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Abstract- Historically auto insurance companiesput 

more focus on policy sales as an important guiding 

metric when it comes to measuring their marketing 

success. New customers are the lifeline of any 

growing business. But while sales remain an 

important result of a successful customer 

acquisition effort, it is important to make sure that 

policy sales aren’t the only metric used to measure 

performance. Not all customers purchased 

insurance are equal. Someone who purchases an 

inexpensive policy is going to be less valuable for 

business than someone who purchases an expensive 

one, and longtime customers will bring in more 

money than those who buy a one-year policy and do 

not renew. This concept is called customer lifetime 

value (CLV). And if a company is not paying 

attention to it, it is going to wind up overpaying for 

low-value customers and losing out on high-value 

customers it might have had. As it turns out, 

modern companies can analyze their historical data 

to determine the lifetime value of their customers 

and determine the factors that can affect the CLV. 

 

I. INTRODUCTION 

 

Customer lifetime value is a powerful and 

straightforward measure that synthesizes customer 

profitability and churn (attrition) risk at individual 

customer level.For existing customers, customer 

lifetime value can help companies develop customer 

loyalty and treatment strategies to maximize 

customer value.For newly acquired customers, 

customer lifetime value can help companies develop 

strategies to grow the right customers. 

 

II. LITERATURE REVIEW 

 

The goal of this paper is to Analyze the Sales of the 

company and predict the Customer lifetime value. 

The author uses predictive modelling techniques such 

as Linear Regression, Random Forest Regressor, 

Gradient Boosting Regressor, XGBOOST to predict 

CLV. Based on the above prediction methods, it was 

found that accuracy of Gradient boosting model was 

better than other models. Based on the predicted 

CLV, the author wants to perform customer 

segmentation using classification algorithms like K-

means, Logistic Regression, Naive Bayes. It was 

found that Naive Bayes model is better suited for 

segmentation. 

 

However, the author concluded that to increase 

customer Lifetime Value, we should focus on 

Effective Communication, Loyalty Program, 

Retargeting, and It is seen from customer 

segmentation based on predicted CLV, that about 

17% customers contribute to almost 50% of the 

Value. This is the segment that should be targeted by 

the marketing team. These customers should be 

nurtured so that they continue with the company and 

efforts should be made to increase their CLV. 

 

CLTV has been a mainstay concept in Marketing 

Management for the past few decades. However, 

most of the literature on the topic is dedicated to 

extolling the use of CLTV as a decision-making 

criterion or considered it in the context of business 

profitability. It is also discussed for the key role it 

plays in customer acquisition/retention trade-offs and 

customer acquisition decisions.[5] It is important to 

measure CLTV as this can be used as a metric in 

evaluating marketing decisions. It is important for a 

firm to have an estimate of the customer’s lifetime 

value when the customer first starts doing business 

with them, and at each of their subsequent purchases. 

 

III. DATA UNDERSTANDING 

 

3.1. DATA ANALYSIS & INTERPRETATION 

The data set contains all the transactions starting 

from the year 2011, it has 9134 rows and 24 columns. 
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By sourcing proper data andapplying it in the right 

manner is the key to this research. 

 

3.1.1. DATA UNDERSTANDING (NUMERCAL 

ATTRIBUTES) 

 

 Customer 

Lifetime 

Value 

Income Monthly 

Premium 

Auto 

Months 

Since 

Last 

Claim 

count 9134 9134 9134 9134 

mean 8004.94 37657.38 93.21 15.09 

std 6870.96 30379.9 34.40 10.07 

min 1898.01 0 61 0 

25% 3994.25 0 68 6 

50% 5780.18 33889.5 83 14 

75% 8962.16 62320 109 23 

max 83325.38 99981 298 35 

 

 Months 

Since 

Policy 

Inceptio

n 

Number 

of Open 

Complai

nts 

Numbe

r of 

Policies 

Total 

Claim 

Amount 

count 9134 9134 9134 9134 

mean 48.06 0.38 2.97 434.08 

std 27.91 0.91 2.39 290.50 

min 0 0 1 0.09 

25% 24 0 1 272.25 

50% 48 0 2 383.94 

75% 71 0 4 547.51 

max 99 5 9 2893.23 

 

3.1.2. DATA UNDERSTANDING (CATEGRICAL 

ATTRIBUTES) 

 
(Fig-1) 

 
(Fig-2) 

 

People with Premium coverage add more average 

CLV compared to Basic and Extended coverage. But 

as the number of customers with Basic coverage is 

more, they contribute maximum to the total CLV of 

company. 

 

 
(Fig-3) 

 

 
(Fig-4) 

 

Employee status is almost the same across all 

education sectors for average CLV. But employed 

customers contribute maximum to the total CLV. 

 

 
(Fig-5) 

 

Customer lining in suburban contribute maximum to 

the total CLV.  
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(Fig-6) 

 

 
(Fig-7) 

 

Average CLV does not vary much based on customer 

education. Whereas customers with masters and 

doctorate degree education contribute less to total 

CLV as compared to others. 

 

Based on the analysis, average and total CLV are 

almost same across male and female customers. 

 

 
(Fig-14) 

 

Customers with Personal auto policies contribute 

more to the total CLV. 

 

 
(Fig-16) 

 

When it comes to renewal of the policy, customers 

have responded more to offer-1 provided by the 

insurance company. 

 

 

 
(Fig-18) 

 

If you see the plot, a greater number of policy sales 

have been done through the agent, Agent has 

contributed more to the total CLV. 

 

 
(Fig-20) 

 

Based on the number of policies being sold to the 

customers, the Personal Auto policy is the most 

popular policy sold, among others. 

 

 
(Fig-26) 

 

Based on the analysis, the number of insurance policy 

being applied are more for midsize vehicles. 

 

3.2. DATA PREPARATION 

 

3.2.1. MISSING VALUE IMPUTATION 

There wereno missing valuesfound in the data set. 

 

3.2.2.DATA NORMALIZATION 
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We used standard scaler to scale the data and fit it 

into different models. The Standard Scaler is a 

normalization technique that transforms the features 

of a dataset to have zero mean and unit variance. The 

mathematical formula for Standard Scaler 

normalization is as follows: 

 

For each feature (column) in the dataset: 

 Calculate the mean (μ) of the feature. 

 Calculate the standard deviation (σ) of the feature. 

 Subtract the mean from each value in the feature. 

 Divide each value by the standard deviation. 

 

The formula to perform Standard Scaler 

normalization on a feature x is: 

 

x_normalized = (x - μ) / σ 

 

Where: 

 x_normalized is the normalized value of the 

feature x. 

 x is the original value of the feature. 

 μ is the mean of the feature. 

 σ is the standard deviation of the feature. 

 

This normalization process ensures that the 

transformed feature has a mean of zero and a 

standard deviation of one. It helps in bringing 

different features to a similar scale and can be 

beneficial for certain machine learning algorithms 

that are sensitive to feature scales. 

 

3.2.3.OUTLIER TREATMENT 

During analysis, we found that there are considerable 

number of outliers present in the Columns such as 

Customer Lifetime Value, Monthly Premium Auto 

and Total Claim Amountthat may impact the model. 

So, we have to drop the outliers of these columns 

before fitting in to the model. 

 

 

 

 

 

 

 

 

 

3.2.4.CORRELATION ANALYSIS 

 

 
(Fig-19) 

 

3.2.5.FEATURE ENGINEERING 

Out of 24 variables, based on the analysis we found 

that 14 variables had a significant impact and can be 

used as features to predict CLTV. We performed 

Ttest to check if a variable has significance on 

Customer Life Time Value or not. If the variable has 

p-value>0.05 then the variables are rejected. 

 

IV. DATA MODELING 

 

Both industry and research efforts have increased to 

help shape many different methods for CLTV 

estimations. Both statistical and machine learning 

techniques are used extensively for this purpose. 

Here we used Regressions models to predict CLTV. 

 

Clustering or a multi-class classification problem 

may not be the most appropriate way since the 

problem is more of regression problem in which our 

goal is to estimate a continuous value. In regression 

models the models are trained to learn and predict 

continuous values. 

 

We used the below Regression Models to verify 

results. 

LR: Linear Regressor 

KN: K Nearest Neighbor Regressor 

DT: Decision Tree Regressor 

GB: Gradient Boosting Regressor 
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CLTV is used as the target variable and the data set is 

divided into train and test sets. Training set is used to 

train the model and the model is validated on the test 

set. This helps in understanding the model accuracy. 

We have  

 

4.1Linear Regression 

One of the most well-known algorithms in machine 

learning is Linear regression. This algorithm fits a 

linear equation on the observed dataset to model the 

relationship between two variables. The goal of linear 

regression is to find the best-fit line that summarizes 

the relationship between the variables, where the line 

minimizes the differences between the actual values 

and the predicted values. 

 

y = β₀ + β₁x₁ + β₂x₂ + ... + βₚxₚ + ε 

 

Where: 

 y is the dependent variable (the variable you want 

to predict). 

 β₀ is the intercept or bias term. 

 β₁, β₂, ..., βₚ are the coefficients or weights 

associated with the independent variables x₁, x₂, 

..., xₚ respectively. 

 x₁, x₂, ..., xₚ are the independent variables (also 

known as features or predictors). 

 ε represents the error term or residual, which 

accounts for the variability in the dependent 

variable that cannot be explained by the 

independent variables. 

 

4.2KNeighborsRegressor 

KNeighborsRegressor is a type of regression that 

uses the k-nearest neighbors approach for predicting 

the value of a continuous target variable.During 

prediction, the algorithm searches for the k-nearest 

neighbors of the input point in the feature space 

based on a distance metric, and then predicts the 

target value as the mean of the target values of the k-

nearest neighbors. 

 

 Data Preparation: 

We have a dataset with observations consisting of p 

independent variables (features) and a corresponding 

dependent variable (target variable).Each observation 

is represented as a vector in a p-dimensional feature 

space. 

 Distance Calculation: 

KNN uses a distance metric (e.g., Euclidean distance) 

to measure the similarity between observations in the 

feature space. 

 

For two points P = (p₁, p₂, ..., pₚ) and Q = (q₁, q₂, ..., 

qₚ) in an n-dimensional Euclidean space, the 

Euclidean distance between them is given by: 

 

d(P, Q) = √((q₁ - p₁)² + (q₂ - p₂)² + ... + (qₚ - pₚ)²) 

 

 Finding the K Neighbors: 

The K nearest neighbors are the training observations 

with the smallest distances to the test observation. 

K is a user-defined parameter and represents the 

number of neighbors to consider. 

 

 Predicting the Target Value: 

In regression, the predicted target value for the test 

observation is typically computed as the average (or 

weighted average) of the target values of its K nearest 

neighbors.This means that the predicted value is the 

mean of the dependent variable values of the K 

nearest training observations. 

 

 Model Evaluation: 

The performance of the K-nearest neighbors 

regressor can be evaluated using various metrics, 

such as mean squared error (MSE) or R-squared. 

 

4.3 Decision Tree Regressor 

Decision Tree Regressor is a type of regression 

algorithm that uses a decision tree to model the 

relationship between the input features and the target 

variable. During training, the algorithm selects the 

best feature to split the data based on a criterion such 

as the reduction in variance or the increase in 

information gain. It continues to split the subsets until 

it reaches a stopping criterion. During prediction, the 

algorithm traverses the decision tree from the root 

node to a leaf node, where it predicts the target value 

as the mean of the target values of the training 

samples in that leaf node. 
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(Fig-20) 

 

4.4Gradient Boosting Regressor 

Gradient Boosting Regressor is a type of ensemble 

learning algorithm used for regression tasks. It 

combines multiple weak regression models, usually 

decision trees, to create a strong model that can 

accurately predict a continuous target variable based 

on one or more input features. It fits a decision tree to 

the residuals, or errors, of the previous tree, rather 

than the target variable directly. This allows it to 

progressively reduce the errors and improve the 

accuracy of the model. The residuals are calculated as 

the difference between the predicted and actual target 

values. 

 

Ensemble Construction: 

a. Initial Prediction:F₀(x) = argminₚ ∑ᵢ L(yᵢ, s) 

 

F₀(x) represents the initial prediction or base 

prediction for the target variable y based on the loss 

function L. 

s is a constant that minimizes the sum of the loss 

function over all training samples. 

L(yᵢ, s) represents the loss function applied to the true 

target value yᵢ and the initial prediction s. 

 

b. Gradient Calculation:For each iteration m, 

calculate the negative gradient of the loss function 

with respect to the previous prediction: 

 

gᵢₚ = -∂L(yᵢ, F ₋p₁(xᵢ)) / ∂F ₋p₁(xᵢ) 

 

gᵢₚ represents the negative gradient for the i-th 

training sample at iteration m. 

F ₋p₁(xᵢ) represents the prediction made by the 

ensemble at iteration m-1 for the i-th sample. 

 

c. Fitting Weak Learners:Fit a weak regression model 

(often a decision tree) to predict the negative 

gradients (gᵢₚ) obtained in the previous step. 

 

hₚ(x) = WeakLearner(x, gᵢₚ) 

 

hₚ(x) represents the prediction made by the weak 

learner (e.g., decision tree) at iteration m for the input 

sample x. 

WeakLearner denotes the weak learning algorithm 

used to fit the weak regression model. 

 

d. Ensemble Update:Update the ensemble by adding 

the prediction of the weak learner scaled by a 

learning rate (η): 

 

Fₚ(x) = F ₋p₁(x) + η * hₚ(x) 

 

Fₚ(x) represents the updated prediction made by the 

ensemble at iteration m for the input sample x. 

 

Prediction:The final prediction made by the 

GradientBoostingRegressor ensemble is the sum of 

the initial prediction and the predictions of all weak 

learners, scaled by the learning rate: 

 

F(x) = F₀(x) + η * ∑ₚ hₚ(x) 

 

F(x) represents the final prediction made by the 

ensemble for the input sample x. 

 

V. MODEL EVALUATION 

 

Accuracy of a machine learning model is measured 

by checking how good a model can predict with the 

given data. We calculated the metrics below to 

determine a suitable model for our data set.  

 

MAE (Mean Absolute Error) is the absolute 

difference between the true value and the predicted 

value for each sample, summing up these differences, 

and finally taking the average by dividing the sum by 

the total number of samples. 

 

MAE = (1/n) * Σ|yᵢ - ŷᵢ| 

 

Where: 

 n is the total number of samples or observations. 
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 yᵢ is the true value of the target variable for the i-

th sample. 

 ŷᵢ is the predicted value of the target variable for 

the i-th sample. 

 |x| denotes the absolute value of x. 

 

MSE (Mean Squared Error) is the squared difference 

between the true value and the predicted value for 

each sample, summing up these squared differences, 

and finally taking the average by dividing the sum by 

the total number of samples. 

 

MSE = (1/n) * Σ(yᵢ - ŷᵢ)² 

 

Where: 

 n is the total number of samples or observations. 

 yᵢ is the true value of the target variable for the i-

th sample. 

 ŷᵢ is the predicted value of the target variable for 

the i-th sample. 

 

RMSE (Root Mean Squared Error) is the squared 

difference between the true value and the predicted 

value for each sample, summing up these squared 

differences, dividing the sum by the total number of 

samples, and finally taking the square root of the 

average. 

 

RMSE = √(MSE) 

 

MAPE (Mean Absolute Percentage Error) is the 

absolute percentage difference between the true value 

and the predicted value for each sample, summing up 

these absolute percentage differences, and finally 

taking the average by dividing the sum by the total 

number of samples. The result is multiplied by 100 to 

express the error as a percentage. 

 

MAPE = (1/n) * Σ(|(yᵢ - ŷᵢ) / yᵢ|) * 100 

 

Where: 

 n is the total number of samples or observations. 

 yᵢ is the true value of the target variable for the i-

th sample. 

 ŷᵢ is the predicted value of the target variable for 

the i-th sample. 

 |x| denotes the absolute value of x. 

 

R-2 (R Squared Value) is the proportion of the total 

variance in the dependent variable that is explained 

by the regression model (SSR) relative to the total 

variance in the dependent variable (SST). Subtracting 

this ratio from 1 provides the R-squared value. 

 

R-squared = 1 - (SSR / SST) 

 

Where: 

 SSR (Sum of Squared Residuals) represents the 

sum of the squared differences between the 

predicted values and the actual values of the 

dependent variable. 

 

SSR = Σ(yᵢ - ŷᵢ)² 

 

Where: 

 yᵢ is the actual value of the dependent variable for 

the i-th observation. 

 ŷᵢ is the predicted value of the dependent variable 

for the i-th observation. 

 Σ denotes the summation, which involves 

summing up the squared differences across all 

observations. 

 SST (Total Sum of Squares) represents the sum of 

the squared differences between the actual values 

of the dependent variable and the mean of the 

dependent variable. 

 

SST = Σ(yᵢ - ȳ)² 

 

Where: 

 yᵢ is the actual value of the dependent variable for 

the i-th observation. 

 ȳ is the mean value of the dependent variable. 

 Σ denotes the summation, which involves 

summing up the squared differences across all 

observations. 

 

Results using 90% of data for training and 10% in 

testing. 

 LR KN DT GB 

MAE 0.25350 0.17475 0.03144 0.03272 

MSE 0.11005 0.07555 0.00755 0.00611 

RMSE 0.33174 0.27486 0.08689 0.07819 

MAPE 5.00047 2.69290 0.39201 0.62335 

𝑅2 0.26717 0.44083 0.94973 0.95929 
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Results using 80% of data for training and 20% in 

testing. 

 LR KN DT GB 

MAE 0.25492 0.18063 0.03351 0.03257 

MSE 0.11185 0.08127 0.00846 0.00576 

RMSE 0.33444 0.28508 0.09200 0.07591 

MAPE 4.56053 3.60725 0.77929 0.62300 

𝑅2 0.27314 0.47186 0.94500 0.96255 

 

Results using 65% of data for training and 35% in 

testing. 

 LR KN DT GB 

MAE 0.25949 0.19736 0.03477 0.03296 

MSE 0.11611 0.09121 0.00882 0.00611 

RMSE 0.34075 0.30201 0.09390 0.07815 

MAPE 4.41806 3.16629 0.74038 0.66778 

𝑅2 0.25885 0.41781 0.94372 0.96101 

(LR: Linear Regressor, KN: KNeighborsRegressor 

DT:  DecisionTreeRegressor, GB: 

GradientBoostingRegressor) 

 

From the above results it is evident that Gradient 

Boosting Regressor model predicts better as 

compared to other models. It has highest accuracy 

with least mean square error and 𝑅2. 

 

CONCLUSION 

 

For the purpose of this project, Gradient Boosting 

Regressor model is considered for CLTV prediction 

based on the prediction accuracy.Some 

recommendations to increase customer Life Time 

Value are: 

 Attract customers owning luxury cars, currently 

they contribute least to total CLTV. But each 

addition/retention of these customers will add 60-

50% of CLTV with respect to other customers. 

 Company is doing good on suburban areas (60% 

of total CLTV coming from suburban area), but 

should focus on advertisement to attract more 

people on rural and urban area. 

 67% of the customers are purchasing offline 

(agent/branch), with respect to just 13% online 

(web). Company should put focus on web to 

reach more people and optimize resource cost. 
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