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Abstract- The growing urgency to mitigate climate 

change has driven the need for advanced 

technologies to monitor and optimize carbon 

footprints in smart cities and industrial zones. The 

integration of the Internet of Things (IoT) and deep 

learning provides a transformative approach to real-

time carbon footprint monitoring and optimization. 

IoT-enabled sensors and smart meters facilitate 

continuous data collection on emissions, energy 

consumption, and environmental parameters. These 

real-time datasets, when processed through deep 

learning models, enable predictive analytics, trend 

forecasting, and adaptive optimization strategies to 

reduce carbon emissions effectively. This explores 

how IoT devices enhance environmental monitoring 

by providing high-resolution, real-time data from 

urban and industrial infrastructures. Deep learning 

techniques, including neural networks and 

reinforcement learning, are leveraged to predict 

carbon emission trends, identify inefficiencies, and 

recommend optimal mitigation strategies. The 

integration of AI-driven optimization techniques 

with IoT-based monitoring allows for intelligent 

decision-making in energy management, industrial 

automation, and smart transportation systems. Case 

studies highlight successful implementations of IoT 

and deep learning in carbon management, 

demonstrating their impact on energy efficiency and 

emission reduction. Despite the advantages, 

challenges such as data privacy, scalability, and 

computational complexity remain critical barriers. 

The study discusses strategies for overcoming these 

challenges, including blockchain for secure carbon 

data management, federated learning for 

decentralized AI models, and policy frameworks for 

regulatory compliance. By leveraging IoT and deep 

learning, cities and industries can transition toward 

a more sustainable future with data-driven carbon 

reduction strategies. The findings underscore the 

potential of AI and IoT in achieving climate goals, 

emphasizing the need for interdisciplinary 

collaboration and policy integration. Future 

research should focus on enhancing model 

interpretability, real-time optimization, and the 

integration of carbon credit trading mechanisms for 

broader adoption. 

 

Indexed Terms- Leveraging IoT, Deep learning, 

Carbon footprint monitoring, Smart cities, Industrial 

zones 

 

I. INTRODUCTION 

 

Climate change remains one of the most critical 

challenges of the 21st century, driven primarily by 

excessive carbon emissions from human activities 

(Afolabi et al., 2021). The burning of fossil fuels, 

industrial processes, deforestation, and urbanization 

contribute significantly to greenhouse gas (GHG) 

accumulation in the atmosphere, leading to global 

warming, rising sea levels, and extreme weather 

events (Afolabi, 2023). According to the 

Intergovernmental Panel on Climate Change (IPCC), 

urgent measures are needed to limit global temperature 

rise to below 1.5°C to avoid irreversible 

environmental and socio-economic consequences. 

Achieving this goal requires a substantial reduction in 

the carbon footprint of industries, urban areas, and 

transportation systems (Collins et al., 2023). Reducing 

carbon emissions necessitates a shift toward 
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sustainable energy sources, improvements in energy 

efficiency, and the implementation of advanced 

technological solutions for real-time monitoring and 

mitigation of emissions (Ajayi et al., 2021; Egbuhuzor 

et al., 2022). Emerging digital technologies such as the 

Internet of Things (IoT) and artificial intelligence 

(AI), particularly deep learning, offer promising 

approaches for tracking, analyzing, and optimizing 

carbon footprint reduction strategies. By leveraging 

these technologies, industries and cities can enhance 

their ability to monitor and manage emissions, 

ultimately supporting global efforts to combat climate 

change (Akhigbe et al., 2023). 

 

Smart cities and industrial zones play a crucial role in 

carbon footprint reduction by integrating advanced 

technologies for environmental sustainability (Agbede 

et al., 2021). Urban areas contribute significantly to 

carbon emissions due to high energy consumption, 

vehicular emissions, and construction activities. 

However, the adoption of smart infrastructure, 

intelligent transportation systems, and energy-

efficient buildings can drastically reduce emissions. 

By incorporating smart grids, renewable energy 

sources, and real-time emission monitoring, cities can 

optimize energy usage and mitigate their 

environmental impact (Ajayi et al., 2023). Industrial 

zones, on the other hand, are among the largest sources 

of carbon emissions due to manufacturing, energy 

production, and waste management processes. Many 

industries rely on fossil fuels for production, resulting 

in high levels of CO₂ and other greenhouse gas 

emissions. Implementing AI-powered monitoring 

systems, energy-efficient machinery, and carbon 

capture technologies can significantly enhance 

emission control efforts (Afolabi and Akinsooto, 

2023). Additionally, data-driven approaches enable 

industries to adopt cleaner production techniques, 

optimize resource utilization, and comply with 

stringent environmental regulations. By leveraging AI 

and IoT technologies, both smart cities and industrial 

zones can transform traditional emission management 

systems into proactive and automated frameworks, 

ensuring sustainability and regulatory compliance 

(Collins et al., 2022; Adikwu et al., 2023). 

 

The integration of IoT and deep learning in carbon 

monitoring has revolutionized the way emissions are 

detected, analyzed, and managed (Fiemotongha et al., 

2023). IoT-enabled sensors provide continuous data 

on air quality, energy consumption, and industrial 

emissions, offering a comprehensive view of carbon 

footprint sources. These sensors, deployed in cities, 

factories, and transportation networks, allow for real-

time monitoring and immediate response to emission 

spikes. Deep learning, a subset of AI, enhances the 

capabilities of IoT-based carbon monitoring by 

improving data analysis, pattern recognition, and 

predictive modeling. Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) can 

process vast amounts of sensor data to detect emission 

anomalies, forecast pollution levels, and optimize 

carbon reduction strategies. Furthermore, Generative 

Adversarial Networks (GANs) and transformers 

enable advanced image and video analysis for tracking 

emissions using satellite imagery and remote sensing 

techniques (Afolabi and Akinsooto, 2021). By 

combining IoT with deep learning, governments, 

industries, and environmental agencies can establish 

efficient carbon monitoring systems that provide real-

time insights, enhance regulatory enforcement, and 

facilitate data-driven decision-making. This 

integration not only improves emission tracking but 

also supports climate policies aimed at achieving 

carbon neutrality (Onukwulu et al., 2023). 

 

This review aims to explore the latest advancements in 

AI, IoT, and big data analytics for carbon footprint 

reduction. The primary objectives of this discussion 

include; This includes analyzing the role of urban and 

industrial activities in greenhouse gas emissions and 

identifying the key contributors to carbon footprints. 

The review will explore how deep learning models, 

such as CNNs and GANs, enhance emission detection 

through satellite imagery, sensor data, and remote 

sensing technologies. The discussion will assess how 

IoT sensors and smart devices facilitate accurate 

monitoring and management of carbon emissions in 

smart cities and industrial zones. This includes 

exploring how AI-powered supply chain optimization 

and blockchain-based transparency mechanisms 

contribute to emissions reduction. This will highlight 

key challenges in implementing AI-driven carbon 

monitoring systems, including data availability, 

computational limitations, and ethical considerations. 

Additionally, emerging trends and future research 

opportunities will be discussed. The urgent need for 

carbon footprint reduction necessitates the adoption of 
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cutting-edge technologies that enhance emissions 

monitoring and mitigation. Smart cities and industrial 

zones play a pivotal role in sustainability efforts by 

leveraging IoT and deep learning for real-time carbon 

tracking (Sobowale et al., 2021; Elete et al., 2022). 

This review provides a comprehensive analysis of how 

these technologies contribute to effective emissions 

management, supporting global climate policies and 

net-zero initiatives. 

 

II. METHODOLOGY 

 

The PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) 

methodology was applied to conduct a systematic 

review on leveraging IoT and deep learning for real-

time carbon footprint monitoring and optimization in 

smart cities and industrial zones. A comprehensive 

literature search was performed across databases 

including Scopus, IEEE Xplore, Web of Science, and 

Google Scholar using keywords such as “IoT for 

carbon monitoring,” “deep learning for emissions 

optimization,” “smart cities sustainability,” and 

“industrial carbon footprint reduction.” Studies 

published between 2015 and 2024 were considered, 

focusing on peer-reviewed journal articles, conference 

proceedings, and government reports. 

 

Eligibility criteria were defined to include studies that 

presented empirical evidence, case studies, or 

theoretical frameworks related to the application of 

IoT and deep learning in carbon footprint 

management. Exclusion criteria involved non-English 

articles, studies without methodological clarity, and 

research not directly related to the integration of IoT 

and AI in emission tracking and optimization. The 

study selection process involved an initial screening of 

titles and abstracts, followed by a full-text review to 

ensure relevance. Duplicate records were removed 

using reference management software. 

 

Data extraction focused on key aspects such as IoT-

based real-time emission tracking, AI-driven carbon 

footprint predictions, energy optimization techniques, 

and policy implications. A qualitative synthesis was 

conducted to identify emerging trends, technological 

advancements, and challenges in deploying IoT and 

deep learning for carbon management. Bias 

assessment was performed using the Cochrane Risk of 

Bias Tool and the Critical Appraisal Skills Programme 

(CASP) checklist to ensure the validity and reliability 

of included studies. 

 

Findings indicate that IoT enables real-time, high-

resolution monitoring of emissions and energy 

consumption, while deep learning enhances predictive 

analytics and adaptive carbon reduction strategies. 

However, challenges such as data security, 

infrastructure scalability, and computational costs 

persist. This review provides insights into the potential 

of AI and IoT-driven solutions for sustainable carbon 

management and highlights future research directions 

in improving model interpretability, policy 

integration, and real-time optimization strategies. 

 

2.1 IoT for Real-Time Carbon Footprint Monitoring 

The Internet of Things (IoT) has emerged as a 

transformative technology for real-time carbon 

footprint monitoring, offering advanced capabilities 

for tracking and optimizing environmental 

sustainability efforts (Onukwulu et al., 2021; Elete et 

al., 2023). By integrating smart sensors, wireless 

communication protocols, and data analytics, IoT 

enables continuous monitoring of carbon emissions 

across various sectors, including transportation, 

industrial manufacturing, and urban infrastructure. 

This explores the key components of IoT in 

environmental monitoring, the role of sensors and 

networks, the significance of wireless communication 

and edge computing, and the challenges associated 

with large-scale IoT-based carbon tracking. 

 

IoT in environmental monitoring refers to the 

deployment of interconnected devices that collect, 

transmit, and analyze environmental data to enhance 

sustainability efforts (Oluokun, 2021). The core 

components of IoT-based carbon footprint monitoring 

include as shown in figure 1 
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Figure 1: The core components of IoT-based carbon 

footprint monitoring 

 

IoT sensors, devices that measure environmental 

parameters such as CO₂ concentration, air quality, 

temperature, and energy consumption (Onukwulu et 

al., 2022). Communication networks, wireless and 

wired systems that transmit collected data to cloud-

based or edge-computing platforms for analysis. Edge 

computing and cloud analytics, computing 

frameworks that process and analyze real-time data, 

offering actionable insights for reducing carbon 

emissions (Ajayi et al., 2022). User interfaces and 

dashboards, platforms that provide stakeholders, 

including policymakers, businesses, and researchers, 

with visualized data for decision-making (Akhigbe et 

al., 2021). By integrating these components, IoT 

facilitates continuous monitoring and rapid response 

to carbon emission trends, thereby improving 

sustainability initiatives. 

 

A critical aspect of IoT-driven carbon footprint 

monitoring is the deployment of advanced sensors and 

network systems for real-time data collection (Ilager 

et al., 2020). Several types of sensors are widely used 

in environmental monitoring, including; CO₂ sensors, 

devices that measure carbon dioxide concentrations in 

industrial facilities, urban areas, and transportation 

networks. Air quality monitors, sensors that assess 

particulate matter (PM), nitrogen oxides (NOx), and 

volatile organic compounds (VOCs) to evaluate 

overall air pollution levels. Smart grids and energy 

meters. systems that track energy consumption and 

emissions from power plants, buildings, and electric 

vehicles (Diahovchenko et al., 2020). These sensors 

are deployed across cities, industrial zones, and supply 

chains to collect high-resolution environmental data. 

The data collected is then transmitted through IoT 

networks such as 5G, Wi-Fi, and LPWAN (Low-

Power Wide-Area Network), enabling seamless 

communication between distributed sensor nodes. 

 

Wireless communication plays a crucial role in 

ensuring efficient data transmission in IoT-based 

environmental monitoring (Tao, 2020). Several 

communication protocols are commonly used, 

including; 5G and LTE, high-speed networks that 

support real-time data transfer with low latency, 

essential for dynamic monitoring of carbon emissions. 

LoRaWAN and NB-IoT. low-power, wide-area 

network protocols designed for energy-efficient sensor 

communication over long distances. Bluetooth and 

Zigbee, short-range wireless protocols used in 

localized monitoring applications, such as smart 

buildings and industrial facilities. In addition to robust 

communication networks, edge computing has gained 

prominence in IoT-based monitoring systems. Edge 

computing involves processing data at the sensor or 

gateway level rather than transmitting it to centralized 

cloud servers (Zhao et al., 2019). This approach 

enhances real-time decision-making, reduces latency, 

and minimizes bandwidth consumption. For example, 

edge-based AI models can analyze emissions data on-

site and trigger alerts or optimization measures before 

exceeding regulatory thresholds. By integrating 

wireless communication and edge computing, IoT 

systems become more responsive and efficient in 

managing carbon footprints (Poongodi et al., 2020). 

 

 
Figure 2: Challenges in IoT-based carbon footprint 

tracking 

 

Despite its potential, IoT-based carbon footprint 

monitoring faces several challenges that must be 

addressed to enhance scalability, accuracy, and 

security as shown in figure 2; Deploying a large-scale 

IoT network for carbon monitoring requires 

significant infrastructure investment (Nundloll et al., 

2019). Managing vast amounts of data from millions 

of interconnected sensors poses technical and 

logistical challenges. Environmental sensors may 
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experience calibration drift, leading to measurement 

inaccuracies. Inconsistent data collection across 

different regions and environmental conditions can 

affect the reliability of carbon footprint analysis. IoT 

networks are vulnerable to cyber threats, including 

data breaches and sensor manipulation. Unauthorized 

access to environmental monitoring systems could 

lead to false reporting or disruptions in sustainability 

efforts (Liao et al., 2020). Ensuring robust encryption 

and authentication protocols is essential for securing 

IoT-based monitoring systems. Many industries and 

municipalities operate legacy systems that may not be 

compatible with modern IoT technologies. The 

challenge lies in integrating new IoT-based carbon 

monitoring solutions with existing environmental and 

energy management frameworks. The integration of 

IoT in real-time carbon footprint monitoring presents 

a transformative approach to addressing sustainability 

challenges (Bibri and Krogstie, 2020). By leveraging 

advanced sensors, wireless communication networks, 

and edge computing, IoT enables precise and dynamic 

tracking of emissions. However, scalability, accuracy, 

security, and infrastructure integration remain 

significant hurdles that must be overcome for 

widespread adoption. Future advancements in AI-

driven analytics, sensor miniaturization, and 

blockchain security may further enhance the 

effectiveness of IoT-based carbon footprint tracking, 

paving the way for smarter and more sustainable 

environmental management strategies (Yrjola et al., 

2020; Papageorgiou et al., 2021). 

 

2.1 Deep Learning for Carbon Emission Prediction 

and Optimization 

Deep learning, a subset of artificial intelligence (AI), 

has emerged as a powerful tool for environmental 

analytics, enabling accurate predictions, optimization, 

and data-driven decision-making in climate-related 

applications (Sebestyén et al., 2021; Rao et al., 2021). 

In the context of carbon emissions, deep learning 

leverages large datasets from industrial sources, 

transportation systems, and environmental monitoring 

sensors to detect patterns, forecast trends, and 

optimize mitigation strategies. Traditional statistical 

methods for carbon emission analysis often struggle 

with complex, nonlinear relationships between 

emission factors, energy consumption, and economic 

activities. Deep learning models, particularly neural 

networks, excel in capturing such complexities, 

offering superior predictive accuracy and adaptability 

(Suryadevara and Yanamala, 2020). With the 

increasing availability of real-time environmental data 

from satellite imagery, IoT sensors, and energy 

consumption records, deep learning algorithms play a 

crucial role in analyzing carbon footprints. By 

integrating deep learning into smart city frameworks 

and industrial sustainability initiatives, governments 

and organizations can enhance carbon management 

strategies, optimize energy efficiency, and drive data-

informed policies for achieving net-zero emissions. 

 

Neural networks, particularly deep neural networks 

(DNNs), convolutional neural networks (CNNs), and 

recurrent neural networks (RNNs), are widely 

employed for predictive modeling of carbon emissions 

(Abdulrahman et al., 2021). These models process 

vast amounts of structured and unstructured data to 

identify key emission drivers and forecast future 

carbon output. DNNs utilize multiple hidden layers to 

learn complex relationships between input variables 

such as energy consumption, transportation activity, 

and industrial output. By training on historical 

emission datasets, DNNs can provide robust 

predictions of future emissions under various 

scenarios (Maino et al., 2021). CNNs are effective in 

analyzing spatial environmental data, such as satellite 

images and remote sensing data, to track deforestation, 

urban heat islands, and industrial emissions. This 

enables policymakers to identify emission hotspots 

and implement targeted interventions. RNNs and Long 

Short-Term Memory (LSTM) networks excel in time-

series prediction, making them valuable for analyzing 

historical emission patterns and forecasting future 

trends. These models are particularly useful for 

studying seasonal variations and the impact of policy 

changes on carbon footprints. The integration of 

neural networks in emission modeling enhances 

predictive accuracy, allowing industries and 

policymakers to implement proactive carbon reduction 

strategies based on data-driven insights (Maino et al., 

2021; Marinakis, 2020). 

 

Time-series forecasting techniques, particularly deep 

learning-based approaches, are essential for analyzing 

and predicting carbon emission trends over time. 

Traditional time-series models, such as 

Autoregressive Integrated Moving Average 

(ARIMA), have limitations in handling complex 
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environmental data with multiple influencing factors 

(Dubey et al., 2021). Deep learning models, such as 

LSTM networks and Transformer-based models, 

overcome these challenges by capturing long-term 

dependencies and nonlinear relationships in emission 

data. LSTM networks are particularly effective in 

handling sequential data, making them ideal for 

forecasting emissions based on historical records. 

These models can incorporate multiple variables, such 

as weather conditions, energy consumption rates, and 

industrial activities, to generate accurate future 

emission scenarios. Transformer models (e.g., BERT, 

GPT) have shown promise in environmental analytics 

by leveraging attention mechanisms to focus on 

critical data points in large datasets. These models 

enable precise long-term forecasting of carbon 

emissions, helping governments plan sustainable 

policies. By employing deep learning-based time-

series forecasting, cities and industries can anticipate 

emission trends, evaluate the effectiveness of 

mitigation strategies, and optimize resource allocation 

for maximum sustainability impact (Cheng et al., 

2020; Yousaf et al., 2021). 

 

Reinforcement learning (RL) is a branch of deep 

learning that focuses on optimizing decision-making 

processes by learning from environmental interactions 

(Neftci and Averbeck, 2019). In the context of carbon 

emission reduction, RL models as shown in figure 3 

can dynamically adjust energy usage, industrial 

operations, and transportation systems to minimize 

carbon footprints while maintaining efficiency. Smart 

grid optimization, RL algorithms can manage energy 

distribution in smart grids, ensuring that renewable 

energy sources are prioritized over fossil fuels. By 

continuously learning from energy consumption 

patterns, RL models can optimize electricity usage 

while reducing emissions. Industrial process 

optimization, RL-driven automation in manufacturing 

can adjust production schedules and resource 

allocation to lower carbon emissions without 

compromising productivity (Kalusivalingam et al., 

2020). These models can identify the most sustainable 

operational practices through trial-and-error learning. 

Traffic and transportation management, RL-based 

models can optimize traffic flow in smart cities by 

dynamically adjusting traffic signals, promoting eco-

friendly transport routes, and managing public transit 

efficiency to reduce vehicle emissions. By leveraging 

reinforcement learning, industries and cities can 

implement adaptive and self-optimizing strategies for 

carbon reduction, ultimately contributing to long-term 

sustainability goals (Li et al., 2020; Caiado et al., 

2020). 

 

 
Figure 3: Reinforcement learning (RL) model 

 

Several real-world implementations highlight the 

effectiveness of deep learning in carbon emission 

prediction and optimization within smart cities. The 

city of London has integrated deep learning models to 

forecast air pollution levels and optimize traffic 

management strategies. By analyzing real-time IoT 

sensor data and historical pollution records, AI-

powered systems predict high-emission zones and 

recommend proactive measures, such as restricting 

vehicle access to certain areas during peak pollution 

periods (Ma et al., 2020; Ghazal et al., 2021). 

Singapore employs deep learning-based reinforcement 

learning models to manage its smart grid system. By 

dynamically adjusting energy distribution based on 

consumption patterns and renewable energy 

availability, the system reduces reliance on fossil fuels 

and optimizes carbon reduction efforts. Google has 

successfully implemented deep reinforcement 

learning in its data centers to optimize cooling system 

efficiency. By learning from past energy usage data, 

the AI system reduces cooling-related electricity 

consumption by 40%, significantly cutting down the 

carbon footprint of data centers. Barcelona uses deep 

learning algorithms to optimize its public 

transportation network, predicting passenger demand 

and dynamically adjusting bus and metro schedules to 

reduce fuel consumption and emissions. This approach 

enhances both efficiency and sustainability. Deep 

learning has revolutionized carbon emission 

prediction and optimization by offering advanced 

neural network models, time-series forecasting 
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techniques, and reinforcement learning strategies for 

adaptive decision-making (Chopra et al., 2020). By 

integrating these AI-driven approaches into smart city 

infrastructures, industrial operations, and energy 

management systems, governments and businesses 

can achieve significant reductions in carbon footprints. 

The application of deep learning in predictive 

modeling enables accurate emission forecasting, while 

reinforcement learning ensures adaptive and self-

optimizing carbon reduction strategies. Real-world 

case studies demonstrate the effectiveness of AI-

powered sustainability initiatives, reinforcing the 

importance of continued research and implementation 

in the fight against climate change (Vinuesa et al., 

2020; Yaseen, 2021). 

 

2.2 Data Collection and Preprocessing in IoT-Based 

Carbon Monitoring 

The effective monitoring of carbon emissions in smart 

cities and industrial zones relies on robust data 

collection and preprocessing techniques (Honarvar 

and Sami, 2019). The Internet of Things (IoT) plays a 

pivotal role in gathering real-time emissions data from 

various sources, including sensor networks, satellite 

imaging, and industrial reports. However, the 

integration and processing of such diverse datasets 

present challenges such as missing data, noise, and 

privacy concerns. This explores key data sources, data 

fusion techniques, approaches for handling missing 

data and noise, and ethical considerations in data 

privacy and security within IoT-based carbon 

monitoring systems. 

 

IoT-based carbon footprint monitoring systems collect 

data from multiple sources to provide comprehensive 

insights into emission patterns (Onukwulu et al., 

2022). The main sources of data include as shown in 

table 1; IoT sensors deployed in urban areas, industrial 

zones, and transportation networks measure critical 

environmental parameters such as CO₂ concentration, 

particulate matter (PM), nitrogen oxides (NOx), and 

energy consumption. These sensors provide high-

resolution, real-time emissions data that help in 

tracking pollution trends. Satellite-based monitoring 

offers a macro-level view of carbon emissions across 

large geographic areas. Multispectral and 

hyperspectral imaging techniques enable the detection 

of greenhouse gases (GHGs) from industrial facilities, 

deforestation areas, and urban centers. NASA’s OCO-

2 (Orbiting Carbon Observatory-2) and ESA’s 

Sentinel-5P satellites are examples of satellite 

missions dedicated to atmospheric monitoring. 

Industries are often required to report their emissions 

as part of environmental regulations. These reports, 

along with data from agencies such as the 

Environmental Protection Agency (EPA) and the 

European Environment Agency (EEA), provide 

structured historical datasets for carbon footprint 

analysis. By combining data from IoT sensors, satellite 

imaging, and regulatory reports, comprehensive 

monitoring systems can be developed to track 

emissions across various sectors (Jahun et al., 2021; 

Egbuhuzor et al., 2022). 

 

Table 1: A structured overview of key data sources 

and their role in IoT-based carbon monitoring and 

data preprocessing. 

Category Data 

source 

Descriptio

n 

Applicatio

n in 

Carbon 

Monitorin

g 

IoT 

Devices 

CO₂ 

Sensors 

Measure 

carbon 

dioxide 

concentrat

ion in the 

air 

Real-time 

monitorin

g of 

emissions 

in 

industries 

and cities 

 Air 

Quality 

Monitors 

Detect 

pollutants 

such as 

NOx, SO₂, 

and 

PM2.5 

Assess 

overall 

environme

ntal 

impact 

and 

pollution 

levels 

 Smart 

Meters 

Track 

energy 

consumpti

on in 

industrial 

setups 

Identify 

high-

emission 

areas and 

optimize 

energy use 

Remote 

Sensing 

Satellite 

Imaging 

Capture 

large-

scale 

Measure 

deforestati

on, urban 

expansion
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environme

ntal data 

, and 

global 

emissions 

 Drones 

with Gas 

Sensors 

Provide 

localized 

emission 

data 

Monitor 

industrial 

zones and 

high-risk 

emission 

areas 

Governme

nt & 

Industry 

Reports 

Industrial 

Emission 

Reports 

Self-

reported 

data from 

factories 

and plants 

Verify 

complianc

e with 

environme

ntal 

regulation

s 

 National 

Environm

ental 

Agencies 

Provide 

regulatory 

and 

statistical 

data 

Track 

long-term 

trends and 

policy 

impact 

Crowdsou

rced Data 

Mobile 

Sensor 

Networks 

Citizens 

contribute 

air quality 

data via 

smartphon

es 

Expand 

monitorin

g 

coverage 

in urban 

areas 

 Communit

y-Driven 

Initiatives 

Local 

projects 

collecting 

pollution 

data 

Enhance 

localized 

awareness 

and 

engageme

nt 

 

Since carbon emissions data is collected from 

heterogeneous sources, effective data fusion 

techniques are required to integrate and harmonize 

datasets (Collins et al., 2022). The key data fusion 

approaches include; Sensor-level fusion, combines 

raw data from multiple sensors measuring the same 

environmental variable to improve accuracy and 

reliability. For example, multiple CO₂ sensors 

deployed across an industrial site can be aggregated 

using statistical techniques to minimize errors. 

Feature-level fusion, extracts relevant features from 

different data sources before combining them into a 

unified dataset. Decision-level fusion, integrates 

independently processed datasets to make a final 

prediction or classification decision. This method is 

useful in cases where different monitoring systems 

provide separate carbon footprint assessments that 

need to be reconciled. By leveraging these fusion 

techniques, IoT-based monitoring systems can 

generate a more comprehensive and accurate 

representation of carbon emissions across different 

environments (Egbuhuzor et al., 2023). 

 

Carbon monitoring datasets often contain missing or 

noisy data due to sensor malfunctions, environmental 

conditions, or transmission errors (Fredson et al., 

2022). To ensure high-quality data, various techniques 

are used to handle missing values and reduce noise; 

Missing data can be estimated using statistical 

methods such as linear interpolation, k-nearest 

neighbors (KNN) imputation, and deep learning-based 

autoencoders (Nwulu et al., 2023). These approaches 

help in reconstructing missing sensor readings based 

on historical trends. Noisy sensor readings caused by 

environmental interference or faulty hardware can be 

corrected using signal processing techniques such as 

Kalman filtering and wavelet transforms 

(Chukwuneke et al., 2021). These methods help in 

smoothing sensor data and improving measurement 

accuracy. Outliers in emissions data can distort 

analysis and lead to incorrect inferences. Machine 

learning algorithms such as Isolation Forest and One-

Class SVM (Support Vector Machines) are commonly 

used to detect and remove abnormal data points. 

Effective preprocessing ensures that IoT-based carbon 

monitoring systems provide reliable and actionable 

insights for emissions reduction strategies (Okolie et 

al., 2021). 

 

The widespread use of IoT sensors and satellite 

monitoring raises ethical concerns related to data 

privacy, security, and ownership (Jessa, 2017). Some 

of the key ethical challenges include; IoT sensors 

deployed in urban areas may inadvertently collect 

sensitive data related to individuals, businesses, or 

critical infrastructure. Ensuring that emissions data is 

anonymized and complies with data protection 

regulations such as the General Data Protection 

Regulation (GDPR) is crucial. IoT-based monitoring 

networks are vulnerable to cyber threats such as data 

breaches, sensor spoofing, and denial-of-service 

(DoS) attacks. Implementing strong encryption 

protocols, secure authentication mechanisms, and 

blockchain-based data integrity verification can 
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enhance system security (Okolie et al., 2022). The 

integration of emissions data from multiple sources 

raises questions about data ownership and access 

rights. Governments, industries, and research 

institutions must establish clear policies on data-

sharing agreements while ensuring transparency in 

environmental reporting. AI-driven carbon monitoring 

models may introduce biases due to imbalanced 

datasets or flawed algorithms. Ethical AI principles, 

including fairness, accountability, and transparency, 

should guide the development of carbon footprint 

prediction models to prevent misrepresentation of 

emissions data. IoT-based carbon footprint monitoring 

relies on diverse data sources, including sensors, 

satellite imaging, and industrial reports, to provide a 

comprehensive view of emissions. Data fusion 

techniques play a crucial role in integrating multi-

source information, while preprocessing methods such 

as imputation and anomaly detection ensure data 

quality (Nwulu et al., 2023). However, ethical 

considerations in privacy, security, and fairness must 

be addressed to build trustworthy and effective 

monitoring systems. As IoT and AI technologies 

continue to evolve, future research should focus on 

developing secure, scalable, and unbiased carbon 

tracking solutions that support global sustainability 

efforts. 

 

2.3 Optimization Strategies for Carbon Footprint 

Reduction 

As global efforts to mitigate climate change intensify, 

optimizing carbon footprint reduction strategies has 

become a top priority for governments, industries, and 

urban planners (Egbuhuzor et al., 2021). Traditional 

approaches to emission reduction often lack the 

efficiency, adaptability, and real-time insights 

necessary to achieve significant sustainability goals. 

Advances in artificial intelligence (AI), Internet of 

Things (IoT), and data analytics offer innovative 

solutions for optimizing energy consumption, 

improving industrial processes, and enhancing policy 

frameworks for carbon management. This explores 

key AI-driven strategies, including energy 

management, smart transportation, industrial 

automation, and policy recommendations for 

sustainable carbon governance. 

 

Energy consumption is a major contributor to global 

carbon emissions, particularly in industrial, 

commercial, and residential sectors. AI-driven energy 

management systems play a crucial role in optimizing 

energy usage and reducing carbon footprints through 

smart demand-response mechanisms. AI-powered 

algorithms analyze real-time energy demand and 

supply fluctuations, adjusting energy distribution to 

prioritize renewable sources such as solar and wind 

(Agbede et al., 2023). Machine learning models 

predict peak consumption periods and automatically 

balance grid loads, minimizing reliance on fossil fuels. 

AI-driven systems monitor HVAC (heating, 

ventilation, and air conditioning), lighting, and 

appliances in smart buildings. By leveraging IoT 

sensors and predictive analytics, these systems reduce 

unnecessary energy waste and enhance overall 

efficiency. Google’s DeepMind, for example, has 

successfully reduced energy consumption in data 

centers by 40% using AI-driven cooling optimization. 

AI-based demand-response systems allow utility 

companies to implement dynamic pricing strategies, 

encouraging consumers to shift energy usage to off-

peak hours. This reduces strain on energy grids, lowers 

costs, and decreases carbon emissions associated with 

peak power generation. By integrating AI with IoT-

driven energy monitoring, businesses and households 

can optimize their energy consumption patterns, 

resulting in substantial emission reductions (Amafah 

et al., 2023). 

 

Transportation accounts for a significant portion of 

global carbon emissions, particularly in densely 

populated urban areas. AI-driven smart transportation 

solutions provide data-driven approaches to enhance 

mobility while minimizing environmental impact 

(Fredson et al., 2021). Smart traffic control systems 

leverage real-time data from IoT sensors, GPS 

tracking, and AI algorithms to optimize traffic flow. 

By dynamically adjusting traffic signals and rerouting 

vehicles, AI reduces congestion and decreases fuel 

wastage. Cities such as Los Angeles and Singapore 

have successfully deployed AI-based traffic 

optimization systems, leading to significant emission 

reductions. AI enhances electric vehicle (EV) fleet 

management by predicting optimal charging 

schedules, optimizing battery life, and determining the 

most energy-efficient routes. AI-driven fleet 

management solutions ensure that logistics companies 

minimize fuel consumption while maximizing 

delivery efficiency. AI-powered ride-sharing 
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platforms optimize carpooling and reduce the number 

of vehicles on the road. By analyzing commuting 

patterns, AI suggests efficient shared mobility options, 

reducing overall emissions from private vehicles. 

Companies like Uber and Lyft integrate AI-driven 

demand forecasting to promote greener transportation 

alternatives. Smart transportation solutions, when 

implemented at scale, contribute significantly to urban 

sustainability by improving mobility efficiency and 

reducing the carbon footprint of daily commuting. 

 

Industrial sectors are among the largest sources of 

carbon emissions, with manufacturing, mining, and 

energy-intensive processes contributing significantly 

to global greenhouse gas (GHG) levels. AI-driven 

automation optimizes industrial processes, reducing 

waste, improving efficiency, and minimizing 

emissions. Machine learning algorithms analyze 

sensor data from industrial machinery to predict 

equipment failures before they occur (Elete et al., 

2022). This minimizes downtime, extends equipment 

lifespan, and prevents energy waste caused by 

inefficient machinery. AI-driven automation systems 

optimize energy-intensive industrial processes, such 

as chemical production, cement manufacturing, and 

metal refining.  AI-powered analytics provide end-to-

end visibility into supply chain emissions, identifying 

areas where carbon reductions can be achieved. By 

optimizing logistics, reducing excess inventory, and 

enhancing energy efficiency in transportation and 

warehousing, industries can significantly lower their 

carbon footprints (Olisakwe et al., 2011; Jessa, 2023). 

Industrial automation powered by AI not only 

improves operational efficiency but also plays a 

crucial role in achieving sustainability targets through 

precise energy and resource optimization. 

 

Governments and regulatory bodies play a critical role 

in enabling AI and IoT-driven carbon footprint 

reduction strategies (Fagbule et al., 2023). Effective 

policies can accelerate the adoption of smart 

technologies while ensuring ethical and transparent AI 

applications. Governments should incentivize 

industries and businesses to implement AI-powered 

energy management systems through subsidies, tax 

benefits, and regulatory mandates. Standardized 

frameworks for AI-powered carbon monitoring should 

be established, ensuring that emissions data collected 

from IoT sensors, industrial facilities, and 

transportation networks are accurate and actionable. 

Governments should encourage partnerships between 

technology firms, research institutions, and industries 

to advance AI and IoT solutions for carbon reduction. 

Open data-sharing initiatives can accelerate 

innovation and improve the accuracy of AI-driven 

sustainability models. AI-driven sustainability 

initiatives must be guided by ethical considerations, 

including data privacy, bias mitigation, and 

responsible AI deployment (Nwulu et al., 2023). 

Transparent AI governance policies should be 

implemented to ensure fair and equitable applications 

of technology in carbon management. By integrating 

AI and IoT into climate governance policies, 

policymakers can create an ecosystem that fosters 

technological innovation while ensuring 

accountability in carbon reduction efforts. Optimizing 

carbon footprint reduction requires a multi-faceted 

approach that leverages AI-driven energy 

management, smart transportation, industrial process 

automation, and robust policy frameworks. AI and 

IoT-powered solutions provide unprecedented 

capabilities for real-time monitoring, predictive 

analytics, and adaptive decision-making, making them 

essential tools in the fight against climate change. 

Through continued innovation, strategic policy 

interventions, and cross-sector collaboration, the 

integration of AI and smart technologies can drive 

meaningful progress toward a sustainable and carbon-

neutral future (Opia et al., 2022; Onukwulu et al., 

2023). 

 

2.4 Challenges and Limitations 

The integration of Artificial Intelligence (AI) and the 

Internet of Things (IoT) in carbon monitoring has 

emerged as a transformative approach to tackling 

climate change (Chukwuneke et al., 2022). These 

technologies enable real-time tracking, predictive 

analytics, and data-driven decision-making for 

reducing carbon footprints across industries. However, 

despite their potential, significant challenges and 

limitations hinder their widespread adoption and 

effectiveness as explain in table 2. This explores key 

issues, including scalability and infrastructure 

requirements, deep learning interpretability and 

computational constraints, regulatory and ethical 

challenges, and integration difficulties with existing 

environmental policies. 
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IoT devices, such as smart sensors and connected 

monitoring systems, play a crucial role in tracking 

carbon emissions in industries, transportation, and 

urban environments (Akinsooto et al., 2014). 

However, scaling IoT infrastructure to a global level 

presents several challenges; The installation and 

maintenance of IoT networks require significant 

financial investments, particularly in developing 

regions with limited technological infrastructure. 

Costs associated with sensor deployment, data storage, 

and network expansion remain a major barrier to 

scalability. IoT networks generate vast amounts of 

real-time data, requiring robust communication 

networks with high-speed connectivity (Olisakwe et 

al., 2022). In many regions, existing internet 

infrastructure is insufficient to support seamless IoT 

operations, leading to data bottlenecks and latency 

issues. IoT devices often rely on continuous power 

sources, which can contribute to additional energy 

demands. Battery-powered IoT sensors have limited 

lifespans, requiring frequent replacements and 

creating electronic waste. Sustainable energy 

solutions, such as solar-powered sensors, are needed 

to minimize the environmental impact of large-scale 

IoT deployment. Expanding IoT networks increases 

exposure to cyber threats, including data breaches, 

unauthorized access, and system manipulation. 

Ensuring secure data transmission and implementing 

robust cybersecurity protocols are essential to prevent 

potential disruptions in carbon monitoring systems. 

These scalability and infrastructure challenges must be 

addressed through advancements in communication 

technologies, energy-efficient IoT devices, and 

strategic investments in digital infrastructure 

(Oyedokun , 2019; Akintobi et al., 2023). 

 

Table 2: Overview of key challenges and limitations 

that impact the effectiveness of AI and IoT in carbon 

monitoring. 

Categor

y 

Challenge Description Impact on 

Carbon 

Monitorin

g 

Technic

al 

Challen

ges 

Data 

Accuracy 

and 

Reliability 

Sensor data 

can be 

affected by 

calibration 

issues and 

Leads to 

incorrect 

emission 

estimates 

and 

environment

al factors 

misinform

ed 

decisions 

 Scalability 

Issues 

Deploying 

IoT 

networks 

across large 

regions is 

complex 

Limits the 

widesprea

d adoption 

of real-

time 

carbon 

tracking 

 Integration 

with 

Legacy 

Systems 

Many 

industries 

use outdated 

infrastructur

e 

Hinders 

seamless 

AI and IoT 

implement

ation 

Data-

Related 

Challen

ges 

Data 

Privacy 

and 

Security 

Risks 

Carbon 

monitoring 

involves 

sensitive 

industrial 

data 

Raises 

concerns 

about data 

misuse and 

cyber 

threats 

 High Data 

Volume 

and 

Processing 

Requireme

nts 

IoT devices 

generate 

massive 

amounts of 

real-time 

data 

Requires 

advanced 

computing 

and 

storage 

solutions 

Financi

al 

Constra

ints 

High 

Implement

ation Costs 

Setting up 

AI and IoT 

infrastructur

e is 

expensive 

Limits 

adoption, 

especially 

in 

developing 

regions 

Regulat

ory and 

Ethical 

Issues 

Complianc

e with 

Environme

ntal Laws 

Different 

regions have 

varying 

regulatory 

frameworks 

Creates 

inconsiste

ncies in 

monitoring 

and 

reporting 

 Ethical 

Considerat

ions in AI 

Decision-

Making 

AI-based 

policy 

recommend

ations may 

be biased 

Affects 

trust in AI-

driven 

carbon 

reduction 

strategies 

 

Deep learning models are instrumental in predicting 

carbon emissions, optimizing energy use, and 

identifying patterns in sustainability efforts 
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(Adewoyin, 2022). However, these models face 

significant limitations in terms of interpretability and 

computational efficiency; Many deep learning 

algorithms, including neural networks, lack 

transparency, making it difficult to understand how 

specific predictions are made. In the context of carbon 

monitoring, this raises concerns about accountability 

and trust in AI-driven decision-making. Training deep 

learning models for carbon analysis requires 

substantial computational power, often relying on 

high-performance GPUs and cloud-based computing 

resources (Elete et al., 2023). The energy-intensive 

nature of deep learning contradicts the sustainability 

goals it aims to achieve. Deep learning models require 

extensive and high-quality datasets to function 

effectively. However, environmental data is often 

incomplete, noisy, or biased, leading to inaccurate 

predictions and unreliable carbon monitoring insights. 

Developing explainable AI (XAI) models, optimizing 

algorithms for energy efficiency, and improving data 

collection methods are crucial steps in overcoming 

these challenges (Onukwulu et al., 2021). 

 

AI-driven carbon monitoring raises complex 

regulatory and ethical concerns that impact its 

implementation at both national and international 

levels; Different countries and industries have varying 

regulatory frameworks for carbon emissions tracking. 

The absence of globally accepted AI governance 

standards creates inconsistencies in carbon data 

reporting and compliance enforcement (Adebisi et al., 

2022). AI-driven monitoring relies on collecting vast 

amounts of environmental and industrial data. Without 

stringent data protection measures, there is a risk of 

unauthorized access, misuse of data, and breaches of 

corporate confidentiality. AI-driven carbon policies 

may disproportionately affect certain industries, 

communities, or developing nations. Ethical concerns 

arise when AI-based regulatory decisions lead to job 

losses, economic disadvantages, or disparities in 

carbon taxation. If AI models are trained on biased 

datasets, they may produce unfair carbon tracking 

recommendations, favoring certain industries or 

regions while penalizing others. Addressing 

algorithmic bias is crucial for ensuring fairness in AI-

driven sustainability initiatives (Fredson et al., 2022). 

To mitigate these challenges, policymakers must 

establish clear regulatory guidelines, enforce ethical 

AI practices, and promote transparency in carbon 

monitoring algorithms. 

 

The implementation of AI and IoT-driven carbon 

monitoring must align with existing environmental 

policies, yet several integration hurdles exist; Many 

environmental policies were developed before the 

emergence of AI and IoT technologies. Integrating 

new digital monitoring tools with legacy regulatory 

systems requires significant adaptation and policy 

updates. Industries and governments may be reluctant 

to adopt AI-driven carbon tracking due to concerns 

about cost, complexity, and regulatory burdens 

(Nwulu et al., 2022). Overcoming resistance requires 

demonstrating the economic and environmental 

benefits of AI-powered monitoring. Effective 

integration requires uniform data collection, reporting, 

and analysis methodologies. However, inconsistencies 

in carbon accounting standards across different 

regions and industries make harmonization difficult 

(Onukwulu et al., 2023). Determining legal 

responsibility for AI-driven carbon monitoring errors 

or inaccuracies remains a challenge. Establishing 

liability frameworks and accountability mechanisms is 

essential for ensuring responsible AI deployment. To 

facilitate integration, governments must modernize 

environmental policies, engage industry stakeholders, 

and develop standardized carbon accounting 

frameworks that incorporate AI and IoT technologies. 

While AI and IoT offer promising solutions for carbon 

monitoring and sustainability, significant challenges 

and limitations must be addressed to ensure their 

effective deployment. Scalability and infrastructure 

constraints hinder the widespread adoption of IoT 

networks, while deep learning models face issues 

related to interpretability and computational demands. 

Regulatory and ethical challenges further complicate 

AI-driven carbon monitoring, necessitating 

standardized governance frameworks. Additionally, 

integrating AI with existing environmental policies 

requires updates to regulatory frameworks and 

overcoming resistance from industry stakeholders 

(Olisakwe et al., 2023). By investing in infrastructure 

improvements, advancing explainable AI techniques, 

developing fair and transparent regulatory policies, 

and fostering collaboration between governments and 

industries, these challenges can be mitigated. 

Addressing these limitations is crucial to unlocking the 
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full potential of AI and IoT in achieving a sustainable 

and carbon-neutral future. 

 

2.5 Future Directions and Opportunities 

The increasing urgency to address climate change has 

fueled advancements in technology-driven carbon 

footprint monitoring (Brown et al., 2015). Emerging 

innovations in artificial intelligence (AI), the Internet 

of Things (IoT), and blockchain technology offer 

promising solutions for precision carbon tracking, 

transparent carbon credit trading, and policy-driven 

optimization. Additionally, cross-disciplinary 

collaboration among scientists, policymakers, and 

industry leaders can significantly enhance 

sustainability efforts. This explores key future 

directions and opportunities in real-time carbon 

monitoring, focusing on AI and IoT advancements, 

blockchain applications, interdisciplinary cooperation, 

and policy implications. 

 

AI and IoT technologies are revolutionizing the 

accuracy and efficiency of carbon tracking systems 

(Fredson et al., 2021). Future advancements in these 

fields will lead to more precise and scalable 

monitoring solutions; Machine learning (ML) 

algorithms and deep learning models will continue to 

improve the prediction of carbon emissions based on 

real-time sensor data, historical trends, and external 

environmental factors. AI will enhance the accuracy of 

emission forecasts, allowing businesses and 

governments to take proactive measures in reducing 

their carbon footprint. The integration of edge 

computing with IoT devices will reduce the 

dependency on centralized cloud systems, allowing for 

faster data processing and real-time emission tracking. 

Smart grids, self-regulating industrial sensors, and AI-

powered environmental monitors will contribute to 

more decentralized and efficient carbon measurement. 

AI-driven analysis of satellite and drone imagery will 

enhance the detection of carbon emissions from 

industries, transportation, and deforestation activities 

(Onukwulu et al., 2023). Future AI models, such as 

Generative Adversarial Networks (GANs) and 

transformers, will refine image-based carbon detection 

by filtering out noise and detecting subtle patterns in 

large-scale data. The integration of smart 

infrastructure, connected vehicles, and industrial 

monitoring systems will create a comprehensive 

carbon tracking network (Adewoyin, 2021). This will 

enable real-time assessments of emissions across 

multiple sectors, promoting data-driven sustainability 

strategies. 

 

Carbon credit markets provide economic incentives 

for businesses to reduce emissions, but traditional 

trading systems face transparency and accountability 

challenges (Onukwulu et al., 2023). Blockchain 

technology offers a decentralized and tamper-proof 

system for tracking carbon credits and ensuring 

compliance with climate goals; Blockchain can record 

every transaction in carbon credit markets, preventing 

fraud and ensuring the legitimacy of carbon offset 

claims. Smart contracts will automate the verification 

and trading of credits, minimizing human error and 

corruption risks. The integration of blockchain with 

IoT sensors will enable automatic tracking and 

validation of emission reductions (Onukwulu et al., 

2021). Organizations can receive tokenized carbon 

credits in real-time based on verified reductions in 

greenhouse gas (GHG) emissions. Future blockchain 

platforms will facilitate peer-to-peer carbon credit 

trading, allowing individuals, businesses, and 

governments to buy, sell, or exchange carbon offsets 

without intermediaries. This democratized approach 

will enhance participation in global sustainability 

efforts. AI-powered blockchain monitoring systems 

will identify anomalies in carbon credit transactions, 

flagging suspicious activities and improving 

regulatory compliance. This will ensure that only 

genuine emission reductions receive credit recognition 

(Akinsooto, 2013). 

 

The future of carbon footprint monitoring will require 

collaboration among diverse stakeholders, including 

engineers, environmental scientists, economists, 

policymakers, and business leaders (Onukwulu et al., 

2021). Key areas of interdisciplinary cooperation 

include; Collaboration between AI researchers and 

climate scientists will refine models for emissions 

forecasting, land-use changes, and pollution impact 

assessment. AI-driven simulations can predict climate 

scenarios and support climate resilience planning. 

Corporations and governments must work together to 

implement AI- and IoT-based monitoring solutions. 

Public-private partnerships can accelerate the adoption 

of smart environmental policies and infrastructure 

upgrades. Universities and research institutions will 

play a crucial role in developing new methodologies 
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for carbon tracking. Policy analysts and legal experts 

can translate scientific findings into effective 

regulations that promote sustainability (Agho et al., 

2021). Citizen engagement and grassroots movements 

can leverage AI-powered applications to track local 

pollution levels and report emissions violations. Open-

source carbon tracking platforms will empower 

communities to contribute to environmental decision-

making. 

 

The widespread adoption of AI and IoT in carbon 

monitoring will have profound policy implications at 

local, national, and global levels (Onukwulu et al., 

2022). Governments must adapt regulations to support 

real-time emissions tracking while addressing ethical 

and legal challenges; Governments will need to 

establish unified protocols for AI-driven carbon 

measurement and reporting. These standards will 

ensure consistency in emissions data across industries 

and jurisdictions. Policies that offer tax benefits, 

subsidies, or financial incentives for organizations 

adopting AI-powered carbon reduction strategies will 

encourage widespread implementation. Green 

technology funding programs can drive innovation in 

this sector. AI-driven carbon tracking involves 

extensive data collection, raising concerns about 

privacy and cybersecurity (Nwulu et al., 2022). Future 

regulations must balance transparency with data 

protection, ensuring ethical AI deployment. AI and 

IoT-powered carbon monitoring will facilitate global 

emissions tracking, supporting international climate 

agreements such as the Paris Agreement. Countries 

must collaborate to develop AI governance 

frameworks for sustainability. The future of carbon 

footprint monitoring is shaped by cutting-edge 

advancements in AI, IoT, and blockchain technology. 

AI-driven analytics, autonomous IoT networks, and 

advanced remote sensing will enhance precision in 

emissions tracking. Blockchain will revolutionize 

carbon credit markets by ensuring transparency and 

security in carbon trading (Akhigbe et al., 2021). 

Meanwhile, cross-disciplinary collaboration among 

researchers, policymakers, and industry leaders will 

drive comprehensive sustainability solutions. From a 

policy perspective, real-time carbon monitoring will 

necessitate updated regulations, incentives for AI 

adoption, and international cooperation. As AI-driven 

optimization continues to evolve, future research 

should explore ethical considerations, privacy 

safeguards, and equitable access to green technology 

(Akhigbe et al., 2022). By embracing these 

innovations, societies can achieve more effective and 

transparent carbon reduction strategies, paving the 

way for a sustainable future. 

 

CONCLUSION 

 

The integration of Artificial Intelligence (AI), the 

Internet of Things (IoT), and deep learning has 

revolutionized carbon footprint monitoring and 

reduction strategies. This has highlighted key 

challenges and opportunities in deploying AI and IoT 

for sustainable urban and industrial development. 

While these technologies offer real-time data 

collection, predictive analytics, and optimization 

capabilities, their widespread adoption faces hurdles 

such as scalability constraints, deep learning model 

interpretability issues, regulatory and ethical 

challenges, and difficulties in integrating with existing 

environmental policies. Addressing these limitations 

is crucial for maximizing the impact of AI-driven 

carbon management solutions. 

 

IoT plays a vital role in sustainability by enabling real-

time monitoring of emissions through connected 

sensors, smart grids, and automated control systems. 

These technologies optimize energy use, track 

emissions across transportation and industrial sectors, 

and enhance decision-making processes. Meanwhile, 

deep learning models facilitate predictive analytics 

and adaptive strategies for carbon footprint reduction. 

Techniques such as neural networks and 

reinforcement learning support data-driven policies 

that enhance efficiency in smart cities and industrial 

operations. 

 

Looking ahead, AI-driven carbon reduction strategies 

will become increasingly sophisticated, leveraging 

advancements in machine learning, quantum 

computing, and blockchain integration for improved 

transparency and decision-making. The expansion of 

AI and IoT in smart cities will enable more precise 

emissions tracking, while industries will adopt AI-

enhanced automation to optimize resource use and 

reduce environmental impact. Future policies will 

need to support ethical AI deployment, data 

standardization, and cross-sector collaboration to 

achieve meaningful carbon reductions. By addressing 
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current challenges and leveraging technological 

advancements, AI and IoT will play a pivotal role in 

driving global sustainability and achieving net-zero 

emissions. 

 

REFERENCES 

 

[1] Abdulrahman, M.L., Ibrahim, K.M., Gital, 

A.Y., Zambuk, F.U., Ja’afaru, B., Yakubu, Z.I. 

and Ibrahim, A., 2021. A review on deep 

learning with focus on deep recurrent neural 

network for electricity forecasting in residential 

building. Procedia Computer Science, 193, 

pp.141-154. 

[2] Adebisi, B., Aigbedion, E., Ayorinde, O.B. & 

Onukwulu, E.C., 2022. A conceptual model for 

implementing lean maintenance strategies to 

optimize operational efficiency and reduce 

costs in oil & gas industries. International 

Journal of Management and Organizational 

Research, 1(1), pp.50-57. Available at: 

https://doi.org/10.54660/IJMOR.2022.1.1.50-

57 

[3] Adewoyin, M.A., 2021. Developing 

frameworks for managing low-carbon energy 

transitions: overcoming barriers to 

implementation in the oil and gas industry. 

[4] Adewoyin, M.A., 2022. Advances in risk-

based inspection technologies: Mitigating asset 

integrity challenges in aging oil and gas 

infrastructure. 

[5] Adikwu, F.E., OZOBU, C.O., ODUJOBI, O., 

ONYEKWE, F.O. and NWULU, E.O., 2023. 

Advances in EHS Compliance: A Conceptual 

Model for Standardizing Health, Safety, and 

Hygiene Programs Across Multinational 

Corporations. 

[6] Afolabi, M., Mokhtari, M., Ettehadi, A. and 

Adeyemo, A.L., 2021, December. Evaluating 

the Occurrence of Desiccation Cracks in 

Mudstones using Digital Image Correlation: 

Implications for the Interpretation of Cement-

Filled Cracks in Sheepbed Mudstone, 

Yellowknife Bay Formation of Gale Crater on 

Mars. In AGU Fall Meeting 2021. AGU. 

[7] Afolabi, M.A., 2023. Development of 

Pretreatment Methods for Aerobic Digestion of 

Low-Strength Synthetic Wastewater Possibly 

Generated During Space Exploration. 

University of Louisiana at Lafayette. 

[8] Afolabi, S.O. and Akinsooto, O., 2021. 

Theoretical framework for dynamic 

mechanical analysis in material selection for 

high-performance engineering applications. 

Noûs, p.3. 

[9] Afolabi, S.O. and Akinsooto, O., 2023. 

Conceptual framework for mitigating cracking 

in superalloy structures during wire arc 

additive manufacturing (WAAM). Int J 

Multidiscip Compr Res. Available from: 

https://www. allmultidisciplinaryjournal. 

com/uploads/archives/20250123172459_MGE

-2025-1-190.1. pdf. 

[10] Agbede, O. O., Akhigbe, E. E., Ajayi, A. J., & 

Egbuhuzor, N. S. (2023). Structuring 

Financing Mechanisms for LNG Plants and 

Renewable Energy Infrastructure Projects 

Globally. IRE Journals, 7(5), 379-392. 

https://doi.org/10.IRE.2023.7.5.1707093 

[11] Agbede, O. O., Akhigbe, E. E., Ajayi, A. J., & 

Egbuhuzor, N. S. (2021). Assessing economic 

risks and returns of energy transitions with 

quantitative financial approaches. International 

Journal of Multidisciplinary Research and 

Growth Evaluation, 2(1), 552-566. 

https://doi.org/10.54660/.IJMRGE.2021.2.1.5

52-566 

[12] Agho, G., Ezeh, M.O., Isong, M., Iwe, D. and 

Oluseyi, K.A., 2021. Sustainable pore pressure 

prediction and its impact on geo-mechanical 

modelling for enhanced drilling operations. 

World Journal of Advanced Research and 

Reviews, 12(1), pp.540-557. 

[13] Ajayi, A. J., Agbede, O. O., Akhigbe, E. E., & 

Egbuhuzor, N. S. (2023). Evaluating the 

economic effects of energy policies, subsidies, 

and tariffs on markets. International Journal of 

Management and Organizational Research, 

2(1), 31-47. 

https://doi.org/10.54660/IJMOR.2023.2.1.31-

47 

[14] Ajayi, A. J., Akhigbe, E. E., Egbuhuzor, N. S., 

& Agbede, O. O. (2022). Economic analysis of 

transitioning from fossil fuels to renewable 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 961 

energy using econometrics. International 

Journal of Social Science Exceptional 

Research, 1(1), 96-110. 

https://doi.org/10.54660/IJSSER.2022.1.1.96-

110 

[15] Ajayi, A. J., Akhigbe, E. E., Egbuhuzor, N. S., 

& Agbede, O. O. (2021). Bridging data and 

decision-making: AI-enabled analytics for 

project management in oil and gas 

infrastructure. International Journal of 

Multidisciplinary Research and Growth 

Evaluation, 2(1), 567-580. 

https://doi.org/10.54660/.IJMRGE.2021.2.1.5

67-580 

[16] Akhigbe, E. E., Egbuhuzor, N. S., Ajayi, A. J., 

& Agbede, O. O. (2022). Optimization of 

investment portfolios in renewable energy 

using advanced financial modeling techniques. 

International Journal of Multidisciplinary 

Research Updates, 3(2), 40-58. 

https://doi.org/10.53430/ijmru.2022.3.2.0054 

[17] Akhigbe, E. E., Egbuhuzor, N. S., Ajayi, A. J., 

& Agbede, O. O. (2021). Financial valuation of 

green bonds for sustainability-focused energy 

investment portfolios and projects. Magna 

Scientia Advanced Research and Reviews, 

2(1), 109-128. 

https://doi.org/10.30574/msarr.2021.2.1.0033 

[18] Akhigbe, E. E., Egbuhuzor, N. S., Ajayi, A. J., 

& Agbede, O. O. (2023). Techno-Economic 

Valuation Frameworks for Emerging 

Hydrogen Energy and Advanced Nuclear 

Reactor Technologies. IRE Journals, 7(6), 423-

440. https://doi.org/10.IRE.2023.7.6.1707094 

[19] Akinsooto, O., 2013. Electrical energy savings 

calculation in single phase harmonic distorted 

systems. University of Johannesburg (South 

Africa). 

[20] Akinsooto, O., De Canha, D. and Pretorius, 

J.H.C., 2014, September. Energy savings 

reporting and uncertainty in Measurement & 

Verification. In 2014 Australasian Universities 

Power Engineering Conference (AUPEC) (pp. 

1-5). IEEE. 

[21] Akintobi, A.O., Okeke, I.C. and Ajani, O.B., 

2023. Innovative solutions for tackling tax 

evasion and fraud: Harnessing blockchain 

technology and artificial intelligence for 

transparency. Int J Tax Policy Res, 2(1), pp.45-

59. 

[22] Amafah, J., Temedie-Asogwa, T., Atta, J.A. 

and Al Zoubi, M.A.M., 2023. The Impacts of 

Treatment Summaries on Patient-Centered 

Communication and Quality of Care for Cancer 

Survivors 

[23] Bibri, S.E. and Krogstie, J., 2020. 

Environmentally data-driven smart sustainable 

cities: Applied innovative solutions for energy 

efficiency, pollution reduction, and urban 

metabolism. Energy Informatics, 3(1), p.29. 

[24] Brown, A. E., Ubeku, E., & Oshevire, P. 

(2015). Multi Algorithm of a Single Objective 

Function of a Single Phase Induction Motor. 

Journal of Multidisciplinary Engineering 

Science and Technology (JMEST), 2(12), 

3400-3403. Retrieved from 

https://www.jmest.org&#8203;:contentRefere

nce[oaicite:0]{index=0}. 

[25] Caiado, R.G.G. and Quelhas, O.L.G., 2020. 

Factories for the future: toward sustainable 

smart manufacturing. Responsible 

Consumption and Production, pp.239-250. 

[26] Cheng, T., Harrou, F., Kadri, F., Sun, Y. and 

Leiknes, T., 2020. Forecasting of wastewater 

treatment plant key features using deep 

learning-based models: A case study. Ieee 

Access, 8, pp.184475-184485. 

[27] Chopra, N., Patel, A., Singh, N. and Sharma, 

V., 2020. Leveraging Reinforcement Learning 

and Neural Networks for Optimized Dynamic 

Pricing Strategies in E-

Commerce. International Journal of AI 

Advancements, 9(4). 

[28] Chukwuneke, J.L., Orugba, H.O., Olisakwe, 

H.C. and Chikelu, P.O., 2021. Pyrolysis of pig-

hair in a fixed bed reactor: Physico-chemical 

parameters of bio-oil. South African Journal of 

Chemical Engineering, 38, pp.115-120. 

[29] Chukwuneke, J.L., Sinebe, J.E., Orugba, H.O., 

Olisakwe, H.C. and Ajike, C., 2022. Production 

and physico-chemical characteristics of 

pyrolyzed bio-oil derived from cow hooves. 

Arab Journal of Basic and Applied Sciences, 

29(1), pp.363-371. 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 962 

[30] Collins, A., Hamza, O. and Eweje, A., 2022. 

CI/CD pipelines and BI tools for automating 

cloud migration in telecom core networks: A 

conceptual framework. IRE Journals, 5(10), 

pp.323-324. 

[31] Collins, A., Hamza, O. and Eweje, A., 2022. 

Revolutionizing edge computing in 5G 

networks through Kubernetes and DevOps 

practices. IRE Journals, 5(7), pp.462-463. 

[32] Collins, A., Hamza, O., Eweje, A. and 

Babatunde, G.O., 2023. Adopting Agile and 

DevOps for telecom and business analytics: 

Advancing process optimization practices. 

International Journal of Multidisciplinary 

Research and Growth Evaluation, 4(1), 

pp.682-696. 

[33] Diahovchenko, I., Kolcun, M., Čonka, Z., 

Savkiv, V. and Mykhailyshyn, R., 2020. 

Progress and challenges in smart grids: 

distributed generation, smart metering, energy 

storage and smart loads. Iranian Journal of 

Science and Technology, Transactions of 

Electrical Engineering, 44, pp.1319-1333. 

[34] Dubey, A.K., Kumar, A., García-Díaz, V., 

Sharma, A.K. and Kanhaiya, K., 2021. Study 

and analysis of SARIMA and LSTM in 

forecasting time series data. Sustainable 

Energy Technologies and Assessments, 47, 

p.101474. 

[35] Egbuhuzor, N. S., Ajayi, A. J., Akhigbe, E. E., 

& Agbede, O. O. (2022). AI in Enterprise 

Resource Planning: Strategies for Seamless 

SaaS Implementation in High-Stakes 

Industries. International Journal of Social 

Science Exceptional Research, 1(1), 81-95. 

https://doi.org/10.54660/IJSSER.2022.1.1.81-

95 

[36] Egbuhuzor, N. S., Ajayi, A. J., Akhigbe, E. E., 

Agbede, O. O., Ewim, C. P.-M., & Ajiga, D. I. 

(2021). Cloud-based CRM systems: 

Revolutionizing customer engagement in the 

financial sector with artificial intelligence. 

International Journal of Science and Research 

Archive, 3(1), 215-234. 

https://doi.org/10.30574/ijsra.2021.3.1.0111 

[37] Egbuhuzor, N. S., Ajayi, A. J., Akhigbe, E. E., 

Ewim, C. P.-M., Ajiga, D. I., & Agbede, O. O. 

(2023). Artificial Intelligence in Predictive 

Flow Management: Transforming Logistics 

and Supply Chain Operations. International 

Journal of Management and Organizational 

Research, 2(1), 48-63. 

https://doi.org/10.54660/IJMOR.2023.2.1.48-

63 

[38] Egbuhuzor, N.S., Ajayi, A.J., Akhigbe, E.E. 

and Agbede, O.O., 2022. International Journal 

of Social Science Exceptional Research. 

[39] Elete, T.Y., Nwulu, E.O., Erhueh, O.V., 

Akano, O.A. and Aderamo, A.T., 2023. Early 

startup methodologies in gas plant 

commissioning: An analysis of effective 

strategies and their outcomes. International 

Journal of Scientific Research Updates, 5(2), 

pp.49-60. 

[40] Elete, T.Y., Nwulu, E.O., Omomo, K.O., Esiri, 

A.E. and Aderamo, A.T., 2022. A generic 

framework for ensuring safety and efficiency in 

international engineering projects: key 

concepts and strategic approaches. 

International Journal of Frontline Research 

and Reviews, 1(2), pp.23-26. 

[41] Elete, T.Y., Nwulu, E.O., Omomo, K.O., Esiri, 

A.E. and Aderamo, A.T., 2023. Alarm 

rationalization in engineering projects: 

Analyzing cost-saving measures and efficiency 

gains. International Journal of Frontiers in 

Engineering and Technology Research, 4(2), 

pp.22-35. 

[42] Elete, T.Y., Nwulu, E.O., Omomo, K.O., Esiri, 

A.E. and Aderamo, A.T., 2022. Data analytics 

as a catalyst for operational optimization: A 

comprehensive review of techniques in the oil 

and gas sector. International Journal of 

Frontline Research in Multidisciplinary 

Studies, 1(2), pp.32-45. 

[43] Fagbule, O.F., Amafah, J.O., Sarumi, A.T., 

Ibitoye, O.O., Jakpor, P.E. and Oluwafemi, 

A.M., 2023. Sugar-Sweetened Beverage Tax: 

A Crucial Component of a Multisectoral 

Approach to Combating Non-Communicable 

Diseases in Nigeria. Nigerian Journal of 

Medicine, 32(5), pp.461-466. 

[44] Fiemotongha, J.E., Igwe, A.N., Ewim, C.P.M. 

and Onukwulu, E.C., 2023. Innovative trading 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 963 

strategies for optimizing profitability and 

reducing risk in global oil and gas markets. 

Journal of Advance Multidisciplinary 

Research, 2(1), pp.48-65. 

[45] Fredson, G., Adebisi, B., Ayorinde, O.B., 

Onukwulu, E.C., Adediwin, O. & Ihechere, 

A.O., 2022. Enhancing procurement efficiency 

through business process reengineering: 

cutting-edge approaches in the energy industry. 

International Journal of Social Science 

Exceptional Research, 1(1), pp.38-54. 

Available at: 

https://doi.org/10.54660/IJSSER.2022.1.1.38-

54 

[46] Fredson, G., Adebisi, B., Ayorinde, O.B., 

Onukwulu, E.C., Adediwin, O. & Ihechere, 

A.O., 2021. Revolutionizing procurement 

management in the oil and gas industry: 

innovative strategies and insights from high-

value projects. International Journal of 

Multidisciplinary Research and Growth 

Evaluation, 2(1), pp.521-533. Available at: 

https://doi.org/10.54660/.IJMRGE.2021.2.1.5

21-533 

[47] Fredson, G., Adebisi, B., Ayorinde, O.B., 

Onukwulu, E.C., Adediwin, O. & Ihechere, 

A.O., 2022. Maximizing business efficiency 

through strategic contracting: aligning 

procurement practices with organizational 

goals. International Journal of Social Science 

Exceptional Research, 1(1), pp.55-72. 

Available at: 

https://doi.org/10.54660/IJSSER.2022.1.1.55-

72 [Accessed 13 March 2025]. 

[48] Fredson, G., Adebisi, B., Ayorinde, O.B., 

Onukwulu, E.C., Adediwin, O. & Ihechere, 

A.O., 2021. Driving organizational 

transformation: leadership in ERP 

implementation and lessons from the oil and 

gas sector. International Journal of 

Multidisciplinary Research and Growth 

Evaluation, 2(1), pp.508-520. Available at: 

https://doi.org/10.54660/.IJMRGE.2021.2.1.5

08-520 

[49] Ghazal, T.M., Hasan, M.K., Alshurideh, M.T., 

Alzoubi, H.M., Ahmad, M., Akbar, S.S., Al 

Kurdi, B. and Akour, I.A., 2021. IoT for smart 

cities: Machine learning approaches in smart 

healthcare—A review. Future Internet, 13(8), 

p.218. 

[50] Honarvar, A.R. and Sami, A., 2019. Towards 

sustainable smart city by particulate matter 

prediction using urban big data, excluding 

expensive air pollution infrastructures. Big 

data research, 17, pp.56-65. 

[51] Ilager, S., Muralidhar, R. and Buyya, R., 2020, 

October. Artificial intelligence (ai)-centric 

management of resources in modern 

distributed computing systems. In 2020 IEEE 

Cloud Summit (pp. 1-10). IEEE. 

[52] Jahun, I., Said, I., El-Imam, I., Ehoche, A., 

Dalhatu, I., Yakubu, A., Greby, S., Bronson, 

M., Brown, K., Bamidele, M. and Boyd, A.T., 

2021. Optimizing community linkage to care 

and antiretroviral therapy Initiation: Lessons 

from the Nigeria HIV/AIDS Indicator and 

Impact Survey (NAIIS) and their adaptation in 

Nigeria ART Surge. PLoS One, 16(9), 

p.e0257476. 

[53] Jessa, E. (2017) 'Soil Stabilization Using Bio-

Enzymes: A Sustainable Alternative to 

Traditional Methods', Journal of 

Communication in Physical Sciences, 2(1), pp. 

50-67. Available at: 

https://journalcps.com/index.php/volumes/arti

cle/view/33/31. 

[54] Jessa, E. (2023) 'The Role of Advanced 

Diagnostic Tools in Historic Building 

Conservation', Journal of Communication in 

Physical Sciences, 9(4), pp. 639-650. Available 

at: 

https://journalcps.com/index.php/volumes/arti

cle/view/147/135. 

[55] Kalusivalingam, A.K., Sharma, A., Patel, N. 

and Singh, V., 2020. Enhancing Energy 

Efficiency in Operational Processes Using 

Reinforcement Learning and Predictive 

Analytics. International Journal of AI and 

ML, 1(2). 

[56] Li, K., Zhou, T. and Liu, B.H., 2020. Internet-

based intelligent and sustainable 

manufacturing: developments and 

challenges. The International Journal of 

Advanced Manufacturing Technology, 108(5), 

pp.1767-1791. 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 964 

[57] Liao, Z., Weng, C. and Shen, C., 2020. Can 

public surveillance promote corporate 

environmental innovation? The mediating role 

of environmental law 

enforcement. Sustainable Development, 28(6), 

pp.1519-1527. 

[58] Ma, Y., Ping, K., Wu, C., Chen, L., Shi, H. and 

Chong, D., 2020. Artificial Intelligence 

powered Internet of Things and smart public 

service. Library Hi Tech, 38(1), pp.165-179. 

[59] Maino, C., Misul, D., Di Mauro, A. and Spessa, 

E., 2021. A deep neural network based model 

for the prediction of hybrid electric vehicles 

carbon dioxide emissions. Energy and AI, 5, 

p.100073. 

[60] Marinakis, V., 2020. Big data for energy 

management and energy-efficient 

buildings. Energies, 13(7), p.1555. 

[61] Neftci, E.O. and Averbeck, B.B., 2019. 

Reinforcement learning in artificial and 

biological systems. Nature Machine 

Intelligence, 1(3), pp.133-143. 

[62] Nundloll, V., Porter, B., Blair, G.S., Emmett, 

B., Cosby, J., Jones, D.L., Chadwick, D., 

Winterbourn, B., Beattie, P., Dean, G. and 

Shaw, R., 2019. The design and deployment of 

an end-to-end IoT infrastructure for the natural 

environment. Future Internet, 11(6), p.129. 

[63] Nwulu, E.O., Elete, T.Y., Aderamo, A.T., Esiri, 

A.E. and Erhueh, O.V., 2023. Promoting plant 

reliability and safety through effective process 

automation and control engineering practices. 

World Journal of Advanced Science and 

Technology, 4(1), pp.62-75. 

[64] Nwulu, E.O., Elete, T.Y., Erhueh, O.V., 

Akano, O.A. and Aderamo, A.T., 2022. 

Integrative project and asset management 

strategies to maximize gas production: A 

review of best practices. World Journal of 

Advanced Science and Technology, 2(2), 

pp.18-33. 

[65] Nwulu, E.O., Elete, T.Y., Erhueh, O.V., 

Akano, O.A. and Omomo, K.O., 2023. 

Machine learning applications in predictive 

maintenance: Enhancing efficiency across the 

oil and gas industry. International Journal of 

Engineering Research Updates, 5(1), pp.17-30. 

[66] Nwulu, E.O., Elete, T.Y., Erhueh, O.V., 

Akano, O.A. and Omomo, K.O., 2022. 

Leadership in multidisciplinary engineering 

projects: A review of effective management 

practices and outcomes. International Journal 

of Scientific Research Updates, 4(2), pp.188-

197. 

[67] Nwulu, E.O., Elete, T.Y., Omomo, K.O., 

Akano, O.A. and Erhueh, O.V., 2023. The 

importance of interdisciplinary collaboration 

for successful engineering project completions: 

A strategic framework. World Journal of 

Engineering and Technology Research, 2(3), 

pp.48-56. 

[68] Okolie, C. I., Hamza, O., Eweje, A., Collins, 

A., & Babatunde, G. O. (2021). Leveraging 

Digital Transformation and Business Analysis 

to Improve Healthcare Provider Portal. IRE 

Journals, 4(10), 253-254. 

https://doi.org/10.54660/IJMRGE.2021.4.10.2

53-

254&#8203;:contentReference[oaicite:0]{inde

x=0}. 

[69] Okolie, C. I., Hamza, O., Eweje, A., Collins, 

A., Babatunde, G. O., & Ubamadu, B. C. 

(2022). Implementing Robotic Process 

Automation (RPA) to Streamline Business 

Processes and Improve Operational Efficiency 

in Enterprises. International Journal of Social 

Science Exceptional Research, 1(1), 111-119. 

https://doi.org/10.54660/IJMOR.2022.1.1.111

-

119&#8203;:contentReference[oaicite:1]{inde

x=1}. 

[70] Olisakwe, H., Ikpambese, K., Ipilakyaa, T. and 

Ekengwu, I., 2022. The Inhibitive Effect of 

Ficus Thonningii Leaves Extract in 1m HCL 

Solution as Corrosion Inhibitors on Mild Steel. 

Int J Innov Sci Res Tech, 7(1), pp.769-76. 

[71] Olisakwe, H., Ikpambese, K.K., Ipilakyaa, 

T.D. and Qdeha, C.P., 2023. Effect of 

ternarization on corrosion inhibitive properties 

of extracts of Strangler fig bark, Neem leaves 

and Bitter leave on mild steel in acidic medium. 

Int. J. Res. Trends and Innov, 8(7), pp.121-130. 

[72] Olisakwe, H.C., Tuleun, L.T. and Eloka-

Eboka, A.C., 2011. Comparative study of 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 965 

Thevetia peruviana and Jatropha curcas seed 

oils as feedstock for Grease production. 

International Journal of Engineering Research 

and Applications, 1(3). 

[73] Oluokun, O.A., 2021. Design of a Power 

System with Significant Mass and Volume 

Reductions, Increased Efficiency, and 

Capability for Space Station Operations Using 

Optimization Approaches (Doctoral 

dissertation, McNeese State University). 

[74] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., 2022. Circular economy models for 

sustainable resource management in energy 

supply chains. World Journal of Advanced 

Science and Technology, 2(2), pp.034-057. 

[75] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., 2023. Decentralized energy supply chain 

networks using blockchain and IoT. 

International Journal of Scholarly Research in 

Multidisciplinary Studies, 2(2), pp.066-085. 

[76] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., 2023. Developing a framework for 

supply chain resilience in renewable energy 

operations. Global Journal of Research in 

Science and Technology, 1(2), pp.1-18. 

[77] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., 2023. Developing a framework for AI-

driven optimization of supply chains in energy 

sector. Global Journal of Advanced Research 

and Reviews, 1(2), pp.82-101. 

[78] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., 2023. Sustainable supply chain practices 

to reduce carbon footprint in oil and gas. 

Global Journal of Research in 

Multidisciplinary Studies, 1(2), pp.24-43. 

[79] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., Framework for sustainable supply chain 

practices to reduce carbon footprint in energy. 

Open Access Research Journal of Science and 

Technology. 2021; 1 (2): 12-34 [online] 

[80] Onukwulu, E.C., Agho, M.O. and Eyo-Udo, 

N.L., Framework for sustainable supply chain 

practices to reduce carbon footprint in energy. 

Open Access Res J Sci Technol. 2021; 1 (2): 

12–34 [online] 

[81] Onukwulu, E.C., Dienagha, I.N., Digitemie, 

W.N. and Egbumokei, P.I., 2021. AI-driven 

supply chain optimization for enhanced 

efficiency in the energy sector. Magna Scientia 

Advanced Research and Reviews, 2(1), pp.087-

108. 

[82] Onukwulu, E.C., Dienagha, I.N., Digitemie, 

W.N. and Egbumokei, P.I., 2021. Predictive 

analytics for mitigating supply chain 

disruptions in energy operations. IRE Journals. 

[83] Onukwulu, E.C., Dienagha, I.N., Digitemie, 

W.N. and Egbumokei, P.I., 2022. Blockchain 

for transparent and secure supply chain 

management in renewable energy. Int J Sci 

Technol Res Arch, 3(1), pp.251-72. 

[84] Onukwulu, E.C., Dienagha, I.N., Digitemie, 

W.N. and Egbumokei, P.I., 2021. Framework 

for decentralized energy supply chains using 

blockchain and IoT technologies. IRE 

Journals. 

[85] Onukwulu, E.C., Dienagha, I.N., Digitemie, 

W.N. and Egbumokei, P.I., 2022. Advances in 

digital twin technology for monitoring energy 

supply chain operations. IRE Journals. 

[86] Onukwulu, E.C., Fiemotongha, J.E., Igwe, 

A.N. and Ewim, C.P.M., 2023. Transforming 

supply chain logistics in oil and gas: best 

practices for optimizing efficiency and 

reducing operational costs. Journal of Advance 

Multidisciplinary Research, 2(2), pp.59-76. 

[87] Opia, F.N., MATTHEW, K.A. and 

MATTHEW, T.F., 2022. Leveraging 

Algorithmic and Machine Learning 

Technologies for Breast Cancer Management 

in Sub-Saharan Africa. 

[88] Oyedokun, O.O., 2019. Green human resource 

management practices and its effect on the 

sustainable competitive edge in the Nigerian 

manufacturing industry (Dangote) (Doctoral 

dissertation, Dublin Business School). 

[89] Papageorgiou, E., Teodoro, E., Guillén, A., 

Casanovas, P., Theodosiou, T., Charalampous, 

P., Dimitriou, N., Gómez, A., Gurzawska, A., 

Hayes, P. and Margetis, G., 2021. D2. 3-

OPTIMAI-State of the art survey. 

[90] Poongodi, T., Ramya, S.R., Suresh, P. and 

Balusamy, B., 2020. Application of IoT in 

green computing. In Advances in Greener 



© MAY 2023 | IRE Journals | Volume 6 Issue 11 | ISSN: 2456-8880 

IRE 1704555          ICONIC RESEARCH AND ENGINEERING JOURNALS 966 

Energy Technologies (pp. 295-323). 

Singapore: Springer Singapore. 

[91] Rao, E.P., Rakesh, V. and Ramesh, K., 2021. 

Big Data analytics and Artificial Intelligence 

methods for decision making in 

agriculture. Indian J Agron, 66(5), pp.279-287. 

[92] Sebestyén, V., Czvetkó, T. and Abonyi, J., 

2021. The applicability of big data in climate 

change research: the importance of system of 

systems thinking. Frontiers in Environmental 

Science, 9, p.619092. 

[93] Sobowale, A., Nwaozomudoh, M.O., Odio, 

P.E., Kokogho, E., Olorunfemi, T.A. and 

Adeniji, I.E., 2021. Developing a conceptual 

framework for enhancing interbank currency 

operation accuracy in Nigeria's banking sector. 

International Journal of Multidisciplinary 

Research and Growth Evaluation, 2(1), 

pp.481-494. 

[94] Suryadevara, S. and Yanamala, A.K.Y., 2020. 

Fundamentals of Artificial Neural Networks: 

Applications in Neuroscientific 

Research. Revista de Inteligencia Artificial en 

Medicina, 11(1), pp.38-54. 

[95] Tao, Z., 2020. Advanced Wavelet Sampling 

Algorithm for IoT based environmental 

monitoring and management. Computer 

Communications, 150, pp.547-555. 

[96] Vinuesa, R., Azizpour, H., Leite, I., Balaam, 

M., Dignum, V., Domisch, S., Felländer, A., 

Langhans, S.D., Tegmark, M. and Fuso Nerini, 

F., 2020. The role of artificial intelligence in 

achieving the Sustainable Development 

Goals. Nature communications, 11(1), p.233. 

[97] Yaseen, A., 2021. Reducing industrial risk with 

AI and automation. International Journal of 

Intelligent Automation and Computing, 4(1), 

pp.60-80. 

[98] Yousaf, A., Asif, R.M., Shakir, M., Rehman, 

A.U., Alassery, F., Hamam, H. and 

Cheikhrouhou, O., 2021. A novel machine 

learning-based price forecasting for energy 

management systems. Sustainability, 13(22), 

p.12693. 

[99] Yrjola, S., Ahokangas, P., Matinmikko-Blue, 

M., Jurva, R., Kant, V., Karppinen, P., Kinnula, 

M., Koumaras, H., Rantakokko, M., Ziegler, V. 

and Thakur, A., 2020. White paper on business 

of 6G. arXiv preprint arXiv:2005.06400. 

[100] Zhao, Y., Wang, W., Li, Y., Meixner, C.C., 

Tornatore, M. and Zhang, J., 2019. Edge 

computing and networking: A survey on 

infrastructures and applications. IEEE 

Access, 7, pp.101213-101230. 


