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Abstract- This paper is on the comparative analysis of 

various convolutional neural network (CNN) models 

that could be used in the classification of solid waste 

into different categories for recycling. Effective solid 

waste classification is a crucial aspect of waste 

disposal and recycling processes to maintain a 

sustainable environment. In recent years, CNNs have 

emerged as a powerful tool for solid waste 

classification, thanks to their ability to learn features 

from images and classify objects accurately. In this 

paper, the MATLAB platform was used to train eight 

pre-trained CNN models for solid waste 

classification. The models are AlexNet, GoogleNet, 

ResNet18, MobileNetV2, ResNet50, ResNet101, 

EfficientNetB0 and InceptionV3. Each model was 

trained for 5 epochs, 7 epochs, and 10 epochs 

respectively. The TrashNet dataset was used.  The 

dataset was split into 75% and 25% for the training set 

and validation set respectively. After training for 5 

epochs, ResNet50 achieved validation accuracy of 

90.95%, ResNet101 had 90.48%, while the rest 

achieved accuracies ranging from 64% to 89%. After 

training for 7 epochs, ResNet50 got an accuracy of 

92.06%, ResNet101 and InceptionV3 both had an 

accuracy of 91.59%, while EfficientNetB0 improved to 

90.63%. After 10 epochs, ResNet101 achieved an 

accuracy of 92.38%, ResNet50 got an accuracy of 

92.02%, while EfficientNetB0 and InceptionV3 

achieved an accuracy of 91.43%. From the results, 

ResNet-50 and ResNet-101 achieved higher validation 

accuracy. In real-world applications, these models can 

be used in smart bin waste collection, smart waste 

recycling, and waste management in general. 

 

Indexed Terms- Convolutional Neural Network, 

Waste Image Classification, TrashNet, ResNet50, 

Recycling 

 

 

 

I. INTRODUCTION 

 

The production of waste is an inevitable consequence 

of population growth, urbanization, and economic 

development [1]. As countries undergo economic 

growth and globalization, individuals are exposed to a 

broader array of products and services, resulting in a 

rise in waste generation. According to [2], solid waste 

refers to solid-state materials that are produced from 

various activities, deemed unwanted, lacking 

usefulness, and subsequently discarded by individuals 

or society. Most of these discarded items are recyclable 

materials [1][2]. However, for recycling to take place, 

waste classification and sorting are important. Manual 

classification is still popular but time-consuming and 

often prone to error, Deep learning (DL) techniques 

like Convolutional Neural Networks (CNNs) can aid 

automated classification to accurately classify solid 

waste into defined categories. 

 

CNNs are deep neural networks usually used for image 

classification. It can recognize unique features like 

edges, textures, and shapes [3]. CNN divides images 

into small pixel blocks or features using stacked layers 

and filters allowing for efficient processing and 

accurate results. CNNs differ from traditional machine 

learning algorithms such as SVM in learning complex 

features automatically during training. CNNs use 

artificial neural networks (ANNs) to learn spatial 

hierarchies of features and can identify and extract 

high-level features directly from raw data, eliminating 

the need for human supervision [3][4]. This allows 

CNNs to detect diverse features, ranging from low-

level patterns to high-level patterns. CNNs are highly 

effective in various image and video recognition tasks, 

such as self-driving cars, image search, medical 

imaging, and image classification. They also show 

promise in accurately segregating waste materials, 

paving the way for effective waste management 
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practices. Despite requiring more training data, DL 

models typically yield good results for deployment [5]. 

 

This article presents a comparative analysis of CNN 

models for solid waste classification. The experiment 

compares the performance of eight CNN models on the 

TrashNet dataset using MATLAB environment. The 

models were trained at different numbers of epochs to 

determine the effect of epochs on the accuracy. The 

performance results were presented using the confusion 

matrix. The accurate identification of solid waste items 

using CNN models can contribute toward targeted 

recycling processes, ensuring that materials are 

appropriately recycled or disposed of, reducing waste 

contamination, and promoting resource conservation. 

 

In [6], TrashNet, an open-source dataset for recyclable 

waste images, was curated and used for waste 

classification. The dataset contains 2527 images from 

various waste classes, including paper, plastic, glass, 

cardboard, metal, and general trash. The researchers 

applied SVM and CNN models to classify waste into 

eight categories. The AlexNet-like CNN model 

achieved 75% accuracy, while the SVM method 

achieved 63%. In [7], the CNN model was used as part 

of a waste management system to classify digestible 

and indigestible waste. The dataset was divided into an 

80:20 ratio for the training set and validation set. The 

CNN model was trained for epoch lengths of 20, 27, 

and 35, respectively. The CNN model achieved a waste 

classification accuracy of 95.3125% for an epoch 

length of 35. 

 

In [8], CNN models were compared for waste 

classification using the TrashNet dataset. The study 

compared the performance of ResNet50, ResNet18, and 

VGG16 CNN models for image classification on the 

TrashNet dataset. ResNet18 achieved the highest 

validation accuracy 87.8% through fine-tuning. In [9], 

CNN and SVM were used to classify waste into paper, 

plastic, and metal categories. The images were from the 

TrashNet dataset and the Internet. The study achieved 

accuracies of 82.2% and 79.4%, respectively. The focus 

was to use machine learning to automate industrial 

waste sorting, improving recycling effectiveness.  

 

In [10], CNN models were used to classify nine waste 

categories. The dataset, divided in a ratio of 70: 30, was 

a combination of TrashNet and internet images. The 

models achieved waste classification accuracy between 

91.9 to 94.6%. MobileNetV3 had a high classification 

accuracy (94.26%), small storage size (49.5 MB), and 

fast running time (261.7 ms). In [11], four CNN models 

were compared for waste segregation, with a focus on 

dry, wet, recycled, electronic, and medical categories. 

After training for 50 epochs, MobileNetV2 

demonstrated the best results in detecting, predicting, 

and classifying waste objects using the CNN algorithm. 

 

CNNs have shown promising results in image 

classification tasks, making them an attractive choice 

for automated solid waste classification. But the 

foundation of CNN is based on the principles of 

Artificial Neural Network (ANN). 

 

II. OVERVIEW OF ARTIFICIAL NEURAL 

NETWORK 

 

Artificial Neural Network (ANN) is a brain-inspired 

algorithm that is not specifically programmed, but it 

learns (or is trained) automatically and progressively 

through appropriate examples of input and output 

datasets [3][12]. ANN has nodes, called neurons, which 

are arranged in different layers. The neurons of the 

same layer do not connect, but they connect to neurons 

on other layers. Each connection has a weight value (W) 

that determines the influence of the neuron on the 

computation.  

 

ANN has three types of layers namely input layer, 

hidden layer(s), and output layer [4]. The input layer 

accepts data into the ANN via input neurons. The 

hidden layers have neurons that process the input data 

to identify and learn patterns in the data presentation 

and then figure out the relationship between input data 

and output results [6]. Activation functions are used to 

add non-linearity to the output of the hidden layer's 

neuron, which helps in extracting complex features 

[12][13]. ANNs can have one to several hidden layers 

depending on the task being performed. The output 

layer gives the results and calculates the loss function 

of the ANN operation via output neurons [15]. Figure 1 

shows a simple n-layer feedforward ANN. Equation 1 

presents the output of each layer in ANN. Equations 2 

– 5 present some common activation functions used in 

deep neural network models. 
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During training, deep neural networks experience 

vanishing gradient problem. This is when the gradient 

of the loss function is calculated and backpropagated 

toward the input layer to update its learnable 

parameters, weight (W), and bias (b) values [14][16]. 

Updating these parameters is how neural networks learn 

and it is an iterative process. The updating process is 

expressed in Equations 6 and 7. The goal is to reduce 

loss or error while improving the accuracy of the 

networks to perform specific tasks. Vanishing gradients 

can impede the learning process of deep neural 

networks [16]. The loss gradient gets smaller from one 

layer to another, when it is backpropagated toward the 

input layer. Thus, the weight of the earlier layers 

receives little or no update, which means the network 

cannot learn effectively during training [16][17]. Proper 

regularization and optimization of the network can 

reduce vanishing gradient issues. ANN-based models 

are used to solve classification tasks (i.e., binary class, 

and multi-class) and regression tasks through 

supervised and unsupervised learning techniques. 

 

 
Figure 1: n-layer feedforward ANN 

 

The output of layers: 

𝑌𝐿  =  ₳𝐿 (𝑏𝐿  +  ∑ (𝑊 𝐿,𝐿−1
𝑞,𝑟

∗ ℎ𝐿−1)𝑁
𝑞,𝑟=1 )     (1) 

 

Activation functions:  

 Z(𝑥)𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =  1 (1 + 𝑒−𝑥)⁄      (2) 

 

 𝑍(𝑥)𝑅𝑒𝐿𝑢 = max(0, 𝑥)  = {
𝑥 𝑖𝑓 𝑥 > 0  
0 𝑖𝑓 𝑥 < 0

        (3) 

 

𝑍(𝑥)𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 = max(0.1𝑥, 𝑥)   (4) 

Z(𝑥)𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =  exp(𝑥𝑖) (⁄ ∑ exp(𝑥𝑗)𝐾
𝑗=1 )      (5) 

 

Weight and bas values update: 

 

𝑊𝑖𝑗
𝑡 =  𝑊𝑖𝑗

𝑡−1 −  𝛽 .
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊𝑖𝑗
𝑡−1    (6) 

𝑏𝑙
𝑡 =  𝑏𝑙

𝑡−1 −  𝛽 .
𝜕𝐿𝑜𝑠𝑠

𝜕𝑏𝑙
𝑡−1               (7) 

 

Where 𝑌𝐿 is the output of each layer L; �̂�𝐾 is the final 

output of the network.  ₳(.) is the activation function; L 

is the layer of the network (L = 1, 2, …, L-1); 𝑊𝐿,𝐿−1
𝑞,𝑟

 is 

the weight value of q-th neuron on L and r-th neuron on 

L-1 layers; N is the number of neurons on L layer; K is 

the number of classes; 𝑤𝑖𝑗
𝑡  is the final weight in the 

current training epoch, 𝑤𝑖𝑗
𝑡−1 is the preceding weight at 

(t-1) training epoch.  w stands for each learnable 

parameter, β stands for a learning rate, and E stands for 

prediction error or loss function. 

 

III. OVERVIEW OF CONVOLUTIONAL NEURAL 

NETWORKS 

 

Convolutional Neural Networks (CNNs) are a type of 

deep neural network that is excellent for image 

classification tasks [16]. It is particularly effective in 

classifying images since it can recognize unique 

features within the images, such as edges, textures, and 

shapes. The key difference between deep learning 

techniques and traditional machine learning algorithms 

lies in the way deep learning algorithms learn unique 

and complex features within the data [15][16]. 

Traditional machine learning algorithms require 

engineers to manually identify every important feature 

within the data, while deep learning algorithms can 

automatically learn these features during the training 

process [15] [16]. Additionally, deep learning 

techniques require a larger amount of training data 

compared to traditional machine learning algorithms. 

Though DL models take more computational power, 

they normally produce good results for deployment. 

 

Objects possess shapes that consist of lines, curves, and 

various other characteristics, which collectively 

contribute to their unique attributes. To identify these 

objects, CNNs leverage images represented as pixel 

values organized in a 2D or 3D grid, alongside small 

parameter grids known as kernels or filters [16][17]. 

These filters are feature extractors that can be 
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optimized, enabling CNN to detect diverse features 

across shapes and edges present in the images. By 

utilizing multiple kernels or filters, CNNs extract a 

range of features from an image, generating multiple 

feature maps. The CNN architecture comprises 

different layers responsible for image classification and 

feature extraction. CNNs are trained using millions of 

images and can learn to recognize patterns and features 

within images. It has revolutionized computer vision 

and image recognition. 

 

A. Layers of convolution neural network 

 

CNNs consist of multiple layers of neurons where 

feature extraction and classification occur. CNN 

architectures are a set of pre-designed networks with 

different numbers of layers, filters, and feature 

extraction techniques that can be used for image 

classification tasks. The input I for each layer in a CNN 

model accepts data (image or feature maps) in a specific 

format presented in the form of (image height x image 

width x depth/channel number) or [MH× MW × D]. Each 

pixel value in the input matrix can range from 0 to 255. 

CNNs are capable of processing, detecting, and 

classifying images or objects within images, through 

key layers in their architecture. These layers are the 

convolution layer, pooling layer, and fully connected 

layer [17][18]. 

 

The convolutional layer employs filters to extract 

features from the input images and it is mathematically 

expressed in Equation 8. The pooling layers 

downsample the feature maps to reduce dimensionality. 

The fully connected layers perform the final 

classification based on the extracted features [15 – 17]. 

An activation function is applied to the output of each 

convolution and pooling layer in a CNN model. The 

activation function introduces non-linearity to the 

model, enabling it to learn complex features. To reduce 

the effect of vanishing gradient, regularization, and 

optimization techniques such as batch normalization, 

neuron dropout, and data augmentation are used [19]. 

Also, the ReLU activation function is commonly used 

because it helps prevent the issue of vanishing gradient 

[16]. Cross entropy, expressed in Equation 9, is the 

multi-class loss function used [17]. Figure 2 shows the 

structure of the Convolutional Neural Network (CNN). 

 

𝑦(𝑖, 𝑗) =  ₳𝐿( 𝑂𝑖,𝑗) =  ₳𝐿(∑ ∑ 𝑘𝑞,𝑟 ∗𝑟𝑞  𝑚𝑖+𝑞,𝑗+𝑟) (8) 

𝐿𝑜𝑠𝑠 (𝑦, 𝑝) =  − ∑ 𝑦𝑖,𝑐
𝑀
𝑐=1  𝑙𝑜𝑔( 𝑝𝑖,𝑐)  (9) 

 

Where 𝐾𝑚,𝑛 is the filter matrix; 𝐼𝑖,𝑗 is the input matrix; 

₳(.) is the activation function (usually ReLU); 𝑂𝑖,𝑗 

denotes the feature map (that is, the element in the i-th 

row and the j-th column of the output matrix) computed 

using a convolution operation; p is the predicted class 

probability for a sample same as equation 5; 𝑦𝑖,𝑐 is the 

true class with the binary label (0 or 1) if class label c  

is the correct classification for a sample I;  log is the 

natural logarithm; e𝑤𝑖  represents the non-normalized 

output from the preceding layer; N represents the 

number of neurons in the output layer; M is the number 

of classes. 

 

Figure 2 shows the architecture of a typical CNN. 

 

 
Figure 2: Architecture of a CNN 

 

B. CNN models for solid waste classification 

 

CNNs have proven to be highly effective in image 

classification tasks, and they have been applied to a 

variety of image recognition problems, including solid 

waste classification. CNNs analyze the images of waste 

items and learn the distinguishing features that 

differentiate them. Various architectures have been 

developed over the years by researchers to improve the 

accuracy and speed of image recognition.  

 

1. AlexNet model 

AlexNet introduced the ReLU activation function and 

dropout, revolutionizing deep learning. It has a specific 

layer configuration with five convolutional layers with 

3x3 max pooling layers each and three fully connected 

layers. AlexNet model utilizes large-size filters (11x11 

and 5x5) and then 3x3 filters for the last three 

convolutional layers.  Despite its success, AlexNet's 

drawbacks include many hyper-parameters (up to 60 

million) and relatively shallow depth, resulting in 

challenges for complex feature learning and slower 

convergence compared to newer models [13][16]. 
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2. Visual Geometry Group (Vgg) Network 

architecture 

The VggNet addresses the issue of excessive 

hyperparameters in previous models by using smaller 

filters in its convolutional layers (2x2 or 3x3), along 

with the ReLU function, to enhance non-linearity and 

improve CNN performance. Each convolutional layer 

is followed by a max pooling layer, and the network 

ends with two fc layers of 4096 neurons each, and the 

last layer of 1000 neurons (ImageNet classification). 

VGG-n refers to different variants of the VggNet model 

with varying numbers of layers. The use of small filters 

reduced computational complexity, but the deeper 

architecture resulted in high computational demands 

and training time. VggNet also faced challenges like the 

vanishing gradient problem [18][21]. 

 

3. Residual Network model 

The ResNet architecture was designed to handle ultra-

deep architectures with many layers, ranging from 16 to 

2152 layers. ResNet50 and ResNet101 are popular 

ResNet models with 50 and 101 layers respectively. The 

ResNet model pioneered the use of skip connections 

and residual training, which address the vanishing 

gradient problem commonly encountered in deep 

neural networks. Skip connections bypass certain 

layers, allowing information to flow directly from 

earlier to later layers. ResNet is built by stacking 

residual blocks, which leverage skip connections to 

learn residual mappings. This approach enables faster 

training and improved accuracy by focusing on new 

features instead of relearning previously learned ones. 

ResNet's skip connections revolutionized deep CNN 

design, allowing for more layers without the vanishing 

gradient problem. It achieved state-of-the-art 

performance and won the ILSVRC-2015 competition 

for computer vision tasks [16][17][19]. 

 

4. GoogleNet 

GoogleNet introduced the concept of inception 

modules, which allow for the efficient use of 

computational resources. It is also known as the 

Inception model.  It changed the way convolutional 

layers are stacked such that parallel groups of 

convolutional, pooling, and merge operations were 

used. This reduces the number of parameters to 4 

million, which is 12 times less than AlexNet [19]. 

InceptionV1 has 22 layers with 1x1, 3x3, and 5x5 filters 

in parallel, max-pooling layers with padding, and batch 

normalization. In the InceptionV2 model, two 3×3 

convolutions replaced the 5x5 convolution filter to 

reduce computation time thus increasing speed. Also, 

batch normalization (BN) was added for stability. In the 

InceptionV3 model, factorized convolution was 

introduced where n×n convolutions are factorized into 

1×n and n×1 convolutions. This reduces the number of 

parameters and computational costs. Inception-v4 

model introduced reduction blocks to simplify the 

Inception-V3 model. It used uniform layers and 

reduced the number of blocks. The default input size for 

Inception-v4 is 299x299 [20][21]. 

 

5. MobileNet 

MobileNet model is a lightweight CNN model aimed at 

efficient deployment on mobile devices with limited 

computational resources [10]. Open-sourced by 

Google, it uses depthwise separable convolution (DSC) 

to reduce parameters and create a lightweight deep 

neural network. The model uses batch normalization 

and ReLU nonlinearity on all layers except the final 

fully connected layer, which feeds into a SoftMax layer 

for classification. MobileNet has a default input size of 

224x224. The model has been improved with new 

features, such as hard-swish activation function, 

squeeze-and-excitation block, and dynamic 

convolution, and has achieved state-of-the-art 

performance on computer vision tasks like image 

classification, object detection, and semantic 

segmentation. Overall, MobileNet models are a 

powerful and efficient tool for deep learning 

applications, particularly in resource-constrained 

environments, outperforming GoogleNet and VggNet. 

[10][23].  

6. EfficientNet 

EfficientNet models are highly efficient 

implementations of convolutional neural networks 

(CNNs) with large layers ranging from 237 to 813 

layers for EffficientNet-B0 to EfficientNet-B7. These 

models use MBConv, an inverted residual bottleneck 

block with depth-wise separable convolution and 

employ a scaling technique to evenly scale every 

dimension of the network. The compound coefficient θ 

ensures uniform scaling of width, depth, and resolution. 

EfficientNets achieve remarkable accuracy, with an 

84.3% accuracy over ImageNet, and smaller memory 
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requirements. The model has gained significant 

attention and validation [14][22]. 

 

C. Transfer Learning for Waste Classification:   

  

Transfer learning approach enables models to adjust to 

new datasets by utilizing knowledge acquired from 

previously trained models [5]. Pre-trained CNN 

models, trained on millions of images, can be fine-tuned 

to classify new images [5][10]. One popular approach 

is the integration of pre-trained models with additional 

layers to fine-tune the network for specific waste 

classification tasks [19]. Even with small datasets, 

transfer learning allows the CNN models to learn 

generic features from the source task and adapt them to 

the specific waste classification task, resulting in 

improved accuracy and efficiency [17][19] 

 

IV. DATA AND EXPERIMENT SETUP 

 

The objective of this research paper is to classify solid 

waste that is typically produced in residential areas, 

aiming to maximize the recycling of valuable natural 

resources. To provide a comprehensive comparison, we 

conducted experiments using eight different CNN 

models, each repeated three times at different numbers 

of epochs (5, 7, and 10 respectively), resulting in a total 

of twenty-four experiments. MATLAB was used as the 

programming environment for carrying out these 

experiments. The pre-trained models were fine-tuned to 

fit the classes presented by our dataset. Pretrained 

models are trained through transfer learning approach. 

 

TrashNet dataset [6] was used. It has images of solid 

waste in six categories: glass, paper, cardboard, plastic, 

metal, and trash. Before training the CNN models, the 

TrashNet dataset underwent preprocessing and 

augmentation. This involved resizing all images to a 

size that matches the input of each model. Additionally, 

data augmentation techniques (see Table1) were applied 

to increase the diversity of the dataset and mitigate 

overfitting. The TrashNet dataset was randomly divided 

into 75% and 25% for training and validation sets 

respectively. The training set was used to adjust the 

weights of the neurons in the CNN model, while the 

validation set was used to assess the model's 

performance. Table 1 shows the setting for data 

augmentation and training parameters for the models. 

 

Table 1: Data Augmentation and Training Parameters 

Data Augmentation 

Rotation Range  [-45 45] 

Scale Range [1 2] 

Random X Reflection True 

Random Y Reflection True 

Random X Scale [1 1] 

Random Y Scale [1 1] 

Image Resize model’s input size 

 

Training Parameters 

Optimizer sgdm 

Learning Rate 0.001 

Number of Epoch 5, 7, 10 

Minibatch Size 20 

Validation Frequency  50 

Output Network best validation loss 

Shuffle every epoch 

 

V. RESULT AND DISCUSSION 

 

This section presents the experiments done. The 

accuracy and loss values were used to evaluate the 

performance of each model. A confusion matrix was 

used visual aid on how well the models predict the 

classes of the images. Table 2 shows the results of the 

experiment. The training and validation accuracies of 

each model are presented.  

 

Analyzing Table 2, ResNet50 achieved the highest 

validation accuracy of 90.95% after 5 epochs (470 

iterations). This was closely followed by ResNet101 

with an accuracy of 90.48%. The remaining six CNN 

architectures exhibited accuracies ranging from 64% to 

89%.  

 

After 7 epochs having 658 iteration steps, ResNet50 

again achieved the highest validation accuracy of 

92.06%. ResNet101 and InceptionV3 both achieved an 

accuracy of 91.59%, while EfficientNetB0 improved to 

90.63%. Most models showed a slight increase in 

accuracy, except for AlexNet, which experienced a 

decrease of approximately 2%.  

 

Training models for 10 epochs having 940 iterations, 

ResNet101 achieved the highest validation accuracy of 
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92.38%, followed closely by ResNet50 at 92.02%. 

EfficientNetB0 and InceptionV3 achieved an equal 

validation accuracy of 91.43%. The other models also 

demonstrated improved validation accuracy, as shown 

in Table 2. It can be observed that the models when 

trained for 10 epochs achieved the highest validation 

accuracies.  

 

ResNet50 achieved the same high accuracy of 92.06% 

when it was trained for 7 epochs and 10 epochs 

respectively. This indicates that the model's 

performance stabilized after the 7 epochs, as further 

training did not lead to significant improvements in 

accuracy. The consistent accuracy suggests that the 

model reached its optimal performance level and was 

able to maintain it even with additional training. 

MobileNetV2 achieved a validation accuracy of 

88.25% for both training at 5 epochs and 10 epochs. 

Despite this improvement, MobileNetV2 achieved 

good accuracy when compared to all the other models 

that were trained. This suggests that while 

MobileNetV2 may not have achieved the highest 

accuracy among the models, it still demonstrated a 

consistent and competitive performance overall. 

 

Figure 3 and Figure 4 show the training accuracy and 

validation accuracy respectively when the CNN models 

were trained at epoch of 5, 7, and 10. Figure 5 to Figure 

7 shows the training loss and validation loss for the 

CNN models when trained for 5 epochs, 7 epochs, and 

10 epochs respectively.  

 

The confusion matrix provides a visual representation 

of the model's performance on the validation dataset, 

enabling us to analyze the predicted outcomes 

concerning the actual labels. Figure 8 to Figure 10 

shows the confusion matrix for the CNN models that 

produced the highest validation accuracy when trained 

at 5, 7, and 10 epochs respectively. 

 

 

Table 1: Experiment results

 

CNN model 
Training Accuracy  Validation Accuracy 

5 Epoch 7 Epoch 10 Epoch 5 Epoch 7 Epoch 10 Epoch 

AlexNet  69.1101 74.1298 79.3070 64.2857 62.6825 73.4921 

GoogleNet 79.4713 94.8356 79.6041 88.5147 88.8889 90.3175 

ResNet18 94.9026 89.7766 99.9667 85.8730 88.5714 89.8413 

MobileNetV2 84.5836 79.5606 94.8608 88.2540 88.2540 90.9524 

ResNet50 94.9281 99.9914 94.9458 90.9524 92.0638 92.0635 

ResNet101 99.9539 89.7980 99.9515 90.4762 91.5873 92.3810 

EfficientNetB0 69.1190 84.4680 99.9105 89.5238 90.6349 91.4286 

InceptionV3 84.7911 94.8583 94.7275 89.2063 91.5873 91.4286 

 
Figure 3: Training Accuracy for Epoch = 5, 7, 10 

 
Figure 4: Training Accuracy for Epoch = 5, 7, 10 
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Figure 5: Training and Validation loss for epoch =5 

 

 
Figure 6: Training and Validation loss for epoch =7 

 

 
Figure 7: Training and Validation loss for epoch =10 

 

 
Figure 8: Confusion Matrix for validation data when 

epoch=5; highest accuracy= 90.95% (ResNet50) 

 

 
Figure 9: Confusion Matrix for validation data when 

epoch=7; highest accuracy= 92.06% (ResNet50) 
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Figure 10: Confusion Matrix for validation data when 

epoch=10; highest accuracy= 92.38% (ResNet101) 

 

A. Real world applications 

The CNN models are useful for real-world applications 

for solid waste classification in waste management 

processes. Some areas of applications include the 

following: 

 

i. Waste Management Industry: CNN models for 

waste classification can be applied in the waste 

management industry to automate the sorting of 

waste in recycling plants. This can improve the 

efficiency of the recycling process and decrease the 

amount of waste sent to landfills. 

ii. Smart Recycling Bins and Robotics: The CNN 

models can also be integrated with smart bins and 

robotics to identify and sort waste as it is being 

thrown away. This eliminates the need for manual 

sorting, reducing the time and labor required. It can 

lead to a more efficient and cost-effective waste 

management system. This can encourage people to 

recycle correctly and reduce the amount of 

contaminated waste. 

iii. Smart Waste Collection System: CNN models can 

be integrated into smart waste collection systems 

that can identify and calculate collection routes for 

efficient waste collection. It can also be integrated 

to identify landfill capacity.  

 

 

CONCLUSION 

 

CNN models have shown great potential for solid waste 

classification. The experiment was carried out in a 

MATLAB programming environment. Eight CNN 

models were trained with the TrashNet dataset for 5, 7, 

and 10 epochs respectively to show the effect of epoch 

numbers on the accuracy of the model. TrashNet 

proved to be an effective dataset for training CNN 

models for waste classification. In the experiments, 

ResNet50 achieved better validation accuracy of 

90.95% and 92.06% after training for 5 and 7 epochs 

respectively. ResNet101 achieved highest validation 

accuracy of 92.38% after training for 10 epochs. The 

skip connections of the ResNet models contribute to 

give good accuracy. MobileNetV2 showed an average 

accuracy when compared with the other model. 

However, all the models show potential for real world 

applications such as into smart bins, waste collection 

processes, and other waste management processes. 

With continuous advancement in deep learning 

techniques, CNN models are still powerful tools for 

solid waste classification and have the potential to 

revolutionize waste management and aid recycling 

efforts. 
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