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Abstract— Lung cancer is the leading cause of death 

in most countries around the world. Radiologists 

usually segment images manually, which takes time 

and results in less precise results. Since the early 

discovery of tumors can assist radiologists in 

determining their nature, sort, and mode of therapy, 

tumor detection and segmentation from CT Scan 

images is an important area of study. For experts, 

automated segmentation facilitates faster data 

analysis. Deep learning is a machine learning 

algorithm technique. In deep learning, data 

transformation takes the form of layers. This paper 

proposes deep learning, which is based on 

convolutional neural networks and is mostly used for 

image processing. The recommended Lung tumor 

segmentation is being developed utilizing cutting-

edge technology such as deep learning algorithms, 

and CNN, to segment and identify tumors and decide 

which deep learning approach is most suited for 

segmenting. Two examples of deep learning 

techniques are UNET and UNETR. These 

techniques are frequently applied to segmentation-

related problems. The dataset for the segmentation of 

lung tumors is made available through the NSCLC 

and Decathlon challenge and consists of lung CT 

scans. 

 

Indexed Terms— Convolutional Neural Network, 

Deep Learning, Segmentation, Transformer. 

 

I. INTRODUCTION 

 

Lung cancer is a devastating disease that is responsible 

for a significant number of cancer-related deaths 

worldwide. The lungs, which are essential components 

of the respiratory system, are responsible for 

oxygenating the blood and removing carbon dioxide 

from the body. Unfortunately, exposure to harmful 

substances, such as tobacco smoke or radon gas, can 

cause mutations in the lung cells that result in the 

growth of malignant tumors. Due to the lack of 

symptoms or the similarity of symptoms to respiratory 

illnesses, lung cancer is typically discovered at an 

advanced stage, making it difficult to treat effectively. 

Therefore, the development of a treatment strategy 

that can diagnose cancer at an early stage is crucial. 

One way to improve the diagnosis and treatment of 

lung cancer is through the segmentation of lung 

tumors. Various studies have been conducted in this 

area, with researchers utilizing different techniques to 

segment lung tumors accurately. Manual segmentation 

by radiologists can occasionally lead to incorrect 

results due to interobserver variability. On the other 

hand, semiautomatic segmentation has been shown to 

have lower interobserver variability than manual 

segmentation. To address this issue, automatic 

segmentation of lung cancer using deep learning 

networks has been explored. These networks have 

shown promising results in accurately segmenting 

lung tumors and can be useful in developing treatment 

strategies that can diagnose lung cancer early and 

improve patient outcomes. 

 

II. ALGORITHM 

 

Medical image segmentation is a critical component of 

many clinical applications, such as disease diagnosis, 

treatment planning, and image-guided interventions. It 

involves separating the target organ or tissue from the 

background in medical images, which is essential for 

accurate and efficient analysis of the image data. 

While manual segmentation by a radiologist is the 

gold standard, it can be time-consuming and prone to 

inter- and intra-observer variability. Automated 

segmentation algorithms based on machine learning, 

deep learning, and other computational techniques 

have shown great promise in improving segmentation 

accuracy and reducing the time required for 
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segmentation. However, there are still challenges to be 

addressed, such as handling different imaging 

modalities, dealing with noise and artifacts, and 

achieving robust performance across different patient 

populations. 

 

Training an AI model for lung tumour segmentation 

typically involves the following steps:  

2.1 Image acquisition: This involves capturing 

medical images using various imaging modalities such 

as X-ray, CT, MRI, ultrasound, etc. The quality of the 

acquired images is critical for accurate segmentation. 

 

2.2 Pre-processing: This step involves applying 

various image processing techniques to the acquired 

images to enhance their quality, reduce noise, and 

improve contrast. Common pre-processing techniques 

include filtering, smoothing, and histogram 

equalization.  

 

2.3 Segmentation: This is the main step in which the 

target organ or tissue is identified and separated from 

the background using various techniques such as 

thresholding, edge detection, and region growing. The 

choice of technique depends on the characteristics of 

the image and the type of organ or tissue being 

segmented.  

 

2.4 Postprocessing: This step involves refining the 

segmented image to remove any remaining noise or 

artifacts, and to smooth the boundaries of the 

segmented region. This is important to ensure that the 

final segmented image is accurate and visually 

appealing. Common postprocessing techniques 

include morphological operations, smoothing, and 

contour refinement.  

 

1. CNN Based Model  

 

1.1 U-Net:  

The U-Net is a convolutional neural network 

architecture that was proposed by Ronneberger et al. 

in 2015 for biomedical image segmentation. The U-

Net architecture consists of an encoder path that 

captures the context of the image and a decoder path 

that enables precise localization of the segmented 

object. The encoder path of the U-Net consists of a 

series of convolutional and max-pooling layers that 

progressively reduce the spatial dimensions of the 

input image while increasing the number of channels. 

The decoder path of the U-Net consists of a series of 

deconvolutional and up sampling layers that increase 

the spatial dimensions of the output while reducing the 

number of channels. Skip connections are added 

between the corresponding layers of the encoder and 

decoder paths to preserve the spatial information and 

enable precise localization of the segmented object. 

The architecture consists of a contracting path and an 

expansive path, where the contracting path follows the 

typical architecture of a convolutional network, 

consisting of repeated applications of two 3x3 

convolutions, each followed by a rectified linear unit 

(ReLU) and a 2x2 max pooling operation with stride 2 

for down sampling. The expansive path, on the other 

hand, consists of up sampling layers followed by 2x2 

convolutions that reduce the number of feature 

channels, concatenation with the corresponding 

cropped feature map from the contracting path, and 

two 3x3 convolutions, each followed by a ReLU. The 

performance of the U-Net architecture has been 

evaluated in various studies using different medical 

imaging datasets. For example, a study by Çiçek et al. 

(2016) evaluated the U-Net architecture for prostate 

segmentation using the publicly available 

PROMISE12 dataset. The U-Net achieved a mean 

Dice similarity coefficient of 0.863, which 

outperformed several other state-of-the-art methods. 

In another study by Isensee et al. (2018), the U-Net 

architecture was evaluated for brain tumour 

segmentation using the BraTS 2017 dataset. The U-

Net achieved a mean Dice similarity coefficient of 

0.858 for whole tumor,0.775 for tumour core and 

0.647 for the contrast enhancing tumour, which was 

among the top-performing methods in the challenge. 

The author trained and tested the U-Net model on the 

ISBI cell tracking challenge dataset, which consisted 

of fluorescence microscopy images of cells. They 

compared the results of U-Net with other state-of-the-

art methods and found that U-Net achieved the best 

performance with an accuracy of 0.9203 IOU in PhC-

U373 and 0.7756 in DIC-HeLa.  

 

1.2 ResUNet++:  

The ResUNet++ paper proposes a novel deep-learning 

architecture for automatic polyp segmentation and 

detection in colonoscopy images. Polyps are 

precursors to colorectal cancer, and early detection is 

crucial for effective treatment. The ResUNet++ 
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architecture is designed to help clinicians identify 

polyps that may be missed during endoscopic 

examinations. The ResUNet++ architecture is based 

on the Deep Residual U-Net (ResUNet) architecture, 

which combines the strengths of deep residual learning 

and U-Net. Residual blocks are used to allow the 

network to learn residual functions, which can make it 

easier for the network to learn complex mappings. U-

Net is a popular architecture for medical image 

segmentation that uses a contracting path and an 

expansive path to capture context and localization 

information, respectively. The ResUNet++ 

architecture adds several improvements to the 

ResUNet architecture. Squeeze and excitation blocks 

are added to allow the network to learn channel-wise 

dependencies and focus on important features. Atrous 

Spatial Pyramidal Pooling (ASPP) is used to capture 

multi-scale information, which can help the network 

identify polyps of varying sizes. Attention blocks are 

used to allow the network to focus on relevant regions 

of the image. The authors evaluate the ResUNet++ 

architecture on two publicly available datasets and 

compare its performance to the popular U-Net and 

ResUNet architectures. They find that the ResUNet++ 

architecture improves segmentation results 

significantly for colorectal polyps compared to other 

state-of-the-art methods. The proposed architecture 

also works well with a smaller number of images. The 

performance of the ResUNet++ architecture has been 

evaluated on two datasets. It was evaluated on the 

Kvasir-SEG dataset where it gives a dice score of 

0.8133 and for the CVC-612 dataset it gives a dice 

score of 0.7955. The ResUNet++ paper proposes a 

novel deep-learning architecture for automatic polyp 

segmentation and detection in colonoscopy images. 

The architecture incorporates several improvements 

over previous architectures, including residual blocks, 

squeeze, and excitation blocks, Atrous Spatial 

Pyramidal Pooling (ASPP), and attention blocks.  

 

1.3 nnU-Net:  

nnU-Net, short for "No New-Net", is a deep learning-

based framework designed for medical image 

segmentation. The U-Net architecture has been widely 

used for medical image segmentation tasks due to its 

ability to handle small datasets and achieve high 

accuracy. However, U-Net has some limitations, such 

as its fixed architecture, lack of adaptability to 

different datasets, and sensitivity to initialization. To 

address these limitations, nnU-Net introduces a self-

adapting U-Net-based framework that can adjust itself 

to any given dataset. The framework is based on a 

modular design, with a core U-Net architecture and 

several modules that adapt the model to different 

datasets. To adapt the model to different datasets, 

nnU-Net introduces several modules, each of which is 

responsible for a specific adaptation task. These 

modules can be combined and configured in different 

ways to form a customized framework for a particular 

dataset.  

 

Some of the modules introduced in nnU-Net include:  

1.3.1 Data pre-processing module: This module 

applies various pre-processing techniques to the input 

data, such as intensity normalization and histogram 

equalization, to improve the performance of the 

model.  

1.3.2 Data augmentation module: This module 

generates synthetic data by applying various 

transformations to the input data, such as rotation and 

scaling, to increase the size of the training set and 

improve the robustness of the model.  

 

1.3.3 Training module: This module provides various 

options for training the model, such as different loss 

functions and optimization algorithms, to fine-tune the 

model to the given dataset.  

 

1.3.4 Inference module: This module applies post-

processing techniques, such as connected component 

analysis and conditional random fields, to the output 

of the model to improve the segmentation results.  

 

The authors demonstrated the effectiveness of the 

nnU-Net framework by participating in the medical 

segmentation Decathlon challenge. They used a five-

fold cross-validation approach with three different 

automatically configured U-Net models for each 

dataset and selected the model with the highest mean 

foreground dice score for final submission. The nnU-

Net performed competitively on the held-out test sets 

of seven highly distinct medical datasets and achieved 

the highest mean dice scores for all classes of all tasks, 

except for class 1 in the Brain Tumour dataset. The 

dice scores of the test sets of lung sections are 0.692.  

nnU-Net also introduces a novel self-adaptation 

mechanism that can adjust the framework to a given 

dataset automatically. The self-adaptation mechanism 
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consists of a self-adaptive layer that learns to adjust 

the number of filters and the size of the convolutional 

kernels based on the input data. This mechanism 

allows nnU-Net to handle datasets of different sizes 

and resolutions and adapt the model architecture to the 

specific characteristics of each dataset.  

 

2. Transformer Based Models.  

2.1 UNETR:  

UNETR is a recent paper that proposed a new 

architecture for 3D medical image segmentation using 

transformers. Transformers are a popular architecture 

for natural language processing tasks, but they have 

shown promising results in other domains such as 

computer vision. The authors of UNETR aimed to 

leverage the power of transformers for 3D medical 

image segmentation tasks, which is a challenging 

problem due to the high variability and complexity of 

medical images. To address this limitation, researchers 

have combined self-attention modules with 

convolutional layers to improve non-local modeling 

capabilities. Additionally, transformer-based models 

have achieved state-of-the-art benchmarks in various 

tasks in natural language processing (NLP) and 

computer vision due to their great capability of 

modeling long-range dependencies and capturing 

global context. In particular, the Vision Transformer 

(ViT) and its variants have shown excellent 

capabilities in learning pre-text tasks that can be 

transferred to downstream applications. Building on 

this, the authors propose a novel architecture called 

UNET Transformers (UNETR) for volumetric 

medical image segmentation. The architecture 

reformulates the task of 3D segmentation as a 1D 

sequence-to-sequence prediction problem and uses a 

transformer as the encoder to learn contextual 

information from the embedded input patches. After 

the embedding layer, they a stack of transformer 

blocks comprising of multi-head self-attention (MSA) 

and multilayer perceptron (MLP). The extracted 

representations from the transformer encoder are 

merged with the CNN-based decoder via skip 

connections at multiple resolutions to predict the 

segmentation outputs. Instead of using transformers in 

the decoder, the proposed framework uses a CNN-

based decoder since transformers are unable to 

properly capture localized information, despite their 

great capability of learning global information. The 

architecture utilizes a transformer encoder to capture 

global context, which has been shown to be beneficial 

in various computer vision tasks. A combination of 

soft dice loss and cross-entropy loss was used. The 

proposed model is validated on two public datasets: 

BTCV and MSD, where UNETR achieves new state-

of-the-art performance on the BTCV leaderboard and 

outperforms competing techniques on the MSD 

dataset. The model average dice score for BTCV and 

MSD was 0.891 and 0.711, respectively.  

 

2.2 Swin-UNETR:  

Swin-UNETR is a novel deep-learning architecture for 

medical image segmentation. This architecture is built 

on top of two state-of-the-art models in the field of 

computer vision: the Swin Transformer and the 

UNETR. The Swin Transformer is a recent 

advancement in the field of computer vision that has 

achieved impressive results in image classification and 

object detection. It is a hierarchical transformer 

network that breaks down the image into smaller 

patches and processes them independently before 

assembling them back into the final output. This 

approach is much more efficient than traditional 

convolutional neural networks (CNNs) as it reduces 

the amount of computation needed for each layer. The 

architecture of the Swin Transformer consists of four 

key components: a patch embedding layer, a 

hierarchical transformer layer, a Swin Transformer 

block, and a classification head. The Swin 

Transformer block is the core building block of the 

Swin Transformer architecture. It consists of several 

key components, including a shifted window self-

attention mechanism, a shifted window feed-forward 

network, and a residual connection. The shifted 

window self-attention mechanism allows the model to 

capture spatial dependencies within the image by 

attending to neighboring patches in a shifted window 

pattern, rather than a traditional sliding window 

pattern. The researchers evaluated Swin-UnetR on 

several medical image datasets, including liver and 

prostate segmentation. The results showed that Swin-

UnetR outperformed several state-of-the-art 

segmentation models in terms of accuracy and 

efficiency. The researchers also showed that Swin-

UnetR was able to generalize well to unseen data, 

indicating its potential for use in real-world 

applications. The model was trained and evaluated on 

the BraTS dataset where it gives an average dice score 

of 0.913. 
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III. RESULTS AND DATASETS 

 

SN. Model Dataset Dice 

Score 

1 U-Net PhC-U373 0.9203 

2 U-Net DIC-HeLa 0.7756 

3 ResUNet++ Kvasir-SEG 0.8133 

4 ResUNet++ CVC-ClinicDB 0.7955 

5 nnU-Net Decathlon Lung 

Dataset 

0.6920 

6 nnU-Net Decathlon Brain 

Dataset 

0.612 

7 UNETR BTCV 0.891 

8 UNETR MSD 0.711 

9 Swin-

UNETR 

BraTS 0.913 

Table 1. Model and Dice Score for dataset 

 

Summary of datasets used by researchers for Medical 

Segmentation:  

 

1. PhC-U373:  

The PhC-U373 dataset is a collection of phase contrast 

images of human glioblastoma cells (U373MG cell 

line) acquired with a 20x objective. It was created by 

the Biomedical Imaging Group of the École 

Polytechnique Fédérale de Lausanne (EPFL) and is 

commonly used as a benchmark dataset for evaluating 

image segmentation algorithms. The dataset contains 

327 fluorescence images of cell nuclei with 

accompanying ground truth annotations of the nuclei 

boundaries. The images were captured with a Zeiss 

Axiovert microscope and are available in 8-bit TIFF 

format with a resolution of 696x520 pixels. The PhC-

U373 dataset is freely available for research purposes 

and can be downloaded from the EPFL website. It has 

been widely used in the development and evaluation 

of various computer vision and machine learning 

techniques for image segmentation and cell tracking. 

  

2. DIC-HeLa:  

The DIC-HeLa dataset is a collection of differential 

interference contrast (DIC) microscopy images of 

HeLa cells. It was created by the Cell Biology and 

Biophysics Unit of the European Molecular Biology 

Laboratory (EMBL) and is often used as a benchmark 

dataset for evaluating image segmentation and 

tracking algorithms. The dataset contains 469 DIC 

images of HeLa cells with accompanying ground truth 

annotations of the cell boundaries and nuclei positions. 

The images were acquired with a 100x objective and 

are available in 16-bit TIFF format with a resolution 

of 512x512 pixels. The DIC-HeLa dataset is freely 

available for research purposes and can be 

downloaded from the EMBL website. It has been 

widely used in the development and evaluation of 

various computer vision and machine learning 

techniques for cell segmentation, tracking, and 

analysis.  

 

3. Kvasir-SEG:  

The Kvasir-SEG dataset is a collection of 

gastrointestinal endoscopic images and accompanying 

annotations, designed for research and development of 

computer vision and machine learning algorithms in 

the medical domain. The dataset was created by the 

Norwegian University of Science and Technology 

(NTNU) and SINTEF Digital, and it is freely available 

for research purposes. The dataset contains a total of 

1,000 annotated images from the gastrointestinal tract, 

captured using an Olympus GIF-H180J endoscope 

with a 4K UHD camera. The images are classified into 

eight different classes: normal-z-line, normal-pylorus, 

normal-cecum, esophagitis-a, esophagitis-b-d, polyps, 

ulcerative-colitis, and dyed-resection-margins. Each 

image is manually annotated by at least two medical 

experts with pixel-level segmentation masks, 

indicating the location of the various classes of 

gastrointestinal tract diseases and conditions in the 

image. The Kvasir-SEG dataset has been widely used 

in the development and evaluation of various 

computer vision and machine learning techniques for 

image segmentation, classification, and object 

detection in the medical domain.  

 

4. CVC-ClinicDB:  

The CVC-ClinicDB dataset is a collection of 

endoscopic images and videos of the gastrointestinal 

tract. It was created by the Computer Vision Center 

(CVC) of the Autonomous University of Barcelona 

and the Hospital Clinic of Barcelona, Spain, and it is 

often used as a benchmark dataset for evaluating 

computer vision and machine learning algorithms in 

the medical domain. The dataset contains 612 images 

and 612 videos from 13 different patients, with a 

variety of gastrointestinal diseases such as ulcerative 
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colitis, Crohn's disease, and colon cancer. The images 

and videos were acquired using a Pentax endoscope 

with a resolution of 768x576 pixels and 25 frames per 

second. Each image and video are manually annotated 

with pixel-level segmentation masks, indicating the 

location of various classes of gastrointestinal diseases 

and conditions in the image or video. The annotations 

include labels for normal tissue, polyps, ulcers, and 

other lesions. The CVC-ClinicDB dataset is freely 

available for research purposes and has been widely 

used in the development and evaluation of various 

computer vision and machine learning techniques for 

image and video analysis in the medical domain. 

 

5. Decathlon Dataset  

The Decathlon dataset is a collection of medical 

imaging datasets designed for benchmarking computer 

vision and machine learning algorithms in the medical 

domain. It was created by the Computational 

Radiology Laboratory of the Children's Hospital of 

Philadelphia and the Department of Radiology of the 

Perelman School of Medicine at the University of 

Pennsylvania. The Decathlon dataset consists of 10 

different medical imaging datasets, each with its own 

unique characteristics and challenges, including:  

 

5.1 Brain Tumour Segmentation (BraTS)  

5.2 Cardiac MRI Segmentation (ACDC)  

5.3 Lung CT Segmentation (LUNA16)  

5.4 Prostate MRI Segmentation (PROMISE12)  

5.5 Liver CT Segmentation (LiTS)  

5.6 Hippocampus Segmentation (ADNI)  

5.7 Colonography (CTC)  

5.8 Retinal Vessel Segmentation (DRIVE)  

5.9 Chest X-Ray Abnormalities Detection 

(ChestXray14)  

5.10 Skin Lesion Segmentation (ISIC)  

Each dataset is accompanied by detailed annotations, 

including ground-truth segmentation masks and 

clinical information about the patients. The Decathlon 

dataset is freely available for research purposes and 

has been widely used in the development and 

evaluation of various computer vision and machine 

learning techniques in the medical domain, such as 

image segmentation, classification, and registration.  

 

6. BraTS:  

The BraTS dataset is a widely used benchmark dataset 

for brain tumour segmentation and diagnosis in 

medical imaging. It stands for "Multimodal Brain 

Tumour Segmentation Challenge" and is organized by 

the Medical Image Computing and Computer Assisted 

Intervention Society (MICCAI) and the BraTS 

organizing committee. The BraTS dataset includes 

Magnetic Resonance Imaging (MRI) scans of the 

brain, including T1-weighted, T1-weighted with 

contrast enhancement, T2-weighted, and Fluid 

Attenuated Inversion Recovery (FLAIR) sequences. 

The dataset also includes ground-truth segmentation 

labels for three types of brain tumours: glioma, 

meningioma, and pituitary adenoma. The BraTS 

dataset has been used to evaluate various algorithms 

for brain tumour segmentation, including deep 

learning-based approaches. It is widely used in 

research and development of brain tumour diagnosis 

and treatment planning. The dataset is freely available 

for research purposes and can be downloaded from the 

official BraTS website.  

 

3. Medical Segmentation Decathlon (MSD):  

The Medical Segmentation Decathlon (MSD) is a 

dataset collection designed for benchmarking 

algorithms in medical image analysis. The MSD 

dataset consists of ten different medical imaging tasks, 

including brain tumour segmentation, liver 

segmentation, and cardiac segmentation, each with a 

corresponding dataset. The goal of the MSD challenge 

is to compare the performance of different 

segmentation algorithms on these tasks. The MSD 

dataset includes various imaging modalities, such as 

MRI, CT, and ultrasound, and is annotated with 

ground truth segmentations by medical experts. The 

datasets are publicly available and can be used for 

research purposes.  

 

The tasks included in the MSD dataset are:  

6.1 Brain tumour segmentation  

6.2 Hippocampus segmentation  

6.3 Liver segmentation  

6.4 Lung segmentation  

6.5 Pancreas segmentation  

6.6 Prostate segmentation  

6.7 Cardiac segmentation  

6.8 Spleen segmentation  

6.9 Colon segmentation  

6.10 Head and neck CT segmentation 

The MSD dataset has been widely used in medical 

image analysis research, and several algorithms have 
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been developed and evaluated on this dataset. The 

MSD challenge is organized by the Computational 

Radiology Laboratory at Boston Children's Hospital 

and the Brigham and Women's Hospital.  

 

7. Beyond The Cranial Vault (BTCV)  

The Beyond the Cranial Vault (BTCV) Segmentation 

Challenge dataset is a collection of medical images of 

various anatomical structures, including the head and 

neck, thorax, and abdomen. The dataset was created 

for the BTCV Segmentation Challenge, which was 

organized in conjunction with the MICCAI 2019 

conference.  

The BTCV Segmentation Challenge dataset consists 

of three sub-datasets:  

7.1 The head and neck dataset, which includes 

computed tomography (CT) scans of the head and 

neck region, and is designed for segmentation of the 

larynx, pharynx, and various other structures.  

7.2 The thorax dataset, which includes CT scans of the 

thorax, and is designed for segmentation of the lungs, 

heart, and other structures.  

7.3 The abdomen dataset, which includes CT scans of 

the abdomen, and is designed for segmentation of the 

liver, spleen, and various other structures. Each sub-

dataset includes training and validation sets with 

corresponding ground truth annotations, as well as a 

test set for evaluation. The annotations were created 

by medical experts, and the dataset is publicly 

available for research purposes. The BTCV 

Segmentation Challenge dataset has been used to 

evaluate and compare the performance of various 

segmentation algorithms and has led to the 

development of new methods for medical image 

analysis.  

 

CONCLUSION 

 

In this article, we have explored existing medical 

image segmentation model techniques based on 

various descriptor methods combined with 

convolution neural networks such as U-Net, ResU-

Net++, and transformer-based such as UNETR, Swin-

UNETR. We also listed common datasets used for 

segmentation. A limitation of existing medical image 

segmentation is ambiguity and complexity of the 

image, inter-patient variabilities such as age, gender, 

etc., lack of interpretability, and class imbalance. Our 

study provides insight into existing medical image 

segmentation models for researchers wishing to 

conduct research in this area. A challenge for future 

research is to develop a robust medical image 

segmentation model that can overcome the existing 

limitations. 
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