter of band-reject 

characteristics that passes frequencies outside a 

specified frequency band (1000-3000Hz) and blocks 

frequencies within the specified band. A finite 

impulse response filter of band-reject filter operation 

and design in 9 iterations with auto order of 20 

recorded passband frequencies ranging from 1000-

3000Hz, Stopband Frequencies ranging from 0-

1000Hz and 3000-4000Hz, the same maximum ripple 

error value of 0.045162 in both passband (δpass) and 

stopband (δstop) for extremal frequency of 6. 

 

 
Figure 9: Magnitude-Frequency response of FIR 

(band-reject) filters using Parks-McClellan design 

method. 

 

1. Magnitude-Frequency Response of Infinite 

Impulse Response (IIR) filters: 

The results of magnitude-frequency Response of 

Infinite Impulse Response (IIR) filters of arbitrary 

chosen sampling frequency of 8000Hz, cut-off, 

passband, stopband, maximum ripple errors for both 

passband and stopband filter frequencies are shown 

graphically in figures 10 to 13 respectively. 

 

(a) Butterworth Low-pass Filter: 

The response displayed in figure10 shows an Infinite 

Impulse Response (IIR) filter of a Butterworth low-

pass characteristics that passes frequencies lower 

than the passband frequency (i.e. Fpass = 1000Hz) 

with a little guard band up to stopband frequency 

(1500Hz) and attenuates frequencies higher than the 

stopband frequency. An infinite impulse response 

(IIR) filter of a Butterworth low-pass filter recorded 

the same maximum ripple error value of 0.04 in both 

passband (δpass)and stopband (δstop) with auto order of 

10. 
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Figure 10: Magnitude-Frequency Response of IIR 

Butterworth (low-pass) filters. 

 

(b) Butterworth High-pass Filter: 

The response displayed in figure11 shows an Infinite 

Impulse Response (IIR) filter of a Butterworth high-

pass characteristics that passes frequencies higher 

than the passband frequency (i.e. Fpass = 1500Hz) 

with a little guard band up to stopband frequency 

(1000Hz) and attenuates frequencies lower than the 

stopband frequency. An infinite impulse response 

(IIR) filter of a Butterworth high-pass filter recorded 

the same maximum ripple error value of 0.04 in both 

passband (δpass)and stopband (δstop) with auto order of 

10. 

 

 
Figure 11: Magnitude-Frequency Response of IIR 

Butterworth (high-pass) filters. 

 

(c) Butterworth Band-pass Filter: 

The response displayed in figure 12 shows an Infinite 

Impulse Response (IIR) filter of a Butterworth band-

pass characteristics that passes frequencies within a 

specified frequency band (1500-2500Hz) and blocks 

frequencies outside the specified band. An infinite 

impulse response (IIR) filter of a Butterworth band-

pass filter recorded stopband frequencies ranging 

from 1000-3500Hz and the same maximum ripple 

error value of 0.04 in both passband (δpass)and 

stopband (δstop) with auto order of 10. 

 

 
Figure 12: Magnitude-Frequency Response of IIR 

Butterworth (band-pass) filters. 

 

(d) Butterworth Band-reject Filter: 

The response displayed in figure 13 shows an Infinite 

Impulse Response (IIR) filter of a Butterworth band-

reject characteristics that blocks frequencies within a 

specified frequency band (1500-2500Hz) and passes 

frequencies outside the specified band. An infinite 

impulse response (IIR) filter of a Butterworth band-

reject filter recorded stopband frequencies ranging 

from 1000-3500Hz and the same maximum ripple 

error value of 0.04 in both passband (δpass)and 

stopband (δstop) with auto order of 16. 

 

 
Figure 13: Magnitude-Frequency Response of IIR 

Butterworth (band-reject) filters. 
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The diagrams (filter responses) shown in figures 2 to 

13 are only magnitude-frequency response of the 

different types of the digital filters (low-pass, high-

pass, band-pass, band-reject, Butterworth low-pass, 

Butterworth high-pass, Butterworth band-pass, 

Butterworth band-reject). The filter design program is 

also deployed to analyze phase, impulse and pole-

zero plot of the different types of the digital filters 

discussed in this paper, as illustrated in figures 14 to 

16 respectively. 

 

(a) Phase Response of Low-pass Filter: 

The response displayed in figure 14 shows a phase-

frequency response of a Finite Impulse Response 

(FIR) filter that passes frequencies lower than the 

cut-off frequency (i.e. Fcutoff = 1000Hz) with a little 

guard band and attenuates frequencies higher than the 

cut-off frequency. Hamming type of window design 

method is deployed to design and analyze the phase-

frequency response of FIR (low-pass) filter with 

sampling frequency ( Fsamp) of 8000Hz and order of 

10. 

 

 
Figure 14: Phase-Frequency Response of FIR (low-

pass) filters. 

 

(b) Impulse Response of Low-pass Filter: 

The response displayed in figure15 shows an Impulse 

Response of a Finite Impulse Response (FIR) filter 

that passes frequencies lower than the cut-off 

frequency (i.e. Fcutoff = 1000Hz) with a little guard 

band and attenuates frequencies higher than the cut-

off frequency. Hamming type of window design 

method is deployed to design and analyze the phase-

frequency response of FIR (low-pass) filter with 

sampling frequency ( Fsamp) of 8000Hz and order of 

20. 

 
Figure 15: Impulse Response of FIR (low-pass) 

filters. 

 

(c) Pole-Zero Plot of Low-pass Filter: 

The response displayed in figure 16 shows a Pole-

Zero Plot of a Finite Impulse Response (FIR) filter 

that passes frequencies lower than the cut-off 

frequency (i.e Fcutoff = 1000Hz) with a little guard 

band and attenuates frequencies higher than the cut-

off frequency. Hamming type of window design 

method is deployed to design and analyze the pole-

zero plot of FIR (low-pass) filters with the sampling 

frequency ( Fsamp) of 8000Hz and order of 20. 

 

 
Figure 16: Pole-Zero Plot of FIR (low-pass) filters. 

 

CONCLUSION 

 

Matlab codes, commands, and syntax are deployed to 

program graphical user interface (GUI) filter design 

software for analyzing different types of digital 

filters, especially finite impulse response (FIR) and 

infinite impulse response (IIR) filters using the 

Hamming type of window and Parks-McClellan 

design methods. The work covered the graphical 
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programming and evaluation of the magnitude-

frequency responses of the different types of digital 

filters (low-pass, high-pass, band-pass, band-reject, 

Butterworth low-pass, Butterworth high-pass, 

Butterworth band-pass, Butterworth band-reject). The 

phase, impulse, and pole-zero plot of the different 

types of digital filters are also analyzed and evaluated 

in this paper. 

 

The programming results revealed that the low-pass 

filter and high-pass filter recorded the same 

maximum ripple error value of 0.043545, whereas the 

band-pass filter and band-reject filter equally 

recorded the same maximum ripple error value of 

0.045162 in both the passband (pass)and stopband (stop) 

for the extremal frequency range of 6-12. The 

magnitude-frequency responses of the infinite 

impulse response (IIR) filters of the Butterworth low-

pass, high-pass, band-pass, and band-reject filters at 

an arbitrary sampling frequency of 8000Hz recorded 

the same maximum ripple error value of 0.04 in both 

the passband (pass)and the stopband (stop), with pass 

frequencies ranging from 1000-2500Hz and stopband 

frequencies ranging from 1000-3500Hz. The phase-

frequency, impulse and pole-zero plot responses of 

finite impulse response (FIR) low-pass filters 

presented the cut-off frequency of 1000Hz with the 

sampling frequency of 8000Hz and the order ranging 

from 10–20. 
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