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Abstract- This paper present a robust and efficient 

way of tuning PID controller using three variants of 

swam intelligence algorithms for control of a 

positioning system. Out of the three variants 

implemented, toroidal bound comprehensive 

learning particle swarm optimization (CLPSO) 

appear to be more promising in addressing this 

problem with peak overshot of 0.0176, rise tie of  

0.01s, setting time of 0.01s and combined cost 

function of  0.0134 followed by toroidal bound inertia 

PSO. The results obtained using the swarm 

intelligence algorithm variants outperform those of 

Deferential Evolution (DE) variants used in solving 

the similar problem as presented in [7]. 

 

Indexed Terms- Swarm intelligent algorithms, PID 

controller, Step response, Ziegler–Nichols tuning 

method, optimization, objective fitness function. 

 

I. INTRODUCTION 

 

One of the major challenge of any positioning control 

system is the ability to coup with unpredictable 

changes resulting from within the system or its 

environment. Positioning systems are face with 

different challenges depending on their application 

and the environment they are designed to be used, 

among these are disturbance from natural events such 

as wind, unpredictable change in position of their 

target for non-stationary target, etc. To mitigate the 

chances of the system missing its target, we proposed 

a generalised intelligent control schemes for 

positioning systems that uses DC motor to track their 

target in a dynamically changing environment. The 

schemes presented in this paper is based on swarm 

intelligent optimization framework using PID 

controller. 

 

 

 

II. OPTIMIZATION OR TUNING 

ALGORITHMS 

 

A brief description of the optimization algorithms 

implemented are presented in this section. We explore 

the advantages of global search capability of 

population-based Swarm Intelligence Algorithms 

(SIA) variants to evolve the gains of the PID 

controller. The complexity of many heuristic 

controllers becomes increasingly complicated due to 

meta parameters (free parameters) in the model or 

controller frame work that govern their behaviour and 

efficiency in optimizing a given problem. How best a 

given controller can solve a given problem, depends 

on the correct choice of the meta parameters. The 

values of those parameters are problem dependent, 

thus for each problem, those parameters need to be 

fined tune to get the optimum or near optimum. The 

tuning pose another optimization problem. The PID 

gains of the positioning system depicted in this paper 

were optimized using population-based randomization 

optimization algorithms based on swarm intelligent 

framework. 

 

2.1. Comprehensive Learning Particle Swarm 

Optimization (CLPSO) 

Two algorithms which are based on swarm 

intelligence framework were implemented for tuning 

the PID controller. These two-particle swarm 

optimization (PSO) variants are: the standard PSO 

with inertia weight [8] and the CLPSO [3]. PSO 

emulates the swarm behaviour of which each member 

of the swarm adapts it search path by learning from its 

own experience and other members' experiences. The 

velocity update of PSO and CLPSO are giving by Eq. 

(2) and (1) respectively the particle update for both 

PSO and CLPSO is given by Eq (3). In the inertia 

weighted PSO, each of the particles learn from its local 

best pbest and the global best gbest for all dimension. 

The parameters C1 and C2 are the acceleration 

constants that reflect the weighting of the stochastic 
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acceleration term that pull each particle toward pbest 

and gbest respectively. The inertia weight w is used to 

facilitate both global and local search. Large w 

facilitate global search while smaller values favoured 

local search. In this study w was made to decrease 

exponentially as the generation progresses. This 

approach facilitate global search within the early stage 

(generations) and then start to favour local search as 

the budget (generation) comes to an end. In standard 

PSO, all particles learn from its own pbest and gbest 

for all dimension. Constraining the social learning 

aspect to only the gbest lead to premature convergence 

of the original PSO. Since all particles in the swarm 

learn from the current gbest even if the gbest is very 

far from the global optimum. Thus all the particles 

stand the risk of been attracted to gbest and get trapped 

in a local optimum especially when solving complex 

problems with numerous local optimums. To 

circumvent the problem of premature convergence 

associated with the standard PSO, a CLPSO was 

proposed [3]. In CLPSO, instead of particles learning 

from its pbest and gbest for all dimensions, and for all 

generations, each element (dimension) of a particle 

can learn from any other particle's pbest including its 

own pbest. The decision on whether a particle's 

dimension should learn from its own pbest or other 

particles' pbest depends on the probability Pccalled 

learning probability. Each particle has its own Pc. For 

every dimension of particle i a random number in the 

range [0, 1] is generated, if this random number is 

greater than Pci, the particular dimension will learn 

from its own pbest otherwise it will learn from another 

particle's pbest. To ensure that at least one of the 

dimension of each particle learn from another 

particle's pbest, if all dimensions happen to learn from 

its own pbest, one dimension is pick at random and 

two particles are pick at random from the population, 

the selected dimension will learn from the 

corresponding dimension of the particle with the best 

fitness (pbest). In this study, Pci is given by Eq. (4), [3].  

 

𝑉𝑖
𝑑 = 𝑤𝑖 . 𝑉𝑖

𝑑 + 𝐶1. 𝑟𝑎𝑛𝑑1𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑋𝑖
𝑑) +

𝐶2. 𝑟𝑎𝑛𝑑2𝑖
𝑑(𝑔𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑋𝑖
𝑑) (1) 

 

𝑉𝑖
𝑑 = 𝑤𝑖 . 𝑉𝑖

𝑑 + 𝐶. 𝑟𝑎𝑛𝑑𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)

𝑑 − 𝑋𝑖
𝑑)  (2) 

 

Where 𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)
𝑑  is any particle's pbest including 

particle i pbest.  fi= [fi(1),fi(2),…,fi(D)] defined which 

particles' pbests the particle i should learn from 

(follow). D is particle dimension, randd
i is a random 

number in the range [0, 1], and each particle dimension 

d has its own randd
i. X referred to particles' positions 

(potential solutions) while C is the acceleration 

pull.Viis the velocity of particle i. 

𝑋𝑖
𝑑 = 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑    (3) 

𝑃𝑐𝑖 = 0.05 + 0.45(
𝑒

10(𝑖−1)
𝑆𝑆−1 −1

𝑒10−1
)  (4) 

 

Where SS is the swarm size (number of particles).  

1.2. Selection process 

When the particles are updated, the fitness of each 

updated particle f(Xi) is compared with the fitness of 

its local best f(pbesti), to determine the next generation 

local bests. Iff(Xi)  < f(pbesti)the updated particle Xi 

will replaced its local best pbesti in the next 

generation,otherwise the local best will be allowed to 

continue in the next generation. This scheme is based 

on the principles of survival of the fittest. The fitness 

of each local best f(pbesti)is further compared with 

that of the global best f(gbest). If f(pbesti)< f(gbesti) 

the global best gbestwill be replaced by the particular 

local best pbestiotherwise it will be maintained in the 

next generation. The final global best is used to control 

the system. The tuning fitness function used in this 

research is the weighted sum of the overshot (over or 

under shot), rise time and the settling time when a unit 

step input command is used.  

 

1.3. Fitness Function Evaluation 

The optimization problem presented in this paper is a 

multi-objective optimization problem since there are 

three cost functions we want to minimise i.e. the 

maximum overshot (Mo), rise time (Tr) and settling 

time (Ts). In order to get a robust controller gains, the 

problem is converted to single objective problem with 

one cost function consisting of the weighted sum of 

the three objective functions, Eq (5). The weights 

depends on the important or cost of risk resulting from 

that particular performance index. This approach is 

robust because different models can be evolved by just 

changing the weight to meet up with setting system 

performance specifications. 

 

𝛾 = 𝛼𝑜𝑀𝑜 +  𝛼𝑟𝑇𝑟 +  𝛼𝑠𝑇𝑠  (5) 

 

Where: γ is the fitness function, Mo is the maximum 

overshot, Tris the rise time and Ts settling time, while 
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αo, αr, and αs are their weights respectively.  For this 

research, after a manual tuning, the following values 

were used with Mo having the highest priority, αo =1, 

αr=0.5, and αs=0.4. Note the maximum value the 

weight can take for this application is 1. 

 

III. PROPORTIONAL PLUS INTEGRAL PLUS 

DERIVATIVE (PID) CONTROLLER 

 

It is interesting to know that nearly half of the 

industrial controllers used today are PID or modified 

PID or derivatives of PID controllers.  Some 

intelligent controllers e.g. Fuzzy logic or adaptive 

fuzzy logic are derivatives of basic PID i.e. they make 

use of the error and its derivative (rate of change of the 

error). There are different variant of the PID 

controller, the one used in this research is given by Eq. 

(6) while the transfer function Gc(s) of the controller is 

depicted by Eq. (7) [2][1][4][5]. A proportional 

controller will have the effect of reducing the rise time, 

but will not eliminate the steady-state error. Because 

of the present of pole at the origin introduced by the 

integral controller, the integral controller will have the 

capability of eliminating the steady-state error, but it 

may make the transient response worse. The derivative 

controller will have the effect of increasing the 

stability of the system, reducing the overshoot, and 

improving the transient response. The derivative 

controller predict future error using the rate at which 

the error is changing while the integral captured the 

cumulative effects of past errors to improve the system 

performance. 

 

𝑃𝐼𝐷 = 𝐾𝑝(𝑒(𝑡) + 
1

𝑇𝑖
∫ 𝑒(𝑡)

𝑡

𝑡0
𝑑𝑡 +  𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)  (6) 

𝐺𝑐(𝑠) = 𝐾𝑝(1 + 
1

𝑇𝑖𝑠
 +  𝑇𝑑𝑠)   (7) 

Where: t is time, e(t) is present error at time t, Kp is the 

proportional gain while Ti and Tdare integral and 

derivative time constants respectively, s is Laplace 

complex notation. 

 

Tuning of the PID gains (Kp, Ti and Td) Ziegler–

Nichols 

 

The process of selecting the controller parameters Kp, 

Ti and Td to meet a given performance specifications 

is known as controller tuning. Different variants of 

population based swarm intelligence algorithms (SIA) 

were used to evolve the PID gains. One of the major 

challenge is to define the decision search space i.e. the 

range within which each of the meta parameters (Kp, 

Ti and Td ) of the controller should be searched. To 

address this problem, Ziegler–Nichols tuning method 

was used to obtain the centre of the radius of the search 

space. The Ziegler–Nichols reference gains were 

obtained using the mathematical model of the 

positioning system shown in Fig. (2). The centre of the 

radius for search of the gains Kp, Ti and Td are given 

by equations (8), (9) and (10) respectively [2]. 

 

𝐾𝑝 = 0.6𝐾𝑐𝑟    (8) 

𝑇𝑖 = 0.5𝑃𝑐𝑟    (9) 

𝑇𝑑 = 0.125𝑃𝑐𝑟    (10) 

 

Where Kcr and Pcr are the critical gain and critical 

frequency for self-sustained oscillation of the system. 

The decision search space for each of the gains were 

obtained as follows: 

 

𝐾𝑝(𝑠𝑝𝑎𝑐𝑒) = [𝛼𝑚𝑖𝑛𝐾𝑝, 𝛼𝑚𝑎𝑥𝐾𝑝]  (11) 

𝑇𝑖(𝑠𝑝𝑎𝑐𝑒) = [𝛽𝑚𝑖𝑛𝑇𝑖 , 𝛽𝑚𝑎𝑥𝑇𝑖]   (12) 

𝑇𝑑(𝑠𝑝𝑎𝑐𝑒) = [µ𝑚𝑖𝑛𝑇𝑑 , µ𝑚𝑎𝑥𝑇𝑑]   (13) 

 

Kp, Ti and Td are given by equations (8), (9) and (10) 

respectively while after a manual tuning, the minimum 

and maximum values of α, β and µ were obtained as 

follows:   

𝛼𝑚𝑖𝑛 = 0.4, 𝛽𝑚𝑖𝑛 = 0.2, µ𝑚𝑖𝑛 = 0.2,  𝛼𝑚𝑎𝑥 =

5, 𝛽𝑚𝑎𝑥 = 4, µ𝑚𝑎𝑥 = 4 

 

3.1. Mathematical model of the positioning system 

The rotation of the positioning system to meet up with 

a given target specifications is achieved using DC 

motor. 

𝑉 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐸𝑏    (14) 

𝑇 = 𝐽
𝑑𝑤

𝑑𝑡
+ 𝐹𝑤    (15) 

𝐸𝑏 = 𝐾𝑏𝑤     (16) 

𝑇 = 𝐾𝑡𝐼𝑎     (17) 

𝑤 =
𝑑ϴ 

𝑑𝑡
     (18) 

 

Where V is motor terminal supply voltage, Ra 

armature resistance, La is armature inductance, Ia is 

armature current, Eb is back emf (electromotive force), 

T is the torque, w is the angular speed in rad/s, J is the 

inertia constant while F is the viscose constant, Kb is 
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the back emf constant, t is time and ϴ is angular 

position in rad. 

 

The block diagram shown in Fig. 1 was obtain using 

equations (14) to (18) along with the controller, where 

ϴR is the command reference input angle while ϴ is 

the actual output. 

 

IV. RESULTS 

 

Each of the swarm intelligence variant is run for 500 

generations consisting of 20 potential candidate 

solutions (particles).  At the end of the generation, the 

must fitted (best) candidate is used to set the PID 

gains. The fitness function used during the training is 

the weighted sum of the maximum overshot, rise time 

and settling time, Eq. (5). The evolved best candidate 

was used to control the positioning system using three 

different approaches, i.e. the system was tested using 

standard ram and parabolic input command. Thirdly a 

real world scenario was modelled as a command input 

to see how the output of the system can track the target 

input. The performance index used to evaluate the 

accuracy of the system in tracking the command input 

is the root mean square error (RMSE) given by Eq. 

(19) [6]. It is interesting to note that the fact that the 

system depicted good performance for standard ram 

and parabolic input with low RMSE does not 

necessarily mean that the system will perform well 

when subjected to real world scenario. This is revealed 

when the untune controller obtain directly using 

Ziegler–Nichols method was used. The RMSE of ram 

and parabolic command using untune PID  and for 

toroidal bound comprehensive learning particle swarm 

optimization (CLPSO) shown in Fig. 5 and Fig. 4 are 

0.0095 and 0.0477 respectively while for the tuned 

PID are 0.0017 and 0.0149 respectively. But when the 

tuned and the untune PIDs were tested using real world 

command input, the untune PID perform poorly with 

RMSE of 3.9376 while the tuned PID followed the 

command input closely with RMSE of 1.6527 as 

shown in Fig. 3. This  research also validate that PID 

gains obtained using Ziegler–Nichols method may not 

be the optimum but is a useful tool for obtaining the 

radius of the search space within which the optimum 

or near optimum are likely to be found. The details of 

the numeric results obtained from the three SIA 

variants implemented in this research are shown in 

table 1. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ϴ𝑅𝑖 −  ϴ𝑖)2𝑁

𝑖=1   (19) 

 

Where: RMSE is the root mean square error, N is the 

number of simulation time steps, ϴRi and ϴi are the 

command input and the actual output at time index i 

respectively. 
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Fig. 1: Block diagram of the control positioning system

 

Fig. 2: Unit step response using: tuned PID, untune PID and without PID
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Fig 3: Real world command input using tuned and untune PID CLPSO Toroidal

 

Fig. 4: Parabolic input command

 

Fig. 5: Ram input command, CLPSO Toroidal
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Table 1: Performance of the PSO variants implemented

Algorithms RMSE for Three Inputs Max 

Overshot 

Rise 

Time 

Settling 

Time 

Fitness 

Real 

world  

Ram Parabolic 

CLPSO Toroidal 1.6527 0.0017  0.0149 0.0176   0.0100   0.010    0.0134 

CLPSO 1.7085       0.0020 0.0175 0.0055     0.0100 0.0200    0.0185 

PSO Toroidal 1.6747    0.0017    0.0145 0.0046   0.0100   0.0100    0.0136 

CONCLUSION 

 

Swarm intelligence algorithms variants proved to be 

an efficient optimizer for tuning the PID controller 

with CLPSO algorithm using toroidal bound for 

constraint optimization emerging as the best for 

addressing this particular control problem with RMSE 

of 1.6527, followed by toroidal bound inertia PSO 

with RMSE 1.6747. Comparing the performance of 

the PSO variants with those of differential evolution 

(DE) algorithms variants presented in [7] for solving 

similar problem, the PSO outperformed the DE for this 

particular problem 
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