
© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880

IRE 1704435 ICONIC RESEARCH AND ENGINEERING JOURNALS 501

Add Self-Learning Ability to NLP for Automatic Test

Case Generation

SHRIKRUSHNA ZIRAPE1, SHIVAM SHARMA2, ILYAS HUSSAIN ALI3, MANASI KUMBHAR4,

RENUKA NALAWADE5, PROF. MANISH JANSARI6

1, 2, 3, 4 Pune Institute of Computer Technology, Pune, India
5 Veritas Technologies (Principal SQA), Pune, India

6 Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

Abstract- In Software testing, 40-70 percent of the

testing process is spent on developing and designing

test cases. It is tough for the untrained tester to

generate all the test cases that cover every aspect of

the criteria. By changing requirements frequently

manual development becomes less valuable and it

requires more time and effort. Rather than

generating test cases manually, a tool can be used to

generate test cases automatically based on user

stories and scenarios, but the dictionary plays a very

important role in this process. In this project we

have used Natural language processing to generate

dictionary in which it will find keywords in user

stories or scenarios and create test cases

accordingly. As this entire process is automated, it is

very efficient in time perspective. This project

provides a realistic solution for automatic dictionary

generation which will be used for test case

generation.

Indexed Terms- Agile, Natural Language

Processing, Dictionary

I. INTRODUCTION

This thesis investigates if a vocabulary can be

automatically created from user stories using natural

language processing to create in an Agile workflow,

the test cases that are required. The final goal is to

produce functional test cases from business

requirements. Agile uses user stories are used to

record business requirements. Test scenario

description and dictionary are two input factors

needed for automatically producing test cases.

Dictionary that is used for generating the test cases

was formerly produced manually, but now using the

NLP techniques we’re aiming to produce the

dictionary automatically.

The traditional waterfall model had a lot of

limitations and was unable to keep up with rapidly

growing and changing market. Thus, Agile software

development methods was introduced to meet the

requirements of market and business stakeholders. In

agile software development methods, speed

development is possible which helps in meeting

business requirements. This is possible by having

testing and development go hand in hand together

from the very beginning. TestDriven Development

(TDD) and Behaviour-Driven Development (BDD)

are the most commonly followed techniques in Agile

development methods. TDD was considered to be

unstructured and hence BDD was developed to

overcome these limitations. These methods were

however introduced before the automated testing

scenario and thus suffer from limitations such being

not able to produce a full testing process.

The vocabulary includes commonly used system

terms as well as testing techniques that might

interfere. The user previously had to save keywords

and test parameters pertinent to the implementation in

the dictionary. Words from the lexicon are regularly

used in user stories and related test phases. With the

help of this we can cover a much broader range of

test case scenarios. The software’s edge cases are

also tested. This is done using boundary and corner

cases. For instance, the tester might want to check the

parameter’s limits by assigning the word ”Quantity”

values of zero, positive, and negative. A variety of

test situations for different criteria are made available

with the dictionary’s assistance. The modification of

the dictionary on the basis of functionality of the

© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880

IRE 1704435 ICONIC RESEARCH AND ENGINEERING JOURNALS 502

system and the industry is also possible due to the

fact that the user stories utilised will not be restricted

to any particular area.

The dictionary can also be used as a technique for

addressing errors in serious situations. The lexicon

aids in increasing test coverage by diversifying the

test methodologies. Existing natural language

processing techniques are used to extract keywords

from test case situations, filter them, and then their

potential values are stored in a dictionary. The test

cases are then created using these keywords.

II. LITERATURE SURVEY

Sr

No.
Paper Year Summary Limitations

1

Automatic

Generation of

Test Cases for

Agile using

Natural

Language

Processing

2017

Created a

programm

that

automatically

creates

functional

test cases

from the

free-form test

scenario

description

using NLP

approaches.

Increases the

time by

7percent.

2

NLP-Based

Requirements

Formalization

for

Automatic Test

Case

Generation

2021

Created a

tool based on

NLP

to generate

requirement

models

Cannot be used

for complex

textual data

3

Automatically

Generating

Tests from

Natural

Language

Descriptions of

Software

Behavior.

2013

Uses natural

language

processing

techniques,

code

information

extraction

and

probabilistic

matching.

Better

techniques can

be used to

improve

accuracy.

4

Automatic

Generation

of System

Test

Cases from

Use Case

Specifications.

2020

Uses Use

Case

Modelling

for

System

Test

generation

approach .

Mostly only

focuses on use

case

specification for

generation and

also the time

taken is more.

5

Test Case

Generation

Using Activity

Diagram and

Sequence

Diagram.

2012

Creates

activity and

sequence

graph from

the respective

diagrams.

Cannot solve

problem which

are combination

of activity and

sequence

diagram.

6

A Review of

NLP Oriented

Automated

Test

Case

Generation

Framework in

Testing

2020

Literature

review

of how NLP

is used in

automated

test case

generations.

NLP in

automated

testing can

increase

performance but

needs to work on

accuracy.

TABLE I

LITERATURE SURVEY

III. SYSTEM AND FUNCTIONAL

REQUIREMENTS

This section covers the software, functional and non

functional requirements of the project.

A. Software Requirements

We have considered the following softwares in the

course of the project development:

 Java

 Python

B. Libraries

 Numpy

 Pandas

 NLTK

 PyTorch

 TensorFlow

 SciPy

 Spacy

© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880

IRE 1704435 ICONIC RESEARCH AND ENGINEERING JOURNALS 503

C. Functional Requirements

The following are the functional requirements for the

proposed system:

1) SRS document from user for test case generation

The interested candidate should be able to upload

SRS document from the User Interface from which

the test cases will be generated. SRS document

contains all specification and requirements required

for test case generation

2) NLP Parsing

The SRS document must then be checked for proper

formatting and successful NLP parsing should be

performed using methods like POS tagging, syntactic

parsing etc for further processing.

3) Convert dependencies to frames

In this step the POS tagging splits the keywords into

verbs and adjectives and appends to dictionary as

bigram.

4) UML diagram creation

The SRS document will pass through the NLP parser

the operations like lemmatization and POS tagging

will be applied on it and after that various uml

diagrams will be generated like activity diagram, use

case diagram.

5) Activity Graph traversing

The acitvity graph shows the relation and sequence of

steps required to generate test case it forms relations

between different components of the project so that

the generated test case can cover the whole project.

D. Non-functional requirements Performance

Requirement

1) User satisfaction:

The UI should be usable for any new user and it

should be developed by considering all the

requirements of the user.

2) Concise Result:

The application should generate all test cases as per

mentioned in the SRS document

3) Accuracy:

The generated test cases should be correct and their

accuracy should be high so that we cannot leave any

test scenario

4) Application Availability:

Application availability is a measure used to evaluate

whether an application is functioning properly and

can be used to meet individual or organizational

needs

Safety and Security Requirements

1) Improper or incomplete SRS:

The formatting and parsing of SRS to generate

dictionary is the most important function and it is

essential that the SRS submitted is verified and free

of errors to generate proper dictionary.

2) Generating precise dictionary:

During NLP parsing we apply POS Tagging to

separate adjective and verbs and care needs to be

taken while appending verbs as bigram to dictionary.

3) Security:

SRS is a very critical document during software

development life cycle and it is important to ensure

that the system on which the SRS is taken as input

and parsed is secure.

Software Quality Attributes

1) Availability

The system should be operationl and running and

after receiving the first SRS it should be able to take

second SRS after generating test cases for first one

2) Maintainability

The test cases should be generated for all modules of

the project specified in the SRS document.

3) Usability

The input data which is large size should be handled

by the system effectively.

4) Reliability

The software system Reliability is nothing but the

executing probability of a function that has specific

requirements, specific input, and a fixed number of

input conditions in the specified time interval(The

hardware and input not contains any errors)

5) Robustness

The impact of operational mistakes, incorrect input

data, and hardware failures is reduced by robustness.

© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880

IRE 1704435 ICONIC RESEARCH AND ENGINEERING JOURNALS 504

IV. RELATED WORKS

A. Different types of techniques using NLP

Designing and generating test cases is a tedious

manual process that requires 40-70 percent of the

software test life cycle. Also, often these are designed

by inexperienced testers and does not cover all

requirements of the project. Projects have now

shifted from traditional waterfall models to Agile

model. Here, the business requirements are captured

in the form of user stories. The aim is automate the

generation of test cases using natural language

processing (NLP).

We make use of NLP techniques to capture these user

stories in natural language format followed by

transforming the natural language into computational

models using UML. We develop a tool to generate

test cases automatically by creating UML diagrams.

in [2] major focus is on how to create specification

models from the functional requirements that is given

in natural language. A technique using NLP is

proposed to generate test cases automatically. This

method tries to automate the creation of model from

the given requirements by making use of various

algorithms. It is not restricted to any specific domain

or format and also covers a wide range of

requirements formulation.

[2] also generates requirement models for battery

charging approval system for evaluation

producing correct and complete artifacts to a high

degree which are used to create sequence

diagrams to be able to finally generate abstract

test cases.

[3] tries to describe a prototype tool, kirby, that can

automatically translate natural language

behavioural descriptions into exe test files.

Behaviour-Driven Development (BDD) is an

emerging agile technique that is built on the

already established Test-Driven Development

(TDD). TDD is an iterative process and here

before writing the implementation code, the test

code is written thereby introducing testability

during the software design itself. Despite many

advantages, TDD also has some drawbacks as it

requires understanding of “where to start, what to

test and what not to test, how much to test in one

go, what to call their tests, and how to understand

why a test fails”.

Thus, BDD was developed to overcome these

limitations of TDD as it expresses the behaviour of

system in natural language thereby improving

communication among stakeholders by helping them

understand the behaviours. The one limitation

however of BDD is that programmers are still

required to write program steps that corresponds to

these behaviours/scenarios to translate into

executable software tests and this can be referred to

as ”glue code”. [3] proposes that instead of

programmers having to write ”glue code” manually,

the natural language scenarios can be converted to

executable software test files automatically.

[3] makes use of a tool called kirby which generates

executable software tests from the natural language

structured scenarios using natural language

processing techniques. A small collection of 12 BDD

scenarios are compiled and ran through Kirby to

evaluate and assess the performance as well as

accuracy thereby showing the feasibility of one

technique for accomplishing the task. Currently, this

prototype has not undergone significant evaluation

and thus as part of future work, a larger collection of

existing BDD scenarios needs to be compiled for

truly evaluating its effectiveness and performance.

B. Activity and Sequence Diagrams

Activity and Sequence Diagram Creating System

graphs by integrating activity graph and sequence

graph. Firstly they convert sequence diagram to

sequence graph and activity diagram to activity graph

and then integrate together to system graph and then

use this system graph to further generate test cases.

Once SYG is generated , it is traversed using DFS

and used TCG-SYG which automatically traverses. It

travels all the possible paths from node to node,

checks for pre condition, selects the test case, checks

the input with pre condtion and then post condition is

checked and then the test case is added. In activity

diagram conditional statement is requied for having

the possibility of multiple paths and give optimal

solution, in sequence diagram all cases should be

considered as a result it will cover all the

possibilities. It solves the problem of concurrent

© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880

IRE 1704435 ICONIC RESEARCH AND ENGINEERING JOURNALS 505

exevution which can lead to state explosion problem.

Since they use DFS thes cases obtained are

exhaustive and optimum. But the limitation faced

using this method was problems related to

combination of activity and sequence diagram

remained unsolved.

V. ADVANTAGES

There are a number of advantages some of which are

1) Maximum coverage of paths and data.

2) Reduces the difficulties to tester with no prior

knowledge of the working of the system for

designing the test cases.

3) Save time and money.

4) Improve quality of testing with better test

coverage.

5) Easier maintenance and reuse of test cases if

customer changes the requirements.

VI. LIMITATIONS

1) The input user stories’ format is constrained.

2) The Description for the test case and the input

user stories determine the significance of the test

cases.

3) The performance of the Test Cases generated

using this tool is dependent on how the user

knows grammar and punctuation. The user can his

Grammatical skills while defining the user story

and test scenario.

CONCLUSION AND FUTURE WORK

To save time and effort spent on testing, automatic

test case generation has recently been a study issue.

Making the testing process less influenced by people

has been the subject of several solutions and

methodologies. A win-win situation is achieved when

automated testing and natural language processing

are coupled.

Test cases will be produced with a great deal less

work and time, and they will be of higher quality.

One of the crucial inputs for the programme that

generates test cases is a dictionary. Dictionary will

assist in producing test cases of higher quality and

with greater test coverage of the requirements. The

process of manually creating a dictionary takes a lot

of time, hence automation is required.

REFERENCES

[1] Prerana Pradeepkumar Rane “Automatic

Generation of Test Cases for Agile using

Natural Language Processing” - March 14, 2017
Blacksburg, Virginia.

[2] Chunhui Wang, Fabrizio Pastore, Arda Goknil,

and Lionel C. Briand - “Automatic Generation

of Acceptance Test Cases from Use Case

Specifications: an NLP-based Approach” - May

2020.

[3] Grootendorst, M. ”KeyBERT: minimal keyword

extraction with BERT, v0.1.3.” (2020).

[4] Shweta Ganiger; K.M.M. Rajashekharaiah

“Comparative Study on Keyword Extraction

Algorithms for Single Extractive Document”

2018 Second International Conference ICICCS.

[5] Mohsin Irshad, Ricardo Britto, KaiPetersen

Adapting Behavior Driven Development (BDD)

for large-scale software systems - Elsevier 14

May 2020.

[6] Dipti Belsare, Dr. Manasi Bhate “A Review of

NLP Oriented Automated Test Case Generation

Framework in Testing” - International Journal

of Future Generation Communication and

Networking Vol. 13 - 2020.

[7] Robin Gropler1 , Viju Sudhi1 , Emilio Jos¨ e

Calleja Garc´ ´ıa2 and Andre Bergmann -

“NLP-Based Requirements Formalization for

Automatic Test Case Generation” - AKKA

Germany GmbH, 80807 Munchen,¨ Germany -

2021.

[8] Boghdady, P. , Badr, N. L., Hashem, M. A.,

Tolba, M. F., “An enhanced technique for

generating hybrid coverage test cases using

activity diagrams” Informatics and Systems.

[9] Ranjita Kumari, Vikas Panthi, Prafulla Kumar

Behera,“Generation of test cases using Activity

Diagram” International Journal of Computer

Science and Informatics, ISSN (PRINT): 2231 –

5292, Volume- 3, Issue-2, 2018.

