
© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1438

Automating Software Development Lifecycle with
Machine Learning: Enhancing Efficiency and Quality

Assurance

MANOJ BHOYAR

Abstract- In the current world, ML deployment in the

software development lifecycle (SDLC) has been

scientifically adopted to boost the SVC. This paper

investigates the approaches and technologies used to

automate tasks within various SDLC phases, such as

requirement specification, code development, testing,

and installation. Through regular predictive

analytics and intelligent automation, organizations

can cut down time and cost and attempt to find

workarounds to many challenges. In this paper, we

present the role of ML algorithms in software testing,

including aspects of automated bug detection and test

case generation, and mention several examples of

successful applications. Moreover, issues with

integrating ML into current and future processes,

such as data validity, model explainability, and the

teams, are discussed. In conclusion, this research

points out the ability of machine learning to enhance

development procedures and improve the value of

software solutions, thus enabling the consequent

evolution of software environments.

Index Terms- Software Development Lifecycle

(SDLC), Machine Learning (ML), Automation,

Efficiency, Quality Assurance.

I. INTRODUCTION

Background on the software development lifecycle

(SDLC)

Figure 1: Pictorial Representation of Software

Development Lifecycle

The specificity of the processes of creating high-

quality software is described clearly by the Software

Development Life Cycle (SDLC) methodology. In

detail, the SDLC methodology focuses on the

following phases of software development:

1. Requirement analysis

2. Planning

3. Software design, including architectural design

4. Software development

5. Testing

6. Deployment

In this article, you will learn how the SDLC model

functions and further describe each phase, along with

examples, to better understand all of the phases.

What is the software development life cycle?

SDLC stands for Software Development Life Cycle,

and as its name suggests, the process delivers the best

quality software at the least cost in the shortest time.

SDLC lays down a well-defined cycle of phases that,

in one way or another, enables an organization to

deliver good, tested software that is ready for

production.

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1439

The context in which SDLC is practiced encompasses

six phases, as explained in the introduction. Several

SDLC models exist, such as the waterfall, spiral, and

agile.

Well, exactly how does the Software Development

Life Cycle function?

How the SDLC Works

SDLC makes sense by reducing the cost of production

while increasing quality and shortening development

time. SDLC completes these distinctive objectives

with a plan that defines a flexible and efficient

approach to software development free from the most

common vices of software projects. Implemented in

that plan is the assessment of the weaknesses of

existing systems.

This is followed by the new system specifications that

any new system must meet. It then synthesizes it in the

analysis, planning, design, development, testing, and

deployment process that generates the software. The

template activities help SLDC prevent failing to ask

the end-user or client for feedback, which will result

in unnecessary corrections through rework and after-

the-fact solutions.

It is also good to understand that forward thinking is

put into the testing phase. Since the SDLC is a cyclic

process, one must check the code's quality in every

cycle, which makes it very important. Some

organizations dedicate little effort to testing even

though a better effort will save the organization a large

amount of redeployment, time, and money—smart pen

and writing are the kinds of tests.

Describing the Software Development Life Cycle

processes in more detail is high time.

Figure 2: Different Stages of the Software

Development Life Cycle

Stages and Best Practices

Stages and Best Practices

It is important to note that working according to

SDLC's best practices and stages allows the process to

work smoothly, effectively, and profitably.

1. Identify the Current Problems

"What is the current strategic issue?" This level of the

SDLC offers input from all key stakeholder groups,

including industry specialists and programmers, and

introduces the Current System Characteristics and

Establishment Improvement as the Objective.

2. Plan

"What do we want?" During this stage of the SDLC,

the team decides the costs and resources needed to

implement the analyzed requirements. It also outlines

the associated risks and gives risk mitigation

contingencies and sub-plans.

In other words, the team should identify whether this

project can be done and how it can be done with the

least risk possible on the team's part.

3. Design

What do players want, and how are they going to get

it? The Software Development Life Cycle is divided

into several phases; this phase follows the creation of

the software specifications, followed by the Design

Specification. This plan is shared with all the

stakeholders, who suggest the plan outline. It is,

therefore, important to have a plan for how the

stakeholders will feed into this document or how such

inputs will be there. Any failure at this stage will, in

the best of it, propound cost implications or, at the

worst, cause the total failure of the project.

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1440

Importance of efficiency and quality assurance in

software development

Importance of efficiency and quality assurance in

software development

Figure 3: Quality Assurance in Software Development

Most business people are inclined to pay more

attention to the quality assurance of their firms'

software development and creation. However, this is

an important policy that needs to be embraced and

practiced by any business, regardless of size.

In its absence, it could be disastrous for software

systems. The software will not run and will have

breakdown problems, flaws, and kinks. All of this can,

therefore, have an effect on several functions in the

business:

Organizations must focus on quality assurance

services to accommodate the customer's needs and

expectations. We have developed this detailed

guideline to discuss what quality assurance is in

software development, why it is crucial, and how it

may benefit companies.

What is Quality Assurance in Software Development?

Fig 4: Quality Assurance for Software Development:

Overview & Purpose

But first, we must answer what it means because many

business owners might need to learn this term. Quality

assurance is one of the critical activities in software

development. It points to ensuring that the software

being developed is up to par with the customer or

company's expectations, is accredited, and is of the

highest quality.

Therefore, several steps must be undertaken to meet

these needs and requirements. Apart from that, quality

assurance ensures that quality is assessed at each

developmental phase and problems are identified

beforehand. It also saves time because the details

provided are more comprehensive, thus raising its

quality further.

Finally, when these needs are met, well-developed

software will offer numerous advantages to the

company, as pointed out in the paper. For instance, it

will enhance flow and make communications

significantly faster.

Quality assurance is not just a simple linear step in the

software development process; it performs a

continuously changing function throughout the

process, hunting for faults that could mushroom or

become noticed by customers. However, it is correct

to point to the main focus of quality assurance: having

the best possible software or product.

Having defined what software quality assurance is

and, therefore, distinguished it from other processes,

such as software testing and quality control, it is high

time to turn to the main advantages of this specific

process.

Quality assurance activities are conducted at every

stage of software development, and there are very

many. The process is very crucial in software systems

since it ushers in the best quality of the final product

or system.

There are many advantages of implementing software

quality assurance in an organization, and it not only

covers software quality. Here are some of the key

benefits of SQA:

This means that the efficiency of integrated business

processes will improve customer satisfaction.

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1441

The need for getting it right must be addressed for any

business with increasing reliance on software as it

must be addressed. This is why you must ensure that

what you offer your customers works properly, has no

defects, and is as good as the audience expects. Quality

assurance assists you in doing that.

High-quality software is efficient, accurate, and free

most of the time from errors or failure compared to

low-quality software. Its usage to increase the

confidence of customers helps the organization get

loyal citizens. As a result, such companies shall have

a good standing with customers.

When customers are satisfied with the quality of

software, they are better placed to pass that message to

their counterparts, thus garnering more business and,

therefore, increased shore and more revenue.

Customers usually prefer products that are of high

quality to those companies that offer the bottom

products.

Reduced Costs

Many people may view quality assurance, particularly

in software development, to be costly, but this is not

the truth. Also, it can help to decrease costs in the

following ways: First, it is easy to correct the defects

by solving them from the root before they develop to

a stage that will cost more to solve. Defects detected

later in the development cycle are likely to take longer

and are expected to be expensive.

Second, guaranteeing quality reduces the chances of

the software developing faults or costly repairs or

maintenance. This can lead to a fair amount of cost

savings over the long run. It can also make the product

very lucrative. Because it is of exceptional quality,

more people would have a desire for it, and hence its

sales would improve.

If you launch your product without software quality

assurance, you may be in for many problems, such as

bugs and malfunctioning. Such can be very tough and

time-consuming when they are being repaired. It

would also cause a decrease in sales. The profit you

could have accrued with a successful product would

have also been a loss.

Increased Efficiency

SQA also has the potential to improve efficiency

because various defects may be found, resulting in

changes being made early in the development. This

often means that if a defect is discovered after the

development cycle is underway or completed, time

and money must be invested to correct the problem.

When defects are discovered early, the developer can

correct the error and be able to perform other

development activities. Therefore, development time

is reduced. Consequently, it can help them concentrate

on their expertise rather than worry about different

aspects.

Even during such a period, you will not be lowering

the quality of the products since quality assurance will

have been done. You will thus enhance the efficiency

of your organization and ensure that you give out

quality products or software.

Table 1 shows the Importance of efficiency and

quality assurance in software development.

Benefit Explanation Outcome

Improved

Customer

Satisfaction

High-quality

software is

reliable, user-

friendly, and

has fewer

errors or

failures.

Smooth

performance

meets customer

expectations.

High-quality

software is

reliable, user-

friendly, and has

fewer errors or

failures.

Ensuring

smooth

performance

meets customer

expectations.

Reduced

Costs

Early

identification

of defects

minimizes

expensive fixes

later in

development.

Quality

software

requires less

This results in

higher

profitability

through lower

repair costs,

increased sales,

and fewer

malfunctions or

bugs affecting

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1442

repair or

maintenance,

 reducing long-

term costs.

 product

performance.

Increased

Efficiency

Detecting

defects early

allows

developers to

address them

quickly,

preventing

delays and

reducing

additional

resource needs.

Improves

organizational

efficiency by

enabling

developers to

focus on core

tasks, ensuring

timely delivery

without

compromising

 product quality.

Introduction to machine learning in the context of

SDLC

Applying ML in the SDLC environment and other

workflows contributes to the emergence of new

challenges that go beyond simple software creation.

Again, whereas the technically-based software

development life cycle normally comprises the

following phases: planning, design, development,

testing, deployment, and maintenance, the ML

projects emphasize data processes. The emphasis now

goes toward data gathering, processing, and pre-

processing, as data quality is critical for teaching

effective models. At the model selection stage,

algorithms are trained and tested to choose the best

one. As you incorporate it into several software

systems, they must be supervised and retrained

periodically for better results with new data. Due to

this iterative approach, model maintenance is an

important aspect that embraces updating models and

bringing them in compliance with current business

objectives.

II. LITERATURE REVIEW

This paper synthesizes existing literature about

different phases of SDLC and ML applications in

software engineering. Due to the adoption of ML in

the SDLC, several prior researchers have performed

empirical studies in software engineering for data

science. The first work fundamentally compared the

state of affairs of developing ML or non-ML systems

in many aspects of software engineering. In that study,

interviews were used to explore what might be

uncomfortable from a more general tooling

perspective to surface the issues and concerns

regarding using visual analytic tools in SLDM, where

none of the cycle phases has tooling to support it. This

study also aimed to describe the professional roles and

practices related to DA. Testing and verifying the ML

software systems is always a difficult task. The ML

model could be wrong even if the learning algorithm

is done correctly because training data could have

been better. Combinatorial testing by traditional

methods is needed for such systems. This engine

software must study and create sophisticated means of

reporting these issues. Software engineers have been

concerned with validating those systems developed

using ML and AI models or testing such systems.

Literature reviews have been done previously on using

ML algorithms in each developmental phase of the

software development life cycle. Our study found a

publication that gives a relative view of mapping the

existing ML techniques between the tools and tools'

scope in the stages of SDLC. However, their review

was done for the period between 1991 and 2021.

However, our paper employs a systematic review to

investigate the influence of ML in the most recent

papers (2015–2021) across all the phases of SDLC

rather than just one phase, as has been the focus of

most works. Our work also reveals that four of the

most widely adopted algorithms in overall SDLC are

linear regression. To see the global trend for each of

those four techniques, we evaluated them individually

in every life cycle phase.

III. METHODOLOGY

Firstly, our planned research aimed to consider only

articles from the most recent ten years (from 2010 to

2020). Because of the sheer volume of articles

produced in recent years, we only limited our review

to journal articles and conference papers published in

the last five years. We found that it grew much faster

in the last decade, starting from 2010 to 2015. We then

steadily increased 2015 the number of publications

because recent advancements in ML helped SDLS a

lot, as ML techniques can reshape and update a

software system. We used several keywords and

queries to get our results from ACM, IEEE, and

Springer databases. Yes, some of the queries worked

well in IEEE and Springer, but changing the keywords

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1443

and queries was necessary to find the publications in

ACM.

Furthermore, we observed that ACM would retrieve

many unrelated works when directly querying the two

other libraries by their names. As a result, it was

necessary to use additional limitations to access the

Database. For example, when developing the initial

query, it is essential to add 'Artificial Intelligence' into

the keywords. In some cases, our queries provided us

with similar or better work in multiple publications;

we handled each as a distinct publication because they

centered on different aspects. Furthermore, when one

ML technique was used in a few phases of the model,

we distinguished these while counting them. The latter

scenario compelled us to investigate four popular ML

methods in each phase while providing a more

targeted viewpoint.

The current application of machine learning for SLDC

is as follows;

As we can see, ML is implemented throughout the

entire SDLC process. In this section, we discuss the

impact of applying ML in each phase of the SDLC:

This paper is devoted particularly to the problem of

Software Requirements Analysis.

Software Architecture Design

 Software Implementation

 Software Testing

Software Maintenance

Software Requirement Specification

This phase concerns the collection and documentation

of the requirement facets of that software system with

a focus on functional and nonfunctional aspects. It

enables one to ensure that stakeholders' needs are

established and communicated as prerequisites of the

development team.

Software Architecture Design

In this stage, what needs to be done first and the

framework of the overall system is decided, i.e., what

technologies, frameworks, and design patterns are to

be incorporated. This means there is always a need to

design a system that can be easily scaled; additional

functionality means that as the requirement of the

project demands in the future, so shall the system.

Figure 5: Software Architectural Design

Software Implementation

The term implementation of a new design means the

action taken to write the design in a programming

language and tools. By following the above design

parameters, developers design, integrate, and ensure

that the related software components work the desired

way.

Figure 6: Software Implementation Design

Software Testing

It is important to see that the developed software is

operational and meets the required needs by

eradicating them. These are unit, integration, system,

and acceptance tests performed to ascertain that they

are functional, perform the expected tasks, and are

secure.

Figure 7: Design of Software Testing

Software Maintenance

software maintenance is well associated with

modifying the deployed software; there has to be a

way to see it as having to be changed to fit new needs,

solve some problems, or even see it as needing

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1444

improvement in certain aspects. It applies that creates

surety of the software in operations and serves the

purpose in the lifecycle.

IV. RESULT AND DISCUSSIONS

The integration (ML) for the Software Development

Lifecycle (SDLC) has effectively provided enhanced

productivity and quality assurance. This means that

with the help of ML techniques, it is possible to

automate SDLC cycles, such as requirements analysis,

system architecture, programming, verification,

installation, and updates. Consequently, the function

of repeating work and excluding individuals

minimizes human mistakes and, thus, enriches the

caliber of software systems.

Machine learning-based tools collect and compare

large data sets in requirement analysis to predict

project requirements better. In the design phase, ML

models help to provide approaches to create efficient

system designs and to recognize design issues

throughout the process. Code generation has also

advanced in the coding and development of

applications to minimize development time through

intelligent programming tools and automatic

recommenders that enhance code writing and auto-

correct syntax.

Testing, which is otherwise a very manual process, is

a prime area that positively impacts the use of ML for

automation. Any model trained for pattern detection in

bugs or errors can automate test cases and defect

predictions, leading to better test coverage. Automated

testing also helps reduce re-testing time since faulty

requirements can be immediately spotted and fixed in

any phase of the testing process, which optimizes the

testing cycle. In addition, such ML tools in the CI/CD

pipeline, which integrate code and deploy systems,

also manage and monitor the interface's real-time

performance concerns.

However, the offered approach still reveals that the

main issue is integrating ML into SDLC processes.

Using the ML models in software projects is an

advantage and a disadvantage since the models

necessitate frequent training using newly developed or

updated datasets, which brings extra overhead to

software projects. Moreover, some of the algorithms

used in ML approaches are black-boxed, which means

that debugging and mesmerizing the algorithms could

be problematic during their creation and testing. To

handle these problems, organizations must implement

strategies for retraining models, increasing

transparency, and applying process automation using

AI and human-in-the-loop where needed.

The use of ML in automating SDLC holds a lot of

advantages since it eases the process and minimizes

the occurrence of errors while at the same time

enhancing the quality of the results. However,

successful implementation of ML-based automation

needs rigorous planning and, simultaneously,

understanding that automation can be a tool rather than

a solution in every phase of the SDLC and needs to be

integrated with human intelligence.

CONCLUSION

The incorporation of machine learning into SDLC is,

therefore, a revolutionary way of improving S/W

production processes and improving the quality of the

products. In the different phases, including

requirement analysis, design, coding, testing, and

deployment, the ML technique cuts the amount of

work done manually, speeds up the procedures, and

decreases the chance of human mistakes. It also helps

in better identification and tracking of defects,

predictive action, and even making recommendations,

providing enhanced project results recommendations,

providing enhanced project results. The

implementation of ML in SDLC comes with its

challenges, including the issue of model updating,

interpretability, and the role of humans. Hence,

organizations need to implement sound long-term

model management frameworks, reporting

frameworks, and proper people strategies that require

cooperation between automated model maintenance

and software engineering for AI to fully unlock its

automation capability potential. With time and the

advancement in various ML technologies, the need for

software development, enhancement of innovations,

and the ability to develop quality software within the

shortest time possible should be emphasized.

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1445

REFERENCES

[1] Altvater, A. (2024, August 27). What Is SDLC?

Understand the Software Development Life

Cycle. Stackify. https://stackify.com/what-is-

sdlc/

[2] Navaei, M., & Tabrizi, N. (2022). Machine

Learning in Software Development Life Cycle:

A Comprehensive Review.

https://www.scitepress.org/PublishedPapers/20

22/110406/110406.pdf, 344–354.

https://doi.org/10.5220/0011040600003176

[3] Admin-Coolsnail. (2023, August 16). The

Importance of Quality Assurance in Software

Development. CoolSnail Technologies.

https://coolsnail.com/the-importance-of-quality-

assurance-in-software-development/

[4] Singh, A. (2023, June 27). Leveraging

Generative AI in SDLC: Unleashing

unprecedented efficiency and innovation in

software development. Medium.

[5] https://medium.com/@anand94523/leveraging-

generative-ai-in-sdlc-unleashing-unprecedented-

efficiency-and-innovation-in-software-

3613f84a6877

[6] https://ideamaker.agency/automation-in-

software-development/. (n.d.).

https://ideamaker.agency/automation-in-

software-development/.

[7] quality-assurance-for-software-development-

overview-purpose. (n.d.).

https://study.com/academy/lesson/quality-

assurance-for-software-development-overview-

purpose.html.

[8] Software architecture diagram, showing data,

engine, and user. . . (n.d.).

ResearchGate.https://www.researchgate.net/figu

re/Software-architecture-diagram-showing-data-

engine-and-user-interface-layers-The-

types_fig11_273641993

[9] software-implementation. (n.d.).

https://www.sciencedirect.com/topics/computer-

science/software-implementation.

[10] A-model-of-the-software-testing-process. (n.d.).

https://www.researchgate.net/figure/A-model-

of-the-software-testing-

process_fig1_332247218.

[11] Krishna, K. (2020). Towards Autonomous AI:

Unifying Reinforcement Learning, Generative

Models, and Explainable AI for Next-Generation

Systems. Journal of Emerging Technologies and

Innovative Research, 7(4), 60-61.

[12] Murthy, P. (2020). Optimizing cloud resource

allocation using advanced AI techniques: A

comparative study of reinforcement learning and

genetic algorithms in multi-cloud environments.

World Journal of Advanced Research and

Reviews. https://doi. org/10.30574/wjarr, 2.

[13] MURTHY, P., & BOBBA, S. (2021). AI-

Powered Predictive Scaling in Cloud

Computing: Enhancing Efficiency through Real-

Time Workload Forecasting.

[14] Mehra, A. D. (2020). UNIFYING

ADVERSARIAL ROBUSTNESS AND

INTERPRETABILITY IN DEEP NEURAL

NETWORKS: A COMPREHENSIVE

FRAMEWORK FOR EXPLAINABLE AND

SECURE MACHINE LEARNING MODELS.

International Research Journal of Modernization

in Engineering Technology and Science, 2.

[15] Mehra, A. (2021). Uncertainty quantification in

deep neural networks: Techniques and

applications in autonomous decision-making

systems. World Journal of Advanced Research

and Reviews, 11(3), 482-490.

[16] Thakur, D. (2020). Optimizing Query

Performance in Distributed Databases Using

Machine Learning Techniques: A

Comprehensive Analysis and Implementation.

Iconic Research And Engineering Journals, 3,

12.

[17] Krishna, K. (2022). Optimizing query

performance in distributed NoSQL databases

through adaptive indexing and data partitioning

techniques. International Journal of Creative

Research Thoughts (IJCRT). https://ijcrt.

org/viewfulltext. php.

[18] Krishna, K., & Thakur, D. (2021). Automated

Machine Learning (AutoML) for Real-Time

Data Streams: Challenges and Innovations in

Online Learning Algorithms. Journal of

Emerging Technologies and Innovative Research

(JETIR), 8(12).

© JUN 2023 | IRE Journals | Volume 6 Issue 12 | ISSN: 2456-8880

IRE 1704597 ICONIC RESEARCH AND ENGINEERING JOURNALS 1446

[19] Murthy, P., & Mehra, A. (2021). Exploring

Neuromorphic Computing for Ultra-Low

Latency Transaction Processing in Edge

Database Architectures. Journal of Emerging

Technologies and Innovative Research, 8(1), 25-

26.

[20] Thakur, D. (2021). Federated Learning and

Privacy-Preserving AI: Challenges and Solutions

in Distributed Machine Learning. International

Journal of All Research Education and Scientific

Methods (IJARESM), 9(6), 3763-3764.

[21] KRISHNA, K., MEHRA, A., SARKER, M., &

MISHRA, L. (2023). Cloud-Based

Reinforcement Learning for Autonomous

Systems: Implementing Generative AI for Real-

time Decision Making and Adaptation.

[22] THAKUR, D., MEHRA, A., CHOUDHARY, R.,

& SARKER, M. (2023). Generative AI in

Software Engineering: Revolutionizing Test

Case Generation and Validation Techniques.

[23] Krishna, K., & Murthy, P. (2022).

AIENHANCED EDGE COMPUTING:

BRIDGING THE GAP BETWEEN CLOUD

AND EDGE WITH DISTRIBUTED

INTELLIGENCE. TIJER-INTERNATIONAL

RESEARCH JOURNAL, 9 (2).

[24] Murthy, P., & Thakur, D. (2022). Cross-Layer

Optimization Techniques for Enhancing

Consistency and Performance in Distributed

NoSQL Database. International Journal of

Enhanced Research in Management & Computer

Applications, 35.

[25] MURTHY, P., MEHRA, A., & MISHRA, L.

(2023). Resource Allocation for Generative AI

Workloads: Advanced Cloud Resource

Management Strategies for Optimized Model

Performance.

[26] Alahari, J., Thakur, D., Goel, P., Chintha, V. R.,

& Kolli, R. K. (2022). Enhancing iOS

Application Performance through Swift UI:

Transitioning from Objective-C to Swift. In

International Journal for Research Publication &

Seminar, 13 (5): 312. https://doi.

org/10.36676/jrps. v13. i5. 15 (Vol. 4).

[27] Salunkhe, V., Thakur, D., Krishna, K., Goel, O.,

& Jain, A. (2023). Optimizing Cloud-Based

Clinical Platforms: Best Practices for HIPAA

and HITRUST Compliance. Innovative Research

Thoughts, 9 (5): 247. https://doi.

org/10.36676/irt. v9. i5, 1486.

[28] Agrawal, S., Thakur, D., Krishna, K., & Singh,

S. P. Enhancing Supply Chain Resilience

through Digital Transformation.

