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Abstract- In this paper, we introduce and study a 

modified forward-backward splitting method for 

finding a zero in the sum of two monotone operators 

in real Hilbert spaces. Our proposed method only 

requires one forward evaluation of the single-valued 

operator and one backward evaluation of the set-

valued operator per iteration. This is an improvement 

over many others in literature with strongly 

convergent splitting methods with two forwards and 

a backward iteration. Furthermore, we also 

incorporate inertial term in our scheme to speed up 

the rate of convergence. We obtain a strong 

convergence result when the set-valued operator is 

maximal monotone and the single-valued operator is 

Lipschitz continuous monotone which is weaker 

assumption than being inverse strongly monotone or 

cocoercive. 

 

Indexed Terms- Viscosity Iteration Method; Inertial 

Method; Inclusion Problem; Maximal Monotone 

Operator; Forward–Backward Algorithm. 

 

I. INTRODUCTION 

 

Let 𝐻 be a real Hilbert space with an induced norm ‖. ‖ 

and inner product 〈. , . 〉. 

The monotone inclusion problem (MIP) is defined as 

follows:  

 𝑓𝑖𝑛𝑑 𝑥 ∈ 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

 0 ∈ (𝐴 + 𝐵)𝑥,    (1.1)  

where 𝐴: 𝐻 → 𝐻 and 𝐵:𝐻 → 2𝐻  are monotone 

operator.  Let the solution set of (1.1) be denoted by 

(𝐴 + 𝐵)−1(0).  The inclusions of the form specified in 

(1.1) arises in numerous real-world problems. It plays 

a central role in mathematical optimizations such as 

variational inequalities, minimization problems, linear 

inverse problems, saddle-point problems, fixed point 

problems, split feasibility problems, Nash equilibrium 

problems in noncooperative games, and many more 

(see [1] and references contained therein).  In what 

follows, we provide motivating examples.  

 

• Convex minimization. A minimization problem 

has the following structure: 

 min
𝑥∈𝐻

𝑓(𝑥) + 𝑔(𝑥), 

where 𝑓:ℋ → (−∞,+∞] is proper, lower 

semicontinuous (lsc), convex and  𝑓:ℋ → ℝ  is 

convex with (locally) Lipschitz continuous gradient 

denoted by ∇𝑔.  It is well known that the solutions to 

this minimization problem are those points in 𝐻 which 

satisfiy the first order optimality condition:   

 0 ∈ (𝜕𝑓 + ∇𝑔)𝑥,     (1.2) 

where 𝜕𝑓 is the subdifferential of 𝑓.  It is not hard to 

see that (1.2) is clearly of the form of (1.1). 

 

• General monotone inclusions. Consider the 

inclusion problem  

𝑓𝑖𝑛𝑑 𝑥 ∈ 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 0 ∈ (𝐴 + 𝐾∗𝐵𝐾)(𝑥),   (1.3) 

where 𝐴:𝐻1 ⇉ 𝐻1 and  𝐵:𝐻2 ⇉ 𝐻2 are maximally 

monotone operators, and 𝐾:𝐻1 → 𝐻2 is 

abounded linear operator and 𝐾∗ its adjoint. It was 

noted in [2,3] that solving (1.3) is equivalent to solving 

the following inclusion problem: 

    

𝑓𝑖𝑛𝑑 (
𝑥

𝑦
) ∈ 𝐻1 × 𝐻2  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (0
0
) ∈ ([

𝐴 0
0 𝐵−1

] + [
0 𝐾∗

−𝐾 0
]) (𝑥

𝑦
). 

  (1.4) 

It is also clear that (1.4) is of the form (1.1).  

 

• Saddle point problems and variational inequalities. 

Many convex optimization problems can be 

formulated as the saddle point problem 

min
𝑥∈𝐻

𝑚𝑎𝑥𝑦∈𝐻𝑔(𝑥)

+Φ(𝑥, 𝑦) − 𝑓(𝑦),
  (1.5)  
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where 𝑓, 𝑔: 𝐻 → (−∞,+∞] are proper, lsc, convex 

functions and Φ:ℋ ×ℋ → ℝ is smooth convex-

concave function. The problem (1.5) naturally arises 

in machine learning, statistics among others where the 

dual (maximization) problem comes either from 

daulizing the constrains in the primal problem or from 

using the Fenchel-Legendre transform to leverage a 

nonsmooth composite part. Following the first order 

optimality condition, the problem (1.5) can be 

expressed as the monotone inclusion 

𝑓𝑖𝑛𝑑 (𝑥
𝑦
) ∈ 𝐻 × 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (0

0
) ∈ (𝜕𝑔

(𝑥)

𝜕𝑓(𝑦)
) +

(∇𝑥Φ
(𝑥,𝑦)

∇𝑦Φ(𝑥,𝑦)
),  (1.6) 

 

which is of the form specified in (1.1). Using the 

definition of the sub-differentials, equation (1.6) can 

be expressed in the form of the variational inequality: 

 

{
 

 
𝑓𝑖𝑛𝑑 𝑧∗ = (𝑥∗, 𝑦∗)𝑇 ∈ 𝐻 × 𝐻 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
〈𝐵(𝑧∗), 𝑧 − 𝑧∗〉 + 𝑔(𝑥) − 𝑔(𝑥∗)         (1.7)

−𝑓(𝑦) + 𝑓(𝑦∗) ≥ 0, ∀𝑧 = (
𝑥

𝑦
) ∈ 𝐻 × 𝐻

 

where (𝑥, 𝑦) ≔ (∇𝑥Φ(𝑥, 𝑦) − ∇𝑥Φ(𝑥, 𝑦))
𝑇 . 

Therefore, inclusion problems are primarily of natural 

interest for those studying pure and applied sciences.   

 

However, monotone operator theory is a fascinating 

field of research in nonlinear functional analysis and 

found valuable applications in the field of convex 

optimization, subgradients, partial differential 

equations, variational inequalities, signal and image 

processing, evolution equations and inclusions; see, 

for instance, [4,5,6] and the references cited therein. 

 

There are many methods for solving (1.1) among them 

is the splitting algorithm which is defined in the 

following iterative step: 𝑔𝑖𝑣𝑒𝑛 𝑥1 ∈ 𝐻 and  

𝑥𝑛+1 = (𝐼 + 𝑟𝐴)−1(𝑥𝑛 − 𝑟𝐵𝑥𝑛) (1.8)  

where 𝑟 ∈ (0,
0

𝐿
), 𝐽𝑟

𝐴 = (𝐼 + 𝑟𝐴) is called the 

resolvent of 𝐴 and 𝐼: 𝐻 → 𝐻 denotes the identity 

operator. The iterative sequence {𝑥𝑛} converges 

weakly to a solution provided the operator 𝐵:𝐻 → 𝐵 

is 1/𝐿- cocoercive. By being cocoercive, we mean that  

〈𝑥 − 𝑦, 𝐵(𝑥) − 𝐵(𝑦)〉 ≥ 𝛽‖𝐵(𝑥) − 𝐵(𝑦)‖2  ∀𝑥, 𝑦 ∈

𝐻. 

 

In this iterative form (1.8), the individual steps within 

each iterations involves forward evaluations in which 

the value of the single-valued operator is computed 

and the backward evaluations in which the resolvent 

of the set-valued operator is computed rather than their 

sum directly.  Many researchers have constructed 

different algorithms using (1.8) (see for e.g., [4,8,9] 

and references therein). 

 

The cocoercive property of the operator 𝐵 is a stronger 

than Lipschitz continuity. Therefore, it is difficult to 

satisfy general monotone inclusions. In order to relax 

this assumption, Tseng [7] proposed a modification of 

(1.8) known as the Tseng’s method or the known 

forward-backward-forward method. This method 

require two forward evaluations with the operator B 

being Lipchitz continuous. In fact, [7] presented the 

following iterative method: 

    

 {
𝑦𝑛 = 𝐽𝑟

𝐴(𝑥𝑛 − 𝑟𝐵𝑥𝑛),         
𝑥𝑛+1 = 𝑦𝑛 − 𝑟𝐵𝑦𝑛 + 𝑟𝐵𝑥𝑛 ,

∀ 𝑛 ∈ ℕ,

     (1.9) 

and a weak convergence result was obtained under the 

assumption that 𝐵 is 𝐿 −Lipschitz  and 𝑟 ∈ (0,
2

𝐿
).    

 

In 2001, Alvarez and Attouch [10] used the concept of 

heavy ball method which was equally studied by [11, 

12] to study maximal monotone operators by the 

proximal point algorithm. They presented the 

following algorithm called inertial proximal point 

algorithm: 

{

𝑦𝑛 = 𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑥𝑛+1 = (𝐼 + 𝑟𝑛𝐵)
−1𝑦𝑛,        

∀ 𝑛 ∈ ℕ,

  (1.10) 

Under some mild conditions which include the fact 

that ∑ 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖
2 < ∞,∞

𝑛=1  𝜃𝑛 ∈ [0, 1) and  {𝑟𝑛} 

is nondecreasing. They prove that {𝑥𝑛} converged 

weakly to the solution set. Here 𝜃𝑛 is called the inertial 

factor while 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1) is called the term.  It has 

been proven that the inertial terms often speeds up the 

rate of convergence (see [13,14,15]).    

 

It is desirable in applications to obtain strong 

convergence results of proposed algorithms.  In 2018, 

Khan et al. [16] used the shrinking method developed 

by Takahashi et al. [17] to establish a strong 

convergence for monotone inclusion problem. They 

also used the inertial term to ensure fast convergence. 

In fact, in [16] the following algorithm is 

presented:𝑥0, 𝑥1 ∈ 𝐶 = 𝐻, 
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{
  
 

  
 

𝑦𝑛 = 𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑧𝑛 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝐽𝑟𝑛
𝐵 (𝐼 − 𝑟𝑛𝐴)𝑦𝑛 ,

𝐶𝑛+1 = {

𝑧 ∈ 𝐶𝑛: ‖𝑧𝑛 − 𝑧‖
2 ≤ ‖𝑥𝑛 − 𝑧‖

2

+2𝜃𝑛
2‖𝑥𝑛 − 𝑥𝑛−1‖

2

−2𝜃𝑛(1 − 𝛼𝑛)〈𝑥𝑛 − 𝑧, 𝑥𝑛 − 𝑥𝑛−1〉

}

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑥1, 𝑛 ≥ 1,

(1.11) 

under some mild conditions see [16, Theorem 3.1], 

they proved that the sequence {𝑥𝑛} converged strongly 

to the solution set.  

 

• Remark 1.12:   We noticed that the algorithm 

(1.11) of Khan et al (2018) has the following 

drawbacks:  

a. The single-valued operator is 𝛼 −inverse strongly 

monotone which is the same as being cocoercive. 

This condition is stronger than being Lipschitz 

continuous and monotone. 

b. It is very natural to have slow convergence with 

projection operators. Hence, the algorithm (1.11) 

due to projection onto closed and convex set 

{𝐶𝑛+1} has slow convergence irrespective of the 

fact that the inertial term is incorporated. 

 

• The natural question to ask is: can these conditions 

be relaxed and obtain a strong convergence? It is 

our purpose in this paper to give an affirmative 

answer to the above question.  

 

The rest of the paper is organized as follows: in section 

2, we present some basic definitions very relevant to 

our work and as well state without proofs of vital 

Lemmas. Our algorithm is presented in section 3 with 

the conditions that would ensure strong convergence 

and the proof. In section 4, we provide a conclusion of 

all we have done. 

 

II. PRELIMINARY 

 

Let 𝐶 be a nonempty closed convex subset of a real 

Hilbert space  . The weak and strong convergence of a 

sequence {𝑥𝑛} is denoted by 𝑥𝑛 ⇀ 𝑥 and 𝑥𝑛 ⟶ 𝑥, 

respectively. For each 𝑥, 𝑦, 𝑧 ∈ 𝐻, the following facts 

are known: 

• ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2〈𝑦, 𝑥 + 𝑦〉; 

• ‖𝛼𝑥 + (1 − 𝛼)𝑦‖2 = 𝛼‖𝑥‖2 + (1 − 𝛼)‖𝑦‖2 −

𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2, 𝛼 ∈ ℜ; 

 

For every point 𝑥 ∈ ℋ, there exists a unique nearest 

point in 𝐶, denoted by 𝑃𝐶(𝑥) such that 𝑃𝐶(𝑥) ≔

𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑥 − 𝑦‖, 𝑦 ∈ 𝐶},  where 𝑃𝐶  is called the 

metric projection of ℋ onto 𝐶.  It is well known that 

𝑃𝐶  is nonexpansive and 𝑃𝐶(𝑥) is characterized by: 

a. 〈𝑥 − 𝑃𝐶(𝑥), 𝑦 − 𝑃𝐶(𝑥)〉 ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶; 

b. ‖𝑃𝐶(𝑥) − 𝑃𝐶(𝑦)‖
2 ≤ 〈𝑃𝐶(𝑥) − 𝑃𝐶(𝑦), 𝑥 −

𝑦〉, ∀𝑥, 𝑦 ∈ ℋ.  

 

The following definition shall be very useful in our 

work. For any 𝑥, 𝑦 ∈ ℋ, the mapping 𝑇: ℋ → ℋ is 

said to be: 

i) 𝐿 −Lipschitz continuous with 𝐿 > 0 if  

‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖. 

If 𝐿 ∈ (0,1), then the mapping 𝑇 is called a contraction 

map. In particular, if 𝐿 = 1, the mapping 𝑇 is called a 

nonexpansive map. 

ii) Monotone if  

〈𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦〉 ≥ 0. 

iii) 𝛼 −inverse strongly monotone (also called 

𝛼 −cocoercive ) if 

〈𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦〉 

≥ 𝛼‖𝑇𝑥 − 𝑇𝑦‖2. 

 

We observe from the above definitions that every 

𝛼 −inverse strongly monotone is 
1

𝛼
−Lipschitz 

continuous and monotone. 

A multi-valued mapping 𝐴: ℋ → 2ℋ  is called: 

a. Monotone if 〈𝑢 − 𝑣, 𝑥 − 𝑦〉 ≥ 0, ∀𝑥, 𝑦 ∈ ℋ 

whenever 𝑢 ∈ 𝐴𝑥 and 𝑣 ∈ 𝐴𝑦. 𝐷𝑜𝑚(𝐴) = {𝑥 ∈

ℋ:𝐴𝑥 ≠ 0}. 

b. Maximal monotone if it is monotone and if for any 

(𝑥, 𝑢) ∈ ℋ ×ℋ, 〈𝑢 − 𝑣, 𝑥 − 𝑦〉 ≥ 0 for every 

(𝑦, 𝑣) ∈ 𝐺𝑟𝑎𝑝ℎ(𝐴).  

c. The resolvent of operator associated with maximal 

monotone 𝐴 with a positive number 𝜆 is denoted 

by 𝐽𝜆
𝐴 and it is defined on ℋ by 𝐽𝜆

𝐴(𝑥) =

(𝐼 + 𝜆𝐴)−1. 

 

We shall state the following Lemmas without their 

proofs. Readers who are interested for their proofs can 

consult the materials.  

 

• Lemma 2.1 [18]:  Assume that ℋ is a real Hilbert 

space.  Let the mapping 𝐴:ℋ → ℋ be Lipschitz 

continuous monotone and mapping 𝐵: ℋ → 2ℋ  be 



© APR 2023 | IRE Journals | Volume 6 Issue 10 | ISSN: 2456-8880 

IRE 1704279          ICONIC RESEARCH AND ENGINEERING JOURNALS 591 

maximal monotone. Then, the mapping (𝐴 + 𝐵) is 

a maximal monotone.  

• Lemma 2.2 [19]:  Let {𝑎𝑛} be a sequence of 

nonnegative real numbers, {𝛼𝑛} be a sequence of 

real numbers in (0,1) with ∑ 𝛼𝑛 = ∞,∞
𝑛=1  and {𝑏𝑛} 

be sequence of real numbers. Assume that 

𝑎𝑛+1 ≤ (1 − 𝛼𝑛) + 𝛼𝑛𝑏𝑛 , 𝑛 ≥ 1. 

If limsup
𝑘→∞

𝑏𝑛𝑘 ≤ 0 for every subsequence {𝑎𝑛𝑘} of 

{𝑎𝑛} satisfying lim inf
𝑘→∞

(𝑎𝑛𝑘+1 − 𝑎𝑛𝑘) ≥ 0, then 

lim
𝑛→∞

𝑎𝑛 = 0. 

 

III. THE MAIN RESULT 

 

In this section, we state our algorithm and state some 

assumptions that will enable us to establish a strong 

convergence.  

(C1) The solution set (𝐴 + 𝐵)−1 ≠ ∅. 

(C2)The mapping 𝐴: ℋ → ℋ is 

𝐿 −Lipschitz continuous and monotone 

and 𝐵: ℋ → 2ℋ is maximal monotone.  

(C3) The mapping 𝑓:ℋ → ℋ is a contraction 

mapping with a coefficient 𝜌 ∈ [0,1). 

(C4) Let {𝜀𝑛} be a positive sequence such that 

lim
𝑛→∞

𝜀𝑛

𝛼𝑛
= 0,  where 𝛼𝑛 ∈ (0,1) satisfies lim

𝑛→∞
𝛼𝑛 = 0 

and ∑ 𝛼𝑛 = ∞.
∞
𝑛=1  

Algorithm 3.1: The inertial viscosity iteration scheme 

for monotone inclusion problems 

 Initialization: Set 𝜆0 ≥ 0, 𝜇 ∈ (0,1) and 𝑥0, 𝑥1 ∈  ℋ 

be arbitrary.  

Iterative steps. Step 1: Given the current iterates 𝑥𝑛−1,

𝑎𝑛𝑑 𝑥𝑛  (𝑛 ≥ 1), choose 𝜃𝑛 such that 0 ≤ 𝜃𝑛 ≤ 𝜃𝑛,̅̅ ̅̅   

where   

𝜃𝑛̅̅ ̅ ≔ {
min {

𝜀𝑛

‖𝑥𝑛−𝑥𝑛−1‖
}  , 𝑖𝑓𝑥𝑛 ≠ 𝑥𝑛−1; 

𝜃,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  
 (3.2) 

 

Step 2: Compute 

{
 
 

 
 𝑤𝑛 = 𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1),         

𝑦𝑛 = 𝐽𝜆𝑛
𝐵 (𝐼 − 𝜆𝑛𝐴)𝑤𝑛,                  

𝑧𝑛 = 𝑦𝑛 − 𝜆𝑛(𝐴𝑦𝑛 − 𝐴𝑥𝑛),          

𝑥𝑛+1 = 𝛼𝑛𝑓(𝑥𝑛) + (1 − 𝛼𝑛)𝑧𝑛 ,

  (3.3)  

Where  𝜆𝑛+1 =

{
min {

𝜇‖𝑤𝑛−𝑦𝑛‖

‖𝐴𝑤𝑛−𝐴𝑦𝑛‖
, 𝜆𝑛} , 𝑖𝑓 𝐴𝑤𝑛 ≠ 𝐴𝑦𝑛 ,

𝜆𝑛                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,               
 (3.4) 

Set 𝑛 ≔ 𝑛 + 1 and go to Step 1. 

Lemma 3.2: The sequence {𝜆𝑛} formed by (3.4) is 

nonincreasing and lim
𝑛→∞

𝜆𝑛 = 𝜆 ≥ min {𝜆0,
𝜇

𝐿
}. 

Proof: It is not hard to see the nonincreasing of {𝜆𝑛} 

from its definition. Moreover, from the fact that the 

operator 𝐴 is 𝐿 −Lipschitz continuous, we get 

𝜇‖𝑤𝑛 − 𝑦𝑛‖

‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖
≥
𝜇

𝐿
, 𝑖𝑓 𝐴𝑤𝑛 ≠ 𝐴𝑦𝑛. 

Thus, we deduce that lim
𝑛→∞

𝜆𝑛 = 𝜆 ≥ min {𝜆0,
𝜇

𝐿
}. This 

completes the proof. ∎ 

Lemma 3.3: If the conditions (C1)-(C4) are satisfied, 

then 

 

‖𝑧𝑛 − 𝑝‖
2 ≤ ‖𝑤𝑛 − 𝑝‖

2 − (1 − 𝜇2
𝜆𝑛
2

𝜆𝑛+1
2 ) ‖𝑤𝑛 −

𝑦𝑛‖
2, 𝑝 ∈ Ω.  

 

Proof: From the definition of 𝑧𝑛 in (3.3) and for all 𝑝 ∈

Ω, we get 

‖𝑧𝑛 − 𝑝‖
2 = ‖𝑦𝑛 − 𝜆𝑛(𝐴𝑤𝑛 − 𝐴𝑦𝑛) − 𝑝‖

2 

        = ‖𝑦𝑛 − 𝑝‖
2 + 𝜆𝑛

2‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖
2 −

2𝜆𝑛〈𝑦𝑛 − 𝑝, 𝐴𝑤𝑛 − 𝐴𝑦𝑛〉 

        = ‖𝑤𝑛 − 𝑝‖
2 + ‖𝑦𝑛 − 𝑤𝑛‖

2 −

2𝜆𝑛〈𝑦𝑛 − 𝑝, 𝐴𝑤𝑛 − 𝐴𝑦𝑛〉 + 2〈𝑦𝑛 − 𝑤𝑛 , 𝑦𝑛 − 𝑝〉 +

𝜆𝑛
2‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖

2   (3.5) 

       = ‖𝑤𝑛 − 𝑝‖
2 − ‖𝑤𝑛 − 𝑦𝑛‖

2 − 2〈𝑤𝑛 −

𝑦𝑛 − 𝜆𝑛(𝐴𝑤𝑛 − 𝐴𝑦𝑛), 𝑦𝑛 − 𝑝〉 

 

Now, using the definition of 𝜆𝑛 in (3.4), we obtain 

‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖ ≤
𝜇

𝜆𝑛+1
‖𝑤𝑛 − 𝑦𝑛‖, for all n.  

  (3.6) 

We observe that the above inequality holds even when 

𝐴𝑤𝑛 = 𝐴𝑦𝑛 . Otherwise, we obtain 

𝜆𝑛+1 ≤
𝜇‖𝑤𝑛 − 𝑦𝑛‖

‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖
, 

which yields that  ‖𝐴𝑤𝑛 − 𝐴𝑦𝑛‖ ≤
𝜇

𝜆𝑛+1
‖𝑤𝑛 − 𝑦𝑛‖.   

Therefore, the inequality holds for all n 

Next, 〈𝑤𝑛 − 𝑦𝑛 − 𝜆𝑛(𝐴𝑤𝑛 − 𝐴𝑦𝑛), 𝑦𝑛 − 𝑝〉 ≥ 0. 

Using the definition of 𝑦𝑛 from the algorithm, we get 

that 

(1 − 𝜆𝑛𝐴)𝑤𝑛 ∈ (𝐼 + 𝜆𝑛𝐵)𝑦𝑛 . 

Using the maximal monotonicity of 𝐵, there exists 

𝑣𝑛 ∈ 𝐵𝑦𝑛 such that  

(1 − 𝜆𝑛𝐴)𝑤𝑛 = 𝑦𝑛 + 𝜆𝑛𝑣𝑛. 

This indicates that  

 𝑣𝑛 =
1

𝜆𝑛
(𝑤𝑛 − 𝑦𝑛 − 𝜆𝑛𝐴𝑤𝑛)  (3.7) 
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Now, for all 𝑝 ∈ Ω, we have 0 ∈ (𝐴 + 𝐵)(𝑝). From 

𝐴𝑦𝑛 + 𝑣𝑛 ∈ (𝐴 + 𝐵)𝑦𝑛 and the fact that (𝐴 + 𝐵) is a 

maximal monotone (see Lemma 2.1), we have 

〈𝐴𝑦𝑛 + 𝑣𝑛 , 𝑦𝑛 − 𝑝〉 ≥ 0. This together with (3.7) gives 

𝜆𝑛
−1〈𝑤𝑛 − 𝑦𝑛 − 𝜆𝑛𝐴𝑤𝑛 + 𝜆𝑛𝐴𝑦𝑛, 𝑦𝑛 − 𝑝〉 

≥ 0, 

which further implies that (3.7) holds. 

Now combining (3.5)-(3.7), we get  

‖𝑧𝑛 − 𝑝‖
2 ≤ ‖𝑤𝑛 − 𝑝‖

2 − (1 − 𝜇2
𝜆𝑛
2

𝜆𝑛+1
2 ) ‖𝑤𝑛 −

𝑦𝑛‖
2. This completes the proof. ∎ 

We now state and proof the main Theorem of this 

paper.  

Theorem 3.4: Suppose that the Assumptions (C1)-(C4) 

hold. Then the sequence {𝑥𝑛} generated by Algorithm 

3.1 converges to 𝑝 ∈ Ω in norm, where ‖𝑝‖ =

𝑚𝑖𝑛{‖𝑧‖: 𝑧 ∈ Ω}.  

Proof: We first show that {𝑥𝑛} is bounded.  

By the definition of 𝑤𝑛 and for all 𝑝 ∈ Ω, we get 

‖𝑤𝑛 − 𝑝‖ ≤ ‖𝑥𝑛 − 𝑝‖ + 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖  

 (3.8) 

We know from the definition of 𝜃𝑛 that 

 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖ ≤ 𝜀𝑛, ∀𝑛. 

Therefore,  

𝜃𝑛
𝛼𝑛
‖𝑥𝑛 − 𝑥𝑛−1‖ ≤

𝜀𝑛
𝛼𝑛

→ 0 𝑎𝑠 𝑛 → ∞. 

Hence, there exists a constant 𝑀1 > 0 such that  
𝜃𝑛

𝛼𝑛
‖𝑥𝑛 − 𝑥𝑛−1‖ ≤ 𝑀1, ∀ 𝑛 ≥ 1. (3.9) 

So, (3.8) can be written as 

 ‖𝑤𝑛 − 𝑝‖ = ‖𝑥𝑛 − 𝑝‖ + 

𝛼𝑛
𝜃𝑛

𝛼𝑛
‖𝑥𝑛 − 𝑥𝑛−1‖   (3.10) 

 ≤ ‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1,    ∀ 𝑛 ≥ 1.     

From the fact that 

 lim
𝑛→∞

(1 − 𝜇2
𝜆𝑛
2

𝜆𝑛+1
2 ) = 1 − 𝜇2 > 0,  

we get that there exists 𝑛0 ∈ ℕ such that  

(1 − 𝜇2
𝜆𝑛
2

𝜆𝑛+1
2 ) > 0 ∀ 𝑛 ≥ 𝑛0.  (3.11) 

Combining (3.9) –(3.10)and Lemma 3.3, we get 

‖𝑧𝑛 − 𝑝‖ ≤ ‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1. (3.12) 

Next, we compute, using the estimate in (3.12) 

‖𝑥𝑛+1 − 𝑝‖ = ‖𝛼𝑛(𝑓(𝑥𝑛) − 𝑝) + (1 − 𝛼𝑛)(𝑧𝑛 −

𝑝)‖  

≤ 𝛼𝑛‖𝑓(𝑥𝑛) − 𝑝‖ + (1 − 𝛼𝑛)‖𝑧𝑛 − 𝑝‖  

= 𝛼𝑛‖𝑓(𝑥𝑛) − 𝑓(𝑝) + 𝑓(𝑝) − 𝑝‖ + 

(1 − 𝛼𝑛)‖𝑧𝑛 − 𝑝‖   

≤ 𝛼𝑛‖𝑓(𝑥𝑛) − 𝑓(𝑝)‖ + 𝛼𝑛‖𝑓(𝑝) − 𝑝‖ + (1

− 𝛼𝑛)‖𝑧𝑛 − 𝑝‖ 

≤ 𝛼𝑛‖𝑓(𝑥𝑛) − 𝑓(𝑝)‖ + 𝛼𝑛‖𝑓(𝑝) − 𝑝‖ + (1

− 𝛼𝑛)‖𝑤𝑛 − 𝑝‖ 

≤ 𝛼𝑛𝜌‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛‖𝑓(𝑝) − 𝑝‖+(1 − 𝛼𝑛)[‖𝑥𝑛 −

𝑝‖ + 𝛼𝑛𝑀1] 

= [𝛼𝑛𝜌 + (1 − 𝛼𝑛)]‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛‖𝑓(𝑝) − 𝑝‖

+ (1 − 𝛼𝑛)𝛼𝑛𝑀1 

≤ [𝛼𝑛𝜌 + (1 − 𝛼𝑛)]‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛‖𝑓(𝑝) − 𝑝‖

+ 𝛼𝑛𝑀1 

= (1 − 𝛼𝑛(1 − 𝜌))‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛(1 −

𝜌) (
‖𝑓(𝑝)−𝑝‖+𝑀1

(1−𝜌)
)  (3.13) 

≤ max {‖𝑥𝑛 − 𝑝‖,
‖𝑓(𝑝) − 𝑝‖ + 𝑀1

(1 − 𝜌)
} 

≤ ⋯ ≤ max {‖𝑥1 − 𝑝‖,
‖𝑓(𝑝) − 𝑝‖ + 𝑀1

(1 − 𝜌)
} 

This implies that the sequence {𝑥𝑛} is bounded.  It 

follows that the sequence {𝑤𝑛}, {𝑧𝑛}, {𝑦𝑛} and {𝑓(𝑥𝑛)} 

are all bounded.  

From  (3.10), we get that 

‖𝑤𝑛 − 𝑝‖
2 ≤ (‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1)

2 

             =

‖𝑥𝑛 − 𝑝‖
2 + 𝛼𝑛(2𝑀1‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1

2) (3.14) 

≤ ‖𝑥𝑛 − 𝑝‖
2 + 𝛼𝑛𝑀2 for some 𝑀2 > 0. 

Combining Lemma 2.2 and (3.14) 

‖𝑥𝑛+1 − 𝑝‖
2 ≤ 𝛼𝑛(‖𝑓(𝑥𝑛) − 𝑓(𝑝)‖ + ‖𝑓(𝑝) − 𝑝‖)

2

+ (1 − 𝛼𝑛)‖𝑧𝑛 − 𝑝‖
2 

     ≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖
2 + (1 −

𝛼𝑛)‖𝑧𝑛 − 𝑝‖
2 + 𝛼𝑛(2‖𝑥𝑛 − 𝑝‖. ‖𝑓(𝑝) − 𝑝‖ 

+‖𝑓(𝑝) − 𝑝‖2) 

   ≤ 𝛼𝑛‖𝑥𝑛 − 𝑝‖
2 + (1 −

𝛼𝑛)‖𝑧𝑛 − 𝑝‖
2 + 𝛼𝑛𝑀3 

   ≤ ‖𝑥𝑛 − 𝑝‖
2 − (1 −

𝛼𝑛) (1 − 𝜇
2 𝜆𝑛

2

𝜆𝑛+1
2 ) ‖𝑤𝑛 − 𝑦𝑛‖

2 + 𝛼𝑛𝑀4 

where 𝑀4 ≔ 𝑀2 +𝑀3. That is, 

(1 − 𝛼𝑛) (1 − 𝜇
2 𝜆𝑛

2

𝜆𝑛+1
2 ) ‖𝑤𝑛 − 𝑦𝑛‖

2 ≤ ‖𝑥𝑛 − 𝑝‖
2 −

‖𝑥𝑛+1 − 𝑝‖
2 + 𝛼𝑛𝑀4   (3.15) 

In view of definition 𝑤𝑛, we get 

‖𝑤𝑛 − 𝑝‖
2 ≤ ‖𝑥𝑛 − 𝑝‖

2

+ 2𝜃𝑛‖𝑥𝑛 − 𝑝‖‖𝑥𝑛 − 𝑥𝑛−1‖

+ 𝜃𝑛
2‖𝑥𝑛 − 𝑥𝑛−1‖

2 

  ≤ ‖𝑥𝑛 − 𝑝‖
2 + 3𝑀𝜃𝑛‖𝑥𝑛 −

𝑥𝑛−1‖, 

where   𝑀 ≔ sup
𝑛∈ℕ

{‖𝑥𝑛 − 𝑝‖, 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖} > 0. 

 

We further estimate that  
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‖𝑥𝑛+1 − 𝑝‖
2 = ‖𝛼𝑛(𝑓(𝑥𝑛) − 𝑓(𝑝))

+ (1 − 𝛼𝑛)(𝑧𝑛 − 𝑝) + 𝛼𝑛(𝑓(𝑝)

− 𝑝)‖
2
   

≤ ‖𝛼𝑛(𝑓(𝑥𝑛) − 𝑓(𝑝))   

+ (1 − 𝛼𝑛)(𝑧𝑛 − 𝑝)‖
2
 

 +2𝛼𝑛〈𝑓(𝑝) − 𝑝, 𝑥𝑛+1 − 𝑝〉  

  ≤ 𝛼𝑛‖𝑓(𝑥𝑛) − 𝑓(𝑝)‖
2 + (1 − 𝛼𝑛)‖𝑧𝑛 − 𝑝‖

2 

+𝛼𝑛〈𝑓(𝑝) − 𝑝, 𝑥𝑛+1 − 𝑝〉 

≤ 𝛼𝑛𝜌‖𝑥𝑛 − 𝑝‖
2 + (1 − 𝛼𝑛)‖𝑤𝑛 − 𝑝‖

2

+ 2𝛼𝑛〈𝑓(𝑝) − 𝑝, 𝑥𝑛+1 − 𝑝〉 

   ≤ (1 − (1 − 𝜌)𝛼𝑛)‖𝑥𝑛 − 𝑝‖
2 + (1 −

𝜌)𝛼𝑛 [
3𝑀

(1−𝜌)
.
𝜃𝑛

𝛼𝑛
‖𝑥𝑛 − 𝑥𝑛−1‖ +     

2

1−𝜌
〈𝑓(𝑝) −

𝑝, 𝑥𝑛+1 − 𝑝〉]  (3.16) 

Finally, we show that {‖𝑥𝑛 − 𝑝‖
2} converges to zero. 

We may assume without loss of generality that 

{‖𝑥𝑛𝑘 − 𝑝‖} is a subsequence of {‖𝑥𝑛 − 𝑝‖} such that 

 lim inf
𝑘→∞

(‖𝑥𝑛𝑘+1 − 𝑝‖ − ‖𝑥𝑛𝑘 − 𝑝‖) ≥ 0.  

By the condition on (C3) and (3.15), one gets 

(1 − 𝛼𝑛𝑘) (1 − 𝜇
2
𝜆𝑛𝑘
2

𝜆𝑛𝑘+1
2 ) ‖𝑤𝑛𝑘 − 𝑦𝑛𝑘‖

2

≤ limsup
𝑘→∞

[‖𝑥𝑛𝑘 − 𝑝‖
2

− ‖𝑥𝑛𝑘+1 − 𝑝‖
2
+ 𝛼𝑛𝑘𝑀4] 

which implies that  

lim
𝑘→∞

‖𝑤𝑛𝑘 − 𝑦𝑛𝑘‖ = 0.   (3.17) 

Using the definition of 𝑧𝑛 and (3.6), we deduce that 

‖𝑧𝑛 − 𝑦𝑛‖ ≤ 𝜇
𝜆𝑛

𝜆𝑛+1
‖𝑤𝑛 − 𝑦𝑛‖, 

this yields that  

lim
𝑘→∞

‖𝑧𝑛𝑘 − 𝑦𝑛𝑘‖ = 0.  (1.18)  

Using (3.17) and (3.18), wet get 

lim
𝑘→∞

‖𝑤𝑛𝑘 − 𝑧𝑛𝑘‖ ≤ lim
𝑘→∞

(‖𝑤𝑛𝑘 − 𝑦𝑛𝑘‖ + ‖𝑦𝑛𝑘 −

𝑧𝑛𝑘‖) = 0. (3.19) 

Furthermore, from the Algorithm and the condition on 

(C4) one gets  

‖𝑥𝑛𝑘+1 − 𝑧𝑛𝑘‖ 

= 𝛼𝑛𝑘‖𝑧𝑛𝑘 − 𝑓(𝑥𝑛𝑘)‖ → 0 (3.20) 

and  

‖𝑤𝑛𝑘 − 𝑥𝑛𝑘‖ = 𝛼𝑛𝑘
𝜃𝑛𝑘

𝛼𝑛𝑘
‖𝑥𝑛𝑘 − 𝑥𝑛𝑘−1‖ → 0  

  (3.21) 

From (3.20) and (3.21), we obtain 

‖𝑥𝑛𝑘+1 − 𝑥𝑛𝑘‖ ≤ ‖𝑥𝑛𝑘+1 − 𝑧𝑛𝑘‖ + ‖𝑧𝑛𝑘 − 𝑤𝑛𝑘‖ +

‖𝑤𝑛𝑘 − 𝑥𝑛𝑘‖  (3.22) 

It follows from (3.22) that 

lim
𝑘→∞

‖𝑥𝑛𝑘+1 − 𝑥𝑛𝑘‖ = 0.  (3.23) 

Since the sequence {𝑥𝑛𝑘} is bounded, there exists a 

subsequence {𝑥𝑛𝑘𝑗
} of {𝑥𝑛𝑘} such that 𝑥𝑛𝑘𝑗

⇀ 𝑧 as 

𝑗 ⟶ ∞. 

 

Furthermore,  

limsup
𝑘→∞

〈𝑓(𝑝) − 𝑝, 𝑥𝑛𝑘 − 𝑝〉

= lim
𝑗→∞

〈𝑓(𝑝) − 𝑝, 𝑥𝑛𝑘𝑗
− 𝑝〉 

  = 〈𝑓(𝑝) − 𝑝, 𝑧 − 𝑝〉  

  (3.24) 

However, we also obtain that 𝑤𝑛𝑘 ⇀ 𝑧  as 𝑗 ⟶ ∞ 

since ‖𝑤𝑛𝑘 − 𝑥𝑛𝑘‖ → 0. This together with 

lim
𝑘→∞

‖𝑤𝑛𝑘 − 𝑦𝑛𝑘‖ = 0 and Lemma 2.2 give that 𝑧 ∈ Ω. 

Now, using the definition of 𝑝 and the fact in (3.24), 

we get 

limsup
𝑘→∞

〈𝑓(𝑝) − 𝑝, 𝑥𝑛𝑘 − 𝑝〉 = 〈𝑓(𝑝) − 𝑝, 𝑧 − 𝑝〉 ≤ 0. 

 (3.25) 

Combining (3.23) and (3.25), one gets  

limsup
𝑘→∞

〈𝑓(𝑝) − 𝑝, 𝑥𝑛𝑘+1 − 𝑝〉 ≤ limsup
𝑘→∞

〈𝑓(𝑝) −

𝑝, 𝑥𝑛𝑘 − 𝑝〉 ≤ 0.   (3.26) 

Using (3.20)-(3.26), we deduce that 

limsup
𝑘→∞

〈𝑓(𝑝) − 𝑝, 𝑥𝑛𝑘+1 − 𝑝〉 ≤ 0. 

This together with Lemma 2.2 and (3.16), we conclude 

that 𝑥𝑛 → 𝑝. This completes the proof∎ 

 

CONCLUSION 

 

Using viscosity iterative method that involved an 

inertial term, a strong convergence was obtained under 

mild assumptions. Our scheme involved one forward 

and one backward per iteration. More so, we relaxed 

the strongly inverse monotone assumption on one of 

the operators and adopted Lipschtiz continuity and 

monotone.  Our computation is simple and easily 

implemented. Our result is an improvement to many 

results in the literature 
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