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Abstract- This paper uses the modular 

representation method to classify the internal 

structures of degree 120 related to a group of 

extension,𝑶𝟖
+ 𝟐 : 2.Specifically, we determine the 

number of binary linear codes and construct their 

lattice structure, as well as investigate the properties 

of some linear codes and designs of minimum 

weights. Our findings reveal that there are 12 

binary linear codes, consisting of 4 doubly even 

codes, 4 projective codes, 2 irreducible codes, and 2 

decomposable codes. We also identify 2 primitive 1-

designs of minimum weight. The results 

demonstrate the potential benefits of using linear 

codes and designs from finite groups of extension 

with modular representation methods, such as 

improved error correction, increased data storage 

capacity, improved security, efficient designs, and 

improved computational efficiency. However, it is 

important to note that this topic can be complex and 

technical, and we recommend that stakeholders 

collaborate with experts in the field to ensure the 

accuracy and reliability of the information being 

used. Overall, this study contributes to the 

understanding of the modular representation 

method and its applications in coding theory and 

related fields. 

 

I. INTRODUCTION 

 

This study focuses on the modular representation 

method in coding theory, which is a technique used 

to construct error-correcting codes. The method 

involves representing elements of the code as vectors 

over a finite field and using modular arithmetic to 

manipulate these vectors. Linear codes and designs 

from groups of extensions using modular 

representation methods can address a variety of 

issues and challenges in coding theory and design 

theory. This study aims to develop algorithms and 

computational methods for constructing and 

analyzing linear codes and designs from groups of 

extension using the modular representation method. 

Specifically, the study aims to enumerate linear codes 

from degree 120 related to a group of 

extension𝑂8
+ 2 : 2,construct a lattice diagram of 

linear codes obtained from degree 120 related to the 

group of extension, and investigate the properties of 

linear codes and designs constructed using the 

modular representation method. The significance of 

the study lies in the fact that linear codes and designs 

from maximal subgroups using the modular 

representation method have many theoretical and 

practical applications in coding theory, combinatorial 

mathematics, cryptography, and group theory. 

Overall, this study contributes to the understanding of 

the modular representation method and its 

applications in various fields. 

 

2. Construction of binary linear Codes from Finite 

Groups 

Our point of interest is finding binary linear codes 

from the primitive permutation representations. 

Maximal subgroups are expressed as primitive 

permutation representations in the atlas of finite 

group representations. For each primitive 

permutation representation of a group G we use atlas 

of finite groups and Magma software to generate 

permutation module over 𝔽2.The permutation module 

is decomposed into submodules. The submodules 

represent the dimension of linear codes. These 

submodules are used to construct lattice diagram. The 

lattice diagram is used to point out some properties of 

the submodules. Finally, binary linear codes (n, k, d) 

are obtained from submodules through a linear 

mapping [11, 12, 13, 14, 15]. 
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3.   Representation of degree 120 related to the 

extension group 𝑂8
+ 2 : 2. 

In this section, we discuss the representation of 

length 120. The following definitions and Lemmas 

will be important here and subsequent sections. 

 

Definition 3.1. A binary code is referred to as even if 

the weight of all its codewords is divisible by 2 [12]. 

 

Lemma 3.2. A binary self-orthogonal code C is even 

[12]. 

 

Definition 3.3. A binary code is doubly even if the 

weight of all its codewords are 

divisible by 4. 

 

Lemma 3.4. A double even code is self-orthogonal. 

 

Definition 3.5. A code with its dual distance at least 3 

is called projective. 

 

Lemma 3.6. Let C be a code with minimum distance 

d.If d >s + 1 >2;then C can be used to detect up to s 

errors. If d >2t + 1; then C can be used to correct up 

to t errors. 

 

II. RESULTS 

 

We construct a 120-dimensional permutation module 

invariant under permutation group G acting on a 

finite set Ω, of degree 120. We take the permutation 

module to be our working module and recursively 

find all submodules. This permutation module is 

decomposed into 12 submodules. The submodules 

are shown in the table below: From the table, m 

represents the submodule dimension and # is the 

submodule number of each dimension. 

 

Table 1: Submodules from 120 Permutation Module 

m # m # 

0 1 84 1 

1 1 85 1 

8 1 111 1 

9 1 112 1 

35 1 119 1 

36 1 120 1 

 

 

The submodules are the building blocks for the 

construction of a submodule lattice as shown in the 

figure below. 

 

Figure 1: Submodule lattice of the 120 dimensional 

permutation module 

 
 

From the lattice diagram, we see that the submodules 

of dimensions 8 and 1 are irreducible. The binary 

linear codes of the submodules are represented in the 

table below: 

 

Table 2: Binary Linear codes of small dimensions 

Name Dimension parameters 

C120,1 8 [120,8,56]2 

C120,2 9 [120,9,56]2 

C120,3 35 [120,35,24]2 

C120,4 36 [120,36,24]2 

 

 

III. PROPERTIES OF SOME LINEAR CODES 

 

We make some observations of non-trivial binary 

linear codes as follows: 
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4.1 C120,1 

i . The polynomial of C120,1is W(x)= 1+ 120x56 + 

135 x64. We observe that the weights of the two 

codewords are divisible by 4. 

ii . 𝐶120,1
⊥ has a minimum weight of 3. 

iii . has no other submodule apart from the trivial 

submodule. 

 

Proposition 3.7. Let G be a primitive group of degree 

120 of the extension group𝑂8
+(2) : 2. 

 Then C120,1is: 

i . Doubly even 

ii . Projective 

iii .Irreducible 

 

Proof 

i . See definition 3.3 and lemma 3.4.  

ii . See definition 3.5 and lemma 3.6. 

iii . See figure 1. 

 

4.2 C120,2 

i The polynomial of C120,2is W(x)= 1+ 255x56 + 255 

x64 +x120 . We observe that the weights of the three 

codewords are divisible by 4. 

ii 𝐶120,2
⊥ has a minimum weight of 4. 

iii has two submodules. 

 

Proposition 3.8. Let G be a primitive group of degree 

120 of the extension group  𝑂8
+(2) :2 

 

2. Then C120,2is: 

i . Doubly even 

ii . Projective 

iii .Decomposable 

 

Proof 

i . See definition 3.3 and lemma 3.4. 

ii . See definition 3.5 

iii . See figure 1. 

 

IV. DESIGNS OF CODEWORDS OF 

MINIMUM WEIGHT IN C120,i 

 

We determine designs held by the support of 

codewords of minimum weight wm in C120,i.In Table 

3 columns one, two, three and four respectively 

represents the codes C120,iof Weight m, the 

parameters of the 1-designs Dwm , the number of 

blocks of Dwm, and tests whether or not a design 

Dwm is primitive under the action of Aut(C). 

 

Table 3: Designs of codewords of minimum weight 

in C120,i 

Code Design Number of 

blocks 

Primitive 

[120,8,56]2 1-(120,56,56) 120 Yes 

[120,9,56]2 1-

(120,56,119) 

255 No 

 

Remark 3.9. From the results in the table above, we 

observe that the design 1-(120, 56 , 56) is primitive 

and 1-(120,56,119) is not primitive. 

 

CONCLUSION 

 

Linear codes and designs from finite groups of 

extension using modular representation method can 

provide a range of benefits in various fields, 

including improved error correction, increased data 

storage capacity, improved security, efficient designs 

and improved computational efficiency. These 

benefits can lead to more effective and efficient 

systems as well as provide solutions to complex 

problems in various industries. 

 

RECOMMENDATION 

 

Linear codes and designs from finite groups of 

extension using modular representation method can 

be complex and technical. It is recommended that 

stakeholders collaborate with experts in the field to 

ensure that the information being used is accurate and 

reliable.  
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