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Abstract— Shoulder implants usually need to be 

changed after a specific time has passed. However, 

establishing the implant maker or model during this 

transition may be a complex and error-prone 

procedure for medical practitioners. This research 

aims to determine which of four separate implant 

manufacturers produced each of the 597 X-ray 

photos of shoulder implants. In order to accomplish 

this goal, both pre-trained ESA architectures 

(DenseNet201, DenseNet169, InceptionV3, 

NasNetLarge, VGG16, VGG19, and Resnet50) and 

cascading models fed by the YOLOv3 detection 

algorithm were developed, and the classification 

performances of these models were compared with 

one another. The job of the YOLOv3 detection 

algorithm in the stepped models is to identify the 

head area of the shoulder implants and provide this 

region as an input to the ESA designs. This work is 

performed within the context of the stepped models. 

In addition, conventional machine learning 

techniques were integrated with the ensemble 

learning approach. This integration was analyzed 

using Fully Implemented Convolution Neural 

Network (FCNN model) to see how well they 

performed on the data set. With an accuracy of 84.76 

percent, the stepped DenseNet201 model achieved 

the best classification performance. This rate is 

greater than the one found in another research that 

used a comparable data set. The categorization 

accuracy provided by ensemble models is noticeably 

lower than that provided by ESA models. 

Additionally, the classification accuracy achieved by 

YOLO-assisted cascade models is superior to that 

achieved by individual ESA models. That is to say, 

concentrating on the head area of the implant while 

utilizing the YOLOV3 detection algorithm helped 

boost the accuracy of the categorization. This 

methodology will motivate more research into this 

subject area. 

 

Indexed Terms— YOLO, Shoulder implant, object 

detection, deep learning, CNN 

 

I. INTRODUCTION 

 

In the Total Shoulder Arthroplasty, also known as 

TSA, the ball and socket joint of the shoulder is 

replaced with an implant as part of the therapy for 

injured shoulder joints [1-3]. This technique is 

performed routinely in the field of orthopedics. 

Shoulder injuries of a severe nature and significant 

joint inflammation are often the driving forces for 

patients seeking TSA surgery. The patient has minor 

discomfort due to the treatment, and the range of 

motion in their shoulder is improved. Several 

companies specialize in the production of implants [2]. 

 

Additionally, the implant may need to be updated a 

few months or even years after being implanted. In this 

particular scenario, it is essential to identify the 

manufacturer or model of the implant. Due to the lack 

of clarity in the patient's medical record, patients and 

their physicians could be in the dark. At this point, the 

work of identifying an implant maker or model in such 

circumstances depends on the meticulous analysis and 

visual comparison of X-ray pictures of the implant 

performed by medical specialists. Even though X-ray 

scans display the essential characteristics of the 

implants rather clearly, the identification process is 

notoriously time-consuming, prone to mistakes, and 

challenging for orthopedic surgeons and radiologists 

alike. It is a tedious process that must be completed 

carefully and thoroughly for each new patient [2, 4-6]. 

Suppose the implant design is not determined before 
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surgery. In that case, this may result in an increased 

operating time, more complex operations, more blood 

loss, increased bone loss, prolonged healing time, and 

an overall rise in the cost of healthcare [6]. In addition 

to this, it has been reported that ten percent of the 

implants cannot be recognised before the procedure, 

and that two percent of the implants cannot be found 

when they are being placed [7, 8]. X-ray pictures may 

be processed using Convolutional Neural Network 

(ESA) architectures that are trained with deep learning 

to handle this particular issue. 

 
Figure 1: Typical counts of Shoulder implant 

manufacturer graph 

 

Data is the starting point for anything in deep learning 

(DL). Biomedical data may be huge but also 

exceedingly diverse. The creation of algorithms that 

are able to handle several forms of data, in particular 

variable-dimensional structured data [9], is essential to 

the application of deep learning approaches to the 

analysis of data pertaining to biomedical research. 

Recent years have seen the effective use of DL models 

in a variety of domains [10–12], such as the 

categorization of medical images [13–15], and they 

have started to take the role of machine learning 

approaches [16]. However, determining the presence 

of shoulder implants from X-ray pictures is not a topic 

that has been thoroughly researched or addressed [2]. 

 
Figure 2: Sample X-Ray images of Shoulder Implant 

 

There aren't many research that uses machine learning 

techniques to categorise the implant model or 

manufacturer. There are two studies in particular that 

categorise the shoulder implant. Researchers Urban et 

al. [2] identified four distinct implant manufacturers 

by analysing 597 X-ray pictures of shoulder implants. 

During the process of categorization, both 

conventional approaches to machine learning and a 

variety of various pre-trained ESA architectures were 

used, including VGG16, VGG19, ResNet-50, ResNet-

152, NasNet, and DenseNet-201. Using a 10-fold 

cross-validation strategy, the NasNet ESA architecture 

was able to reach the greatest possible categorization 

accuracy. Yi et al. [4] analysed 482 X-ray pictures of 

the shoulder and categorised 5 distinct shoulder 

implant types. In order to complete the categorization 

procedure, they used the ResNet pre-trained ESA 

model. The most significant shortcoming of this 

research is that, rather than categorising all five 

distinct implant types using a single ESA model, the 

researchers developed a unique ESA model for each 

implant and then made dual classifications of the data. 

There is additional research that differentiates 

shoulder implants from hip and knee implants using 

deep learning. These studies focus on hip and knee 

implants. On a total of 274 X-ray pictures, Yi et al. [8] 

categorised two distinct knee implant types utilising 

the ResNet ESA framework. Ghose et al. [17] used 8 

distinct pre-trained ESA topologies to classify 6 

different orthopaedic knee implant types based on 878 

X-ray pictures. Because to the MobileNetV2 design, 

they were able to achieve the best classification 

accuracy. Borja et al. [6] identified 3 distinct complete 
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hip replacement implants. On a total of 252 X-ray 

pictures of hip prostheses, they classified the data 

using a DenseNet-201 system that had been pre-

trained. 

 

This study's objective is to categorise X-ray images of 

shoulder implants according to the manufacturer using 

a combination of the YoloV3 (You Only Look Once) 

object detection algorithm and the pre-trained state-of-

the-art ESA architectures (DenseNet201, 

DenseNet169, InceptionV3, NasNetLarge, VGG16, 

VGG19, Resnet50). This will be accomplished by 

cascading models. to evaluate the effectiveness of 

various topologies in terms of categorization. The 

following is a list of the primary contributions that the 

study makes: 

 

• It is suggested to categorise the shoulder implant 

using a novel stepwise deep learning model that 

was not used in any of the prior investigations. 

• A greater classification accuracy was found in the 

research [2] that used a data set comparable to what 

was found in the literature. 

• Using the YOLOV3 detection algorithm with a 

focus on the head area of the implant has been 

shown to boost classification accuracy. This was 

proved via a series of experiments. 

• Seven distinct ESA models are used, and the 

output of the YoloV3 method as well as the raw X-

ray pictures are used to analyse the data, after 

which the findings are analysed and compared. In 

addition, conventional techniques of machine 

learning are merged with the method of ensemble 

learning, and the combined approaches' respective 

outcomes are analysed. 

 

II. PRELIMINARIES 

 

The detection of the head region of the implants using 

YOLOv3, the creation of stepped models by 

combining the YOLOv3 model with pre-trained ESA 

models, the training of the models and their 

parameters, the shoulder implant X-ray image dataset 

that was used, and the performance metrics that were 

used in the evaluation of the models are all explained 

in this section. 

The shoulder implant X-ray that was used by Urban et 

al. [2] was the dataset that was used for this 

investigation gained simply looking at the pictures. 

Some of the photos included in this dataset were 

collected from the University of Washington's 

shoulder website, while others came from individual 

surgeons and manufacturers. This dataset was 

compiled by Urban et al. [2]. The dataset includes 597 

shoulder implant X-ray pictures from a variety of 

patients, each of which was taken using one of sixteen 

distinct models produced by four separate 

manufacturers. These photos include 83 implants 

manufactured by Cofield, 294 implants manufactured 

by Depuy, 71 implants manufactured by Tornier, and 

149 implants manufactured by the firm Zimmer. 

Figure 1 displays a selection of representative X-ray 

pictures taken from the dataset. In addition, the dataset 

includes a few drawbacks, including the following: (i) 

The image resolution of X-rays is modest and might 

vary from picture to image. A good many of them have 

a resolution that is exactly 250 pixels on each side. (ii) 

Images may have a wide variety of aspect ratios. (iii) 

According to the manufacturer, the visual contrast is 

poor, and the classes are not spread equally. The 

performance of the models in terms of categorization 

is significantly impacted as a result of all of these 

drawbacks. 

 

III. PROPOSED MODELS 

 

There have been two alternative approaches suggested 

for classifying the manufacturer of the shoulder 

implant based on the X-ray pictures. Figure 2 

illustrates these many approaches to the problem. In 

the first technique, pre-trained ESA models such as 

DenseNet201, DenseNet-169, Inception V3, 

NasnetLarge, VGG-16, VGG-19, and Resnet50 were 

cascaded using the YOLOv3 detection algorithm. 

These models were used to generate cascading 

models. First, the YOLOv3 recognition algorithm was 

trained to recognise the head area of the implants using 

pre-labeled X-ray pictures. This was the first phase in 

the process. The head area of the implants was located 

by feeding X-ray pictures into a trained version of the 

YOLO algorithm in the second phase of the process. 

In the third step, the identified head area was clipped 

and sent as an input to the pre-trained ESA models. 

This allowed for the processes of training and testing 

to take place. The pre-trained ESA architectures that 

were utilised in the first technique were trained and 

evaluated using the raw X-ray pictures that were 
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included in the dataset as part of the second procedure. 

In addition, the performance of conventional machine 

learning algorithms on the data set was evaluated, 

specifically with regard to classification accuracy. In 

order to accomplish this goal, the output data of the 

"avg pool" pooling layer of the DenseNet201 

architecture (the layer that comes before the output 

layer) were retrieved. In order to carry out the 

classification procedure, the features that were 

obtained from this layer are provided as input to the 

ensemble classifier. This ensemble classifier is 

comprised of the Random Forest (RF), Extreme 

Gradient Boosting, K-Nearest Neighbor, and Multi-

Layer Detector methods, and it uses the voting method 

to make its decisions. The performance of each 

approach in terms of categorization is compared head-

to-head in the part devoted to the study's findings and 

debates. On the implant data set, the classification 

performances of several ESA models, cascade models, 

and standard machine learning models have thus been 

proven. 

 

3.1. PROPOSED FULLY CONVOLUTIONAL 

NEURAL NETWORK (FCNN MODEL) 

The YOLO and ESA models were developed with the 

help of the Python programming language and the 

Tensorflow and Keras Library. The process of training 

ESA-based models without the use of a graphics 

processing unit (IOP) is one that is exceedingly 

challenging and time-consuming. Because of this, the 

training and testing of the models were executed on 

Google Colab, a product of Google Research, making 

use of T4 and P100 IOPs respectively. In the following 

paragraphs, a detailed presentation of the training of 

YOLO and ESA models as well as the model 

parameters employed in this process will be given. 

 

Training of the YOLOv3 detection algorithm and 

automated trimming of the implant head region are 

included in section 2.3.1. (Training of YOLOv3 

detection algorithm and automatic cropping of implant 

head area)YOLO is a method for detecting objects that 

is based on ESA. This algorithm reframes object 

detection as a single regression problem from image 

pixels to bounding box coordinates and class 

probabilities [23]. In this particular investigation, the 

YOLOv3 version was used to the task of identifying 

the implant's head location. YOLOv3 detects objects 

far more quickly than any other approach currently 

available. The DarkNet-53 ESA architecture is used in 

order to extract the features. DarkNet-53 is composed 

of 53 layers and employs convolutional layers with 

sizes of 3x3 and 1x1. [24] 

 

Because normalisation was performed, the 

information about the height (H) and width (W) of the 

identified implant head area in the picture are 

equivalent. This is because the centre point 

coordinates (X, Y) were made equivalent. 1 and Eq. 

Obtainable in accordance with [25] 2. 

 

𝐹𝑆𝑘 = ∑  
𝑝
𝑖=1,𝑗=1 𝑥𝑖,𝑗 ∗ 𝑤𝑖,𝑗     (1) 

 

It is necessary to train the YOLOv3 model so that it 

can identify the implant head area. In order to properly 

complete this training technique, the head region on 

the X-ray pictures of the implant has to be tagged. 

 

A tool for annotating was used. Using this programme, 

a text file was produced for each individual picture. 

This file contains the height (iY), width (iG), and 

position information of the implant head area (X0, Y0, 

X1, Y1) coordinates of the tagged X-ray pictures. The 

height information is measured in inches, while the 

width information is measured in pixels. Additionally, 

the developed dataset is compatible with the design of 

YOLOv3, which was another goal of this project. 

 

Operations are carried out using bounding boxes that 

are greater than a predetermined IoU threshold while 

the mAP value is being calculated. Using 0.50 as the 

cutoff value, the mAP value for the test data was 

determined to be 99.99 percent, while the average IoU 

value was found to be 81.40 percent. In light of these 

performance figures, it is possible to assert that the 

head area of the implants is detected with a level of 

precision that is above average. As a result, the 

weights that are determined to be appropriate for these 

performance criteria are documented. After that, the 

trained YOLOv3 algorithm was provided with input 

from all of the X-ray pictures included in the dataset, 

and it was able to automatically locate the implant 

head area. OpenCV was used to do some trimming on 

the identified implant head area before it was 

presented as part of an introduction to ESA 

architectures and stepwise models were developed. 

The X-ray images shown in Figure 4 have had the 
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implanted head area recognised and have had the head 

clipped. 

 

The initial step in the training of ESA models included 

scaling down X-ray pictures to a resolution of 224 by 

224 by 3. Following that, each piece of input data was 

multiplied by 255 and then subjected to normalisation. 

In addition to that, the output class labels get one hot 

encoding. During the training as well as the testing 

phase, the 10-fold cross validation approach was used. 

Table 1 displays some of the training parameters 

utilised for cascade models as well as those used for 

individually employed pre-trained ESA models. This 

mAP is the outcome of values such as accuracy and 

sensitivity as well as the F1-score and the IoUoffers 

just one viewpoint or perspective. Spouse. The 

calculation looks as this: 4 [25]. 

 

The optimization method is considered to be the most 

critical parameter. This method provides a description 

of the learning process as well as an explanation of 

how millions or even billions of parameters may be 

updated [27]. When training models, it might be 

challenging to decide which optimization methods to 

use. As a result of this, the Adam, Adadelta, Sgd, 

Rmsprop, Adamax, and Nadam optimization 

algorithms were tested, and the table below presents 

the results of those tests, along with the algorithms that 

provided the best classification performance according 

to each ESA model. The learning rate is yet another 

significant characteristic that affects the overall 

performance of the learning process. In the layers that 

are not the layer, the activation function is represented 

by a rectified linear unit, abbreviated as RELU. The 

activation functions of Relu and Softmax in respective 

order. It is defined in the same manner as in 5 and 6. 

Spouse. xj in 5; refers to the jthoutput in the most 

recent layer, (the pace of learning) If the learning rate 

parameter is given big values, there is a possibility that 

the estimator would fluctuate, which is another way of 

saying that it will wander between feasible local 

solutions. When tiny values are picked, the amount of 

time needed to learn rises. Different learning rate 

values were experimented with when ESA models 

were being trained in order to get the highest possible 

classification performance. The Core Components 

The convolution and pooling layers are connected to 

the trainable parameter in some way. If this option is 

set to "False," the layers in question will be preserved 

in their current state, training will not be carried out, 

and the "imagenet" weights will be applied without 

modification. This parameter value is set to "True" in 

the DenseNet201 model, "True" in the DenseNet169 

model, and "False" in the Inception V-3 ESA model; 

however, in other models, it is assigned to "False." In 

addition, the categorical cross entropy was used as a 

loss function in each and every model. Additionally, 

the training procedure was finished at 70 epochs on the 

DenseNet-169 and Inception V-3 ESA models, but it 

was finished at 50 epochs on the other models. 

 

The activation function is another key parameter that 

is considered during the training of models. The output 

layer is the very last layer in ESA models, and the 

activation function used there is called Softmax. This 

layer has a fixed number of four neurons in its 

composition. Figure 3 depicts the training loss and 

accuracy curves for the cat-2 step of the stepped 

DenseNet201 model, which had the greatest 

classification performance. Calculations were also 

made for curves that belonged to other models; 

however, these calculations were not included in the 

research in order to make the study easier to read. As 

can be seen in Figure 4, the training process shown by 

the model was both rapid and consistent. The 

subduction value was very near to zero at a level that 

was close to 10 epochs, then it peaked a bit, and then 

it continued to be relatively close to zero at a level that 

was close to 20 epochs. The accuracy curve displays a 

scenario quite similar to this one as well. 

 

3.1 METRICS FOR MEASURING 

PERFORMANCE 

Metrics like precision (K), sensitivity (D), accuracy 

(F1), and F1-score (F1) were used in the assessment of 

the models. Following are the mathematical formulae 

that correspond to each of these measures. In these 

equations, "DP" stands for "True Positive," "DN" 

stands for "True Negative," "FP" stands for "False 

Positive," and "YN" stands for "False Negative." 

• Precision: This parameter determines the ratio of 

actual positive results to the total number of 

anticipated positive results. As a result, it is 

contingent upon the values of DP and FX. Spouse. 

The calculation looks as this: 

K= DP ∕(DP + FP) 

• Sensitivity: The sensitivity of a model may be 

defined as the fraction of true positives that are 
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properly categorised by it. Sensitivity Co. for all 

samples that tested positive. The calculation for it 

is as in 8. 

D = DP ∕(DP + YN) 

• F1-Score: The F1 score is a measurement that 

combines the model's precision and sensitivity 

characteristics in order to determine the overall 

accuracy value of the whole model. Comparable to 

the harmonic mean of the sensitivity values and the 

sensitivity values. The calculation looks as this: 9 

[25]. 

𝐴𝑣𝑔 =
∑  𝑁
𝑘=1 𝐹𝑆𝑘

𝑁
 (2) 

• Accuracy: Equi. The calculation looks as this:  

𝑆𝑡𝑑 = √
1

𝑁
∑  𝑁
𝑘=1 (𝐹𝑆𝑘 − 𝐴𝑣𝑔)

2
, 𝑆𝐹𝑆𝑘

=
𝐹𝑆𝑘−𝐴𝑣𝑔

𝑆𝑡𝑑
  (3) 

 

Accuracy may be calculated as 

(DP+DN)/(DP+DN+YP+YN) (10) Densely 

Connected Neural Networks may be found in section 

2.4. (Densely Connected Neural Network). Because 

the highest classification performance is achieved in 

the DenseNet201 model, which is a densely connected 

neural network, it is crucial to discuss the architecture 

of this model within the context of the research 

because it is one of the models being investigated. 

Huang et al. have built neural networks that feature 

dense connections to one another. It was produced by 

member number 18. Figure 3 provides an overview of 

the network's general design. To guarantee that the 

greatest amount of information is sent through from 

one layer to the next in the network, all of the layers 

have identical feature map sizes and are directly linked 

to one another in a feed-forward manner. In this 

manner, each layer was given extra inputs from all of 

the layers that came before it, and it also transmitted 

its own feature maps to all of the layers that came after 

it. That would be Eq. It is stated in the 11th paragraph. 

In this case, [X0, X1,..., Xl–1]; 0,... refers to the 

merging of feature maps that were formed in l-1 

different layers. 

 
Figure 3: Proposed model architecture 

 

The resulting function that is obtained by merging 

these feature maps is denoted by the letter Hl and is 

defined as the union of three operations in sequence 

(YN-Relu-Conv.). The stack normalisation (YN), the 

RELU [6], and the 3 x 3 convolution are the sequential 

processes that are being discussed here. 

 

IV. RESULTS AND DISCUSSIONS 

 

For the purpose of shoulder implant manufacturer 

categorization, the performances of the DenseNet201, 

DenseNet-169, InceptionV3, NasnetLarge, VGG-16, 

VGG-19, Resnet50, and Community architectures in 

individual and cascade models are discussed in this 

section in further detail. An overlapping complexity 

matrix (CM) was produced for each of the models, and 

performance metrics (D, F, F1-score, and accuracy) 

that are representative of the entire model were 

computed using this matrix. This was done so that a 

general assessment of the models could be made. 

When comparing the performance of different models, 

it is essential to make use of measures that are derived 

from overlapping KM in order to ensure that the 

overall performance is properly shown. The 

overlapping KM is created by combining together the 

individual KMs that are collected from each level [34]. 

 

Table 1: No data augmentation comparison of applied 

deep learning models. 

Criteri

a 

Accu

racy 

Sensi

tivity 

Speci

ficity 

Pre

cisi

on 

RM 

SE 

F_

1 

AlexN

et 

94.41 0.959 0.041 0.9

72 

2.4

4 

0.

96

5 
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Dark-

Net-53 

93.85 0.965 0.034 0.9

58 

3.0

9 

0.

96

2 

Insepti

on-

ResNe

t 

95.53 0.965 0.034 0.9

79 

1.9

3 

0.

97

2 

ResNe

t-50 

92.73 0.95 0.05 0.9

56 

3.9

3 

0.

95

3 

VGG-

19 

91.06 0.95 0.048 0.9

37 

4.8

7 

0.

94

4 

Propos

ed 

FCNN 

model 

97.2 0.98 0.019 0.9

86 

1.3

2 

0.

98

3 

 

Table 2 provides a summary of the models' overall 

performance in terms of categorization. With an 

average classification accuracy of 84.76 percent, the 

stepped DenseNet201 model has the greatest 

classification performance. This model ranks the 

Cofield manufacturer with a score of 77.10 percent 

(D=0.7710), the Depuy manufacturer with a score of 

93.20 percent (D=0.9320), the Tornier manufacturer 

with a score of 73.24 percent (D=0.7324), and the 

Zimmer manufacturer with a score of 77.85 percent 

(D=0.7785) for correctly classifying its manufacturer. 

The Depuy manufacturer has the greatest correct 

categorization rate of all of the manufacturers. This is 

due to the fact that the quantity of implant X-ray 

pictures provided by the producer of Depuy products 

is about three times greater. In accordance with the 

growing amount of X-ray pictures of implants, 

classification performance is also improving across 

various manufacturers. Figure 7 illustrates the 

overlapping KM that results from using the stepped 

DenseNet201 model. According to the model, Cofield 

has a score of 64 true and 19 false, whereas Depuy has 

a score of 274 true and 20 false, Tornier has a score of 

52 true and 19 false, and Zimmer has a score of 116 

true and 33 false. 

 

 

 

 

Table 2: With data augmentation comparison of 

applied deep learningmodels. 

Criteria Acc

ura

cy 

Sensiti

vity 

Speci

ficity 

Pre

cisi

on 

RM

SE 

F_

1 

AlexNet 93.

88 

0.96 0.036 0.9

55 

3.0

2 

0.9

59 

Dark-

Net-53 

90.

95 

0.95 0.047 0.9

27 

5.0

7 

0.9

39 

Inseptio

n-

ResNet 

93.

13 

0.95 0.044 0.9

57 

3.4

6 

0.9

56 

ResNet-

50 

88.

69 

0.92 0.07 0.9

23 

6.1

2 

0.9

26 

VGG-

19 

86.

51 

0.93 0.066 0.8

91 

8.4

7 

0.9

1 

Propose

d FCNN 

model 

96.

31 

0.97 0.021 0.9

74 

1.4

6 

0.9

76 

 

 
Figure 4: Accuracy performance of applied models’ 

graph 

 

The DenseNet201 model has the greatest classification 

performance, with an accuracy value of 76.73 percent, 

when the individual model performances that are not 

fed with YOLO are assessed. On the other hand, the 

accuracy of this model's classification is noticeably 

worse compared to that of the cascading DenseNet201 

model that was fed with YOLO. The same may be said 

about the many other models. To put it another way, 

the classification performance has been significantly 

improved thanks to the development of stepwise 

models, which were accomplished by providing 
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YOLO to the ESA models. DenseNet169 models have 

the ability to classify data with the second-best 

performance, according to both the cascade and 

individual models.The accuracy of these models in 

terms of categorization was 81.74 percent, and it is 

now at 72.29 percent. On this particular data set, 

DenseNet models demonstrated superior classification 

performance compared to that of other models.Figure 

8 presents a comparative analysis of the classification 

accuracy values obtained from the stepwise and 

individual modelling approaches. Classification 

performances of the models, ordered from largest to 

smallest, for cascade models DenseNet201 (accuracy 

= 0.8476), DenseNet169 (accuracy = 0.8174), 

InceptionV3 (accuracy = 0.8042), Ensemble (accuracy 

= 0.7688), NasnetLarge (accuracy = 0.7421), VGG16 

(accuracy = 0.6600), VGG19 (accuracy = 0.6082) and 

Resnet50 (acc DenseNet201 (accuracy = 0.7673), 

DenseNet169 (accuracy = 0.7523), InceptionV3 

(accuracy = 0.7254), NasnetLarge (accuracy = 

0.6414), VGG19 (accuracy = 0.5125), Community 

(accuracy = 0.4927), Resnet50 (accuracy = 0.4302), 

and VGG19 (accuracy = 0.4099) are the individual 

models with the highest accuracy. When compared to 

both cascading and individual models, the Resnet50 

and VGG19 models had the weakest classification 

performance. In addition, the Community model has a 

classification performance that is only modest when 

applied to the cascade structure, but it shows a 

classification performance that is much worse when 

applied to the individual structure. The classification 

performance of the ensemble model is greatly 

improved when fed with YOLO in comparison to the 

performance of other models. 

 

As was said previously, there are relatively few studies 

that categorise X-ray pictures of shoulder implants 

using the technique of deep learning. Despite this, 

there are still a few research that carry out 

categorization using ESA models that have been pre-

trained. It is essential to evaluate the findings of this 

study in light of those obtained from other research. In 

this investigation, Urban et al. made use of the data set 

that was used in [2]. The greatest level of classification 

accuracy, 0.80, was achieved by Urban et al. via their 

use of six distinct pre-trained ESA models in their 

work. However, the classification accuracy obtained 

in this investigation by three of the stepwise models 

that were fed with the YOLO detection technique was 

found to be greater than the accuracy reported in the 

study by Urban et al. This finding provides more 

evidence that improving classification performance by 

using pre-trained ESA designs that are fed with YOLO 

into stepwise models is beneficial. In a separate piece 

of research, Yi et al. [4] used the ResNet pre-trained 

ESA architecture to categorise five distinct types of 

shoulder implants. They tested five different models 

and found that the classification accuracy ranged from 

0.90 to 0.94 to 0.95 to 0.98 to 1. Through this research, 

Yi and colleagues were able to improve their 

categorization accuracy. On the other hand, one 5-

outlet ESA model can accommodate all of the 

numerous shoulder implants that are available. 

 

They constructed five distinct ESA models, each of 

which assigns a binary rating (True-False) to each 

implant rather than categorising the implants 

themselves. This explains why they performed so 

much better in the categorization. Because in binary 

classification, the model is trained using just one 

implant from one manufacturer, and it responds by 

determining if the X-ray picture in question 

corresponds to the relevant implant company. In 

addition, the data set that they utilised is distinct from 

the one that was used in this research. Because of all 

of these factors, it would not be particularly realistic to 

compare studies in terms of their categorization 

abilities straight to one another. According to the 

examination of the relevant literature, there is no other 

research that categorises shoulder implants save these 

two studies. On the other hand, there aren't very many 

research that categorise hip and knee implants using 

deep learning. Yi et al. [8] used ResNet ESA 

architecture to classify two distinct knee implants, and 

their results showed a high level of accuracy. Once 

again, a binary classifier is used in this situation. An 

accuracy of 0.96 was achieved by Ghose et al. [17] in 

their classification of six distinct orthopaedic knee 

implants. During the classification process, they used 

eight unique pre-trained ESA topologies and found 

that the MobileNetV2 architecture provided the best 

results, earning it the highest rating. Borjali et al. [6] 

used DenseNet-201's pre-trained ESA architecture to 

classify three distinct complete hip replacement 

implants, achieving an accuracy of 1. 

 

In earlier work on implants, including the shoulder 

implant and others, direct use of pre-trained ESA 
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architectures was made in every case. However, in our 

research, in addition to the direct use of ESA 

architectures, we also used it as a cascade model by 

combining it with YOLO. The results of this 

combination showed that it increased the classification 

performance, which will serve as a foundation for 

future research in this area of study. The data set itself 

is the source of the most significant shortcoming of our 

investigation. As was previously underlined, the poor 

and varied resolution of the X-ray pictures, the varying 

aspect ratios and low image contrast, and the unequal 

distribution according to the manufacturer had a major 

detrimental influence on the model performances. This 

was the case for a number of reasons. The cascade 

models that were developed in the research could 

display improved classification accuracy on a dataset 

of greater quality and one that is free of these 

unfavourable characteristics. 

 

V. CONCLUSION AND FUTURE WORK 

 

Through the use of seven distinct pre-trained ESA 

architectures and stepwise models in which these ESA 

architectures were fed with YOLO, the authors of this 

work were able to distinguish between four distinct 

manufacturers of shoulder implants using X-ray 

pictures. According to the findings of the research, the 

DenseNet201 ESA cascade model that was fed with 

YOLO had the greatest classification performance. 

This model had an accuracy rate of 84.76 percent. The 

accuracy of this categorization is greater than that of 

another research [2] that used a dataset that was 

comparable to this one. Additionally, it has been 

shown without a reasonable doubt that the 

classification performance of cascade models is 

superior to that of individual ESA structures. Instead 

of concentrating on the photos as a whole, the cascade 

models zero down on certain aspects of the X-rays of 

the implants taken with YOLO that stand out from the 

rest. The accuracy of the categorization is improved as 

a result. It's possible that the stepwise model that was 

provided in this study would be useful for future 

research on the implant. In addition, the classification 

performance of the ensemble model, which 

incorporates voting in addition to conventional 

machine learning models, was worse than that of the 

majority of the ESA designs. Deep learning techniques 

may be used to determine the manufacturer of an 

implant, which can be helpful to radiologists as well 

as orthopaedic surgeons when making judgments. 

 

Cascading models will be created with detection 

algorithms such as YOLO, R-CNN, and Fast R-CNN, 

and all possible ESA architectures will be 

demonstrated on a larger data set and their 

classification performances will be shown. If new 

datasets on shoulder implants can be reached in future 

studies, they will allow cascading models to be 

created. Additionally, X-ray pictures will be rebuilt via 

the autoencoder deep learning approach, and graded 

ESA models will be trained utilising features from a 

variety of various layers. 
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