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Abstract- Diversification and risk assessment are 

essential aspects of portfolio management. In this 

research paper, we explore the application of data 

science techniques to compare two popular portfolio 

optimization methods: Downside Risk and Mean 

Variance Optimization. The study begins by 

collecting historical financial data for a set of stocks. 

Using this data, we calculate the portfolio weights for 

both optimization methods. The Mean Variance 

Optimization technique aims to maximize returns 

while minimizing volatility, while the Downside Risk 

approach focuses on minimizing the potential for 

losses. To measure the diversification benefits of 

each strategy, we analyze the sector allocation of the 

optimized portfolios and compare the sortino ratios. 

By computing sector weights, we acquire insights 

into the concentration or dispersion of investments 

across different industries. This research allows us 

to evaluate the diversification obtained by each 

optimization method and compare their efficacy in 

distributing risk across sectors. The results generated 

from the data analysis and visualization illustrate the 

contrasting characteristics of the Downside Risk and 

Mean Variance Optimization approaches. The 

sector-wise analysis highlights variations in sector 

allocations, illustrating the disparities in 

diversification techniques adopted by each strategy. 

Additionally, the risk assessment analysis provides 

insights into the potential downside risks connected 

with each portfolio. This research contributes to the 

field of portfolio management by providing a 

comprehensive comparison between Downside Risk 

and Mean Variance Optimization methods. It 

demonstrates the potential of data science techniques 

in evaluating portfolio diversification and risk 

assessment. The findings can assist investors and 

financial professionals in making informed 

decisions regarding portfolio construction and risk 

management strategies. 

 

Indexed Terms- Diversification, Risk Assessment, 

Portfolio Optimization, Data Science, Downside 

Risk, Mean Variance Optimization 

 

I. INTRODUCTION 

 

Diversification and risk assessment are essential parts 

of portfolio management that play a vital role in 

achieving optimal investment outcomes. With the 

introduction of data science approaches, investors now 

have tremendous tools at their disposal to make 

informed decisions based on advanced analyses. In 

this research article, we dig into the domain of 

portfolio optimization and risk assessment by 

comparing two famous methods: Downside Risk and 

Mean Variance Optimization. 

 

In particular, we study a carefully selected collection 

of top 10 equities that represent various industries. By 

focusing on these well-established and significant 

companies, we want to assess the usefulness of the 

Downside Risk and Mean Variance Optimization 

approaches in managing portfolios consisting of high-

profile stocks. 

 

The basic purpose of portfolio optimization is to 

establish a balance between maximizing returns and 

avoiding risks. Mean Variance Optimization, 

pioneered by Harry Markowitz, tries to discover an 

allocation of assets that optimizes the portfolio’s 

projected return while minimizing its total risk [1]. 

This method assumes that returns are normally 

distributed and measures risk purely through the 

variance of returns. 

 

On the other hand, Downside Risk optimization adopts 

a more cautious approach by prioritizing the reduction 

of potential losses. It lays higher emphasis on 

downside protection and examines the downside 

potential and downside risk of investments. This 

method tries to shield against poor market conditions 
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and conserve capital during downturns. 

 

To assess the performance of both optimization 

strategies, we take historical financial data of the 

selected stocks and employ data science techniques to 

generate the portfolio weights for both Downside Risk 

and Mean Variance Optimization. These weights 

describe the ideal allocation of investments across 

different assets, reflecting the composition of the 

portfolios. By comparing sector allocations and 

measuring downside risk metrics, we shed light on the 

strengths and weaknesses of each approach. Overall, 

this research attempts to expand our understanding of 

diversity and risk assessment in portfolio management 

and highlights the potential of data science in driving 

educated investing decisions. 

 

II. LITERATURE REVIEW 

 

The process of choosing the optimal portfolio (asset 

distribution) among all those under consideration in a 

portfolio is known as portfolio optimisation. The 

objective typically maximizes factors such as expected 

return, and minimizes costs like financial risk. Harry 

Markowitz first presented modern portfolio theory in 

his PhD dissertation in 1952. It is predicated on the 

idea that a portfolio’s expected return should be 

maximized for any given level of risk. Investors are 

forced to choose between risk and expected return for 

portfolios that satisfy this requirement, known as 

efficient portfolios, because getting a greater expected 

return necessitates taking on more risk. The efficient 

frontier is a curve that graphically illustrates the risk-

expected return connection of efficient portfolios. All 

efficient portfolios are well-diversified, with each 

represented as a point on the efficient frontier. [1] [2] 

 

The portfolio optimization problem is specified as a 

con- strained utility-maximization problem. The 

predicted portfolio return (net of transaction and 

financing costs) minus a cost of risk is how portfolio 

utility functions are frequently formulated. The cost of 

risk, or unit price of risk, is the latter component and 

is defined as the portfolio risk times a risk aversion 

factor. 

 

The” critical line method” was created by Harry 

Markowitz and is a general method for quadratic 

programming that can handle additional linear 

restrictions as well as upper and lower bounds on 

holdings [3]. This is how Mean Variance Optimization 

first came into existence. 

 

The probability of financial loss is referred to as 

downside risk. In other words, it is the probability that 

the actual return will be lower than predicted, or the 

ambiguity about how much of a difference there will 

be [4]. The standard deviation is an example of a 

deviation risk measure, which assesses both the upside 

and downside risk. Risk measurements typically 

quantify the downside risk. Downside beta or lower 

semi- deviation measurements can specifically be used 

to quantify downside risk. The industry standard is 

known as the statistic below-target semi-deviation 

(BTSD), sometimes known as target semi-deviation 

(TSV) [5]. 

 

One research paper says that mean variance 

optimization is a better approach since minimizing the 

variance typically results in a lower downside 

deviation and a greater Sortino ratio because it can be 

measured more precisely, minimizing the 

semivariance is more in accordance with the genuine 

preferences of a rational investor. In actuality, the issue 

is with the idea of downside risk rather than with a 

precise measure of it. Though theoretically entirely 

fair, minimizing only losses rather than total 

variability requires the investor to estimate the 

necessary inputs using a small portion of the 

information. This translates into imprecise estimates, 

which lead to poor out-of-sample portfolio 

performance [6]. 

 

According to P. Cheng (2001) [7], the findings 

demonstrate that, in terms of real estate allocation, the 

Downside Risk model generates portfolio 

compositions that are more realistic and consistent 

with institutional investors’ practices. Ex ante 

Downside Risk portfolio return distributions often 

have bigger median returns and narrower left tails than 

MV portfolios. These findings are positive for 

investors who are primarily concerned with downside 

risks because the Downside Risk method not only 

looks to improve portfolio performance with greater 

median returns, but it is also more consistent with 

investors’ perceptions of risk. 
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This project aims to study both the methods under 

similar prerequisites and settings by keeping the 

stocks and their data same for both of them and solve 

both the optimization techniques using quadratic 

programming. 

 

III. METHODOLOGY 

 

A. Data 

Since data is the backbone of this project, plenty of 

financial data is required. I have selected top 10 

stocks in every sector of the US stock market for the 

project. Focusing on the top 10 stocks in each 

area provides for a sector-specific analysis. Each 

industry has its particular characteristics, performance 

metrics, and risk considerations. By selecting the top 

stocks within each sector, we receive insights into the 

leading firms and their performance within their 

respective industries. This sector-based study 

provides a more sophisticated view of market 

dynamics and helps identify potential investment 

opportunities and risks specific to each sector. 

 

To get the necessary data, the yfinance library, a 

Python tool built for fetching historical market data 

from Yahoo Finance, was utilized. This library 

provided fast access to the historical stock price 

information for each of the selected equities. By 

choosing the necessary time range of 15 years, a large 

historical context was gathered, enabling a full 

examination. To visualize the collected findings, the 

matplotlib library was applied. This robust library 

offers a wide range of plotting functions and 

customization possibilities, enabling for the 

construction of insightful graphs and charts. 

 

In addition to utilizing the yfinance library for data 

collection, several other Python libraries played a 

crucial role in the data analysis process. I used pandas 

library for data manipulation and analysis, enabling 

efficient handling of the collected stock price data. 

This powerful library provided capabilities for data 

alignment, merging, and computation of various 

statistical measures. 

 

The numpy library proved essential in conducting 

numerical computations and array operations. With 

numpy, fundamental mathematical functions were 

applied to the data, allowing calculations of portfolio 

returns, covariance matrices, and predicted returns. 

The methodology adopted in this research focuses on 

the calculation of downside risk optimization for a 

particular portfolio. The target minimum return is set 

at 20%, signifying the desired amount of return. The 

risk-free rate applied in the analysis corresponds to the 

US Treasury Yield for a 10-year term, which currently 

at the time of authoring this article, sits at 3.76%. 

 

B. Initial Steps for Downside Risk Optimization 

To begin, the expected return for each stock in the 

portfolio is computed using the risk-free rate, along 

with beta values and volatility measures specific to 

each stock. This calculation is based on the formula by 

William Sharpe (1964) [8]: 

 

expected return = risk free rate + beta ∗ (volatility)2 

 

The expected return serves as a key input in the 

subsequent steps of the analysis. 

 

Subsequently, the downside deviation and downside 

risk for each stock are determined. The downside 

deviation quantifies the variability of returns below 

the target minimum return. It is calculated by 

calculating the square root of the mean of the 

squared minimum of (returns - target return, 0). Here, 

returns represent the historical returns of each stock. 

 

The downside risk is then determined, representing 

the risk-adjusted return for each stock. It is generated 

by dividing the difference between the expected return 

and the intended minimum return by the downside 

deviation. This measure gives an estimate of the risk 

associated with reaching the intended return. 

 

The formula for the optimization problem can be 

represented as follows: 

 

Minimize: w′ ∗ P ∗ w 

Subject to:  A ∗ w = b 

G ∗ w <= h 

Where: 

• w is the vector of weights representing the 

allocation to each asset 

• P is the matrix of downside risk values (diagonal 

matrix) 

• A is a matrix representing the equality constraint 
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(sum of weights = 1) 

• b is the vector representing the target minimum 

return 

• G is the matrix representing the inequality 

constraints 

• h is the vector representing the upper bounds 

on the constraints 

• w’ denotes the transpose of the weight vector 

 

To optimize the portfolio, a quadratic programming 

problem is developed utilizing the estimated 

downside risk metrics. The idea is to maximize the 

projected return while limiting downside risk. 

Matrices and vectors are defined to represent the 

objective function and constraints of the optimization 

problem. To achieve adequate weight allocations, the 

lower bound constraint on the weights is adjusted to 

allow for unfettered allocations to stocks. This 

improvement gives for greater flexibility in designing 

the ideal portfolio. 

 

The optimization problem is solved using a specialized 

solver, specifically the solvers.qp function. This 

function employs the CVXOPT library and returns the 

solution to the quadratic programming problem. 

 

Finally, the resulting portfolio weights are calculated, 

showing the optimal allocation for maximizing return 

while limiting downside risk. These weights 

represent the proportion of each stock that should 

be included in the portfolio to meet the appropriate 

risk-return trade off. Initially, any weights that are 

negative are filtered out, retaining just the positive 

weights. The equities connected with these positive 

weights are removed, creating a list of assets that 

contribute to the portfolio. The following stage 

requires determining the total weight of the positive 

weights, which is the sum of the weights of all assets 

with positive allocations. These weights are then 

translated into percentage values to illustrate the 

relative contribution of each asset in the portfolio as 

seen in the” Fig. 1”. 

 

According to one scholar, the primary distinction 

between the approaches comes to the notion of risk 

[13]. The mean variance technique uses the standard 

deviation to gauge risk, while the downside risk 

concept relies on several distinct measurements. 

However, the downside risk measures in this theory 

refer to the semivariance. The standard deviation 

estimates the departure from the mean return that 

includes upside and downside variances. The 

semistandard deviation exclude upside deviations and 

measures only the return deviation occurring below a 

certain return threshold level set by the perpetrator. 

 

 
Fig. 1. % Contribution of top 30 stocks by weightage 

in the Downside Risk Optimization portfolio 

 

C. Initial Steps for Mean Variance Optimization 

Firstly, the returns of the portfolio members are 

determined using the historical price data. Log returns 

are computed by calculating the natural logarithm of 

the ratio of the current price to the previous price. This 

aids in capturing the relative price movements and 

removing any bias from absolute price levels. 

 

The covariance matrix is then generated based on the 

log returns of the portfolio elements. This matrix 

evaluates the link and co-movement between multiple 

assets, providing useful insights into their joint risk. 

Next, the optimization issue is constructed using the 

mean-variance approach. The covariance matrix acts 

as the input for the problem. The predicted returns for 

each asset are computed using the risk-free rate and 

the beta values particular to each asset. These 

predicted returns represent the mean component of the 

optimization issue. 

 

The equation for mean-variance optimization using 

quadratic programming can be represented as follows: 
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Maximize: w′ ∗ P ∗ w − q′ ∗ w G 

Subject to: ∗ w <= h 

 

Where: 

• w is the vector of weights representing the 

allocation to each asset 

• P is the covariance matrix of asset returns 

• q is the vector of expected returns 

• G is the matrix representing the inequality 

constraints 

• h is the vector representing the upper bounds 

on the constraints 

• w’ denotes the transpose of the weight vector 

 

Matrices and vectors are defined to represent the 

objective function and constraints for the optimization 

issue. The covariance matrix is utilized to generate the 

P matrix, whereas the negative anticipated returns are 

used to establish the q matrix. The constraints are 

established by the G and h matrices, combining the 

beta values, identity matrix, and lower bound 

restrictions. The lower bound constraint on weights is 

adjusted to allow for unfettered allocations to assets 

by setting the lower bounds to zero. The optimization 

issue is solved using the quadratic programming solver 

solvers.qp from the CVXOPT package. 

 

The resulting portfolio weights, indicating the optimal 

allocation for the given risk-return tradeoff, are 

generated from the solution. These weights 

represent the proportion of each asset that should be 

included in the portfolio to maximize expected returns 

while considering the covariance among assets. 

 

The weights for each asset are printed, offering a clear 

insight of the ideal portfolio allocation. The total 

weight of the portfolio is computed by summing the 

weights of all assets. The weights are then translated 

into percentages for each asset as indicated in the” 

Fig. 2”. 

 

IV. ANALYSIS 

 

A. Sortino Ratios 

The Sortino ratio is a variation of the Sharpe ratio that 

differentiates harmful volatility from total overall 

volatility by using the asset’s standard deviation of 

negative portfolio returns—downside deviation—

instead of the total standard deviation of portfolio 

returns. The Sortino ratio takes an asset or portfolio’s 

return and subtracts the risk-free rate, and then 

 

 
Fig. 2. % Contribution of each stock in the Mean 

Variance Optimization portfolio 

 

divides that amount by the asset’s downside deviation 

[9]. The ratio was named after Frank A. Sortino. 

 

In this situation, the Sortino ratio for downside risk 

optimization is computed to be roughly 2.30, while the 

Sortino ratio for mean variance optimization is 

approximately 13.52. The higher Sortino ratio of 13.52 

for mean variance optimization shows a superior risk-

adjusted performance compared to the downside risk 

optimization. 

 

The greater Sortino ratio generated through mean 

variance optimization shows that the portfolio’s 

returns, after accounting for the risk-free rate, exhibit 

a more favorable trade-off with downside risk. This 

shows that the mean variance optimization strategy 

has been effective in designing a portfolio that 

generates a higher level of return compared to the 

downside risk incurred. It signifies that the portfolio 

has delivered higher risk-adjusted returns by 

efficiently minimizing downside risk. 

 

On the other hand, the smaller Sortino ratio for 

downside risk optimization indicates a considerably 

inferior risk-adjusted performance compared to mean 

variance optimization. This shows that the downside 
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risk optimization strategy may not have achieved as 

efficient risk management in the portfolio 

development process, leading to a smaller excess 

return per unit of downside risk. 

 

These contrasted Sortino ratios provide insights into 

the relative performance of the two optimization 

strategies in controlling downside risk. The greater 

Sortino ratio for mean variance optimization suggests 

its potential advantage in producing better risk-

adjusted returns by properly balancing risk and 

reward. 

 

B. Risk-Return Tradeoff 

Risk-return tradeoff states that the potential return 

rises with an increase in risk. Using this principle, 

individuals associate low levels of uncertainty with 

low potential returns, and high levels of uncertainty or 

risk with high potential returns [10]. 

 

In the case of downside risk optimization, the portfolio 

exhibits a decreased volatility of 3.78% and a 

moderate return of 9.35%. This suggests that the 

portfolio is designed to reduce the downside risk and 

preserve capital amid poor market conditions. The 

reduced volatility signifies a more consistent 

investment experience, but it also implies that the 

portfolio may surrender some potential upside profits. 

Therefore, the downside risk optimization strategy 

promotes capital preservation and risk mitigation over 

maximizing returns. 

 

On the other hand, mean-variance optimization leads 

in a higher volatility of 19.83% but delivers a 

substantially larger return of 34.60%. This signifies 

that the portfolio is exposed to a higher level of overall 

risk but has the potential for bigger gains. The 

increased volatility means that the portfolio is more 

subject to market changes, including both upside 

and downside moves. The mean-variance optimization 

strategy seeks to establish a balance between risk and 

return, and in this situation, it stresses achieving larger 

returns at the expense of increasing volatility. 

 

In contrast, the mean variance method showcases a 

higher volatility, indicating a broader range of 

potential fluctuations in the portfolio’s value. This 

method considers both upside potential and downside 

risk, aiming to achieve an optimal balance between 

risk and return. The higher volatility suggests that the 

mean variance method may allow for greater exposure 

to market fluctuations and potentially higher returns. 

However, it also entails a higher level of risk, as 

reflected by the increased volatility. 

 

C. Diversification 

Firstly, the mean variance optimization method 

concentrates all of the weight on only five companies, 

indicating a high level of concentration and potential 

exposure to the performance of these particular stocks. 

This concentration strategy may lead to increased risk 

as the portfolio becomes more dependent on the 

performance of a few select assets. Also, mean 

variance optimization considers the covariance matrix 

of asset returns to determine the optimal allocation. 

If the covariance between the five selected companies 

is relatively low compared to other companies in the 

portfolio, the optimizer may find that allocating all the 

weight to those three companies leads to a more 

efficient risk-return profile based on the covariance 

structure. 

 

On the other hand, the downside risk optimization 

method exhibits a more diversified portfolio 

allocation, spreading the w e i g h t  a c r o s s  

m u l t i p l e  s t o c k s .  This d i v e r s i f i c a t i o n  

 

 
Fig. 3. Risk-Return Tradeoff for Downside Risk 

and Mean Variance Optimization 

 

approach helps mitigate the concentration risk by 

reducing the dependence on the performance of a few 

individual stocks. 

 

By diversifying the portfolio, the downside risk 

optimization method aims to achieve a more 
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balanced risk exposure and potentially lower the 

overall risk of the portfolio. Consequently, the 

downside risk optimization method offers the benefit 

of risk mitigation through diversification, providing 

investors with a more robust and well-rounded 

portfolio allocation strategy. 

 

D. Sector Allocation Comparison 

 
Fig. 4. Sector Allocation of Mean Variance and 

Downside Risk Optimization method 

 

Mean Variance Optimization (MVO) and Downside 

Risk Optimization (DRO) result in different sector 

allocations. The weights assigned to each sector vary 

between the two optimization methods, indicating that 

they prioritize sectors differently. 

 

Materials: DRO assigns a significantly higher 

weight to the Materials sector as compared to MVO. 

This suggests that DRO places more emphasis on the 

downside risk associated with the Materials sector as 

the downside risk volatility of the Materials sector 

stood at 19.84% while it grew by 136.48%. Energy: 

Compared to MVO, DRO gives Energy a weight that 

is comparatively higher. Commodity pricing and 

geopolitical variables might have an impact on 

investments in the energy sector. 

 

Healthcare: Healthcare receives substantially more 

weight from both MVO and DRO. The defensive 

nature of the healthcare industry is well known for 

offering stability during market turbulence. The 

downside risk volatility of the top 10 stocks of the 

Healthcare sector stood at 15.5%. The cumulative 

return for the sector was at 124.92%. 

 

Financials: Comparing DRO to MVO, DRO gives 

Financials a far higher weight. This shows that DRO 

concentrates on the financial sector’s downside risk, 

which may be motivated by worries about economic 

cycles, interest rates, or regulatory variables that have 

an impact on the industry. 

 

Communication Services: DRO gives Communication 

Services a substantially higher weight than MVO 

does. 

 

Industrials: Numerous businesses engaged in 

manufacturing, building, and infrastructure make up 

the industrials sector. Both MVO and DRO assign 

relatively small weights to the Industrials sector, with 

the DRO weight being slightly higher. Utilities: The 

MVO and DRO weights for Utilities are both very 

small, suggesting a relatively low allocation to this 

sector in the portfolio. 

 

Consumer Discretionary: The MVO weight for 

Consumer Discretionary is significant, indicating a 

relatively high allocation. The DRO weight is also 

relatively high, suggesting that the downside risk 

optimization approach maintains a similar emphasis 

on this sector. 

 

Technology: Both MVO and DRO assign significant 

weights to the Technology sector. Healthcare receives 

substantially more weight from both MVO and DRO. 

It grew by 344.6%. The defensive nature of the 

healthcare industry is well known for offering stability 

during market turbulence. 

 

Consumer Staples: The MVO weight for Consumer 

Staples is relatively small, while the DRO weight is 

higher, indicating a higher allocation to this sector 

when considering downside risk. 

 

Telecommunication Services: MVO assigns a 

negligible weight to Telecommunication Services, 

while DRO assigns zero weight. 

 

CONCLUSION 

 

In this research paper, I explored the application of 

data science techniques in diversification and risk 

assessment by comparing two portfolio optimization 

methods: Downside Risk Optimization and Mean 

Variance Optimization. I utilized a dataset consisting 

of top stocks representing 11 sectors. Through the 

analysis, I observed notable differences in sector 
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allocations between the two optimization methods. 

The Mean Variance Optimization exhibited higher 

weights in sectors such as Technology and Healthcare, 

while the Downside Risk Optimization allocated more 

weight to sectors like Materials and Utilities. This 

indicates that the two approaches prioritize different 

sectors based on their respective risk and return 

objectives. 

 

According to the literature on portfolio risk 

measurement, a downside risk measure should be 

favoured over portfolio variance when there are non-

normal returns and non- quadratic utility functions 

[11]. Additionally, Downside Risk Optimization 

method demonstrated its ability to identify sectors 

with lower downside potential and allocate higher 

weights to them. This highlights the effectiveness of 

the method in capturing downside risk and 

incorporating it into the portfolio construction 

process. Such risk-aware allocation can be 

particularly beneficial in volatile market conditions 

or during economic downturns, where preserving 

capital and managing downside risk become crucial 

objectives for investors. 

 

By minimizing the downside risk ratio, investors can 

obtain the best downside risk adjusted return, similar 

to the situation where the investors can obtain the 

best risk adjusted return by maximizing the Sharpe 

ratio. The downside deviation (below-target 

semideviation) and the reward-to-semivariability ratio 

(R/SVt) are instruments for encapsulating the core 

of downside risk, according to Sortino and van der 

Meer [12]. Analysing the covariance matrix, 

correlation matrix, and the specific constraints used 

in the portfolio optimisation using quadratic 

programming will aid in a better understanding of 

the given weights. These variables may have an 

impact on allocation choices and help to explain why 

some sectors were allocated higher weights while 

having different return and negative risk 

characteristics. 

 

In conclusion, our research sheds light on the benefits 

of data-driven diversification and risk assessment 

methods, emphasizing the importance of considering 

different optimization approaches to tailor 

investment strategies to individual needs. 
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