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Abstract- In this paper, we implement the perceptron 

classification algorithm and apply it to three two-

class datasets which include the student, weather and 

ionosphere datasets. Then the k-Nearest Neighbors 

classification algorithm is also applied to the same 

two-class datasets. Each dataset is then reduced 

using fourteen different dimensionality reduction 

techniques. The perceptron and k-nearest neighbor 

classification algorithms are then applied to each 

reduced set and the performances of the 

dimensionality reduction techniques in preserving 

the classification of a dataset by the k-nearest 

neighbors and perceptron classification algorithm 

are compared. The extent to which the classification 

of a dataset is preserved by a given dimensionality 

reduction technique is evaluated using the rand 

index and confusion matrices. 

 

Indexed Terms- Classification, Confusion Matrix, 

Dimensionality Reduction, Eager Learner, k-Nearest 

Neighbors, Lazy Learner, Perceptron, Rand Index. 

 

I. INTRODUCTION 

 

Data volumes and variety are increasing at an alarming 

rate making very tedious any attempt to glean useful 

information from these large data sets. Extracting or 

mining useful information and hidden patterns from 

the data is becoming more and more important but can 

be very challenging at the same time [1]. The biggest 

challenge is the number of variables (dimensions) 

associated with each observation. However, not all 

dimensions are required to understand the 

phenomenon under investigation in high-dimensional 

datasets. For this reason, reducing the dimension of the 

dataset can drastically improve the speed of the 

analysis while significantly maintaining the accuracy. 

This process is known as Dimensionality Reduction 

[2]. Dimensionality reduction provides a compact 

representation of an original high-dimensional data, 

which means the reduced data is free from any further 

processing and only the vital information is retained, 

so it can be used with many machine learning 

algorithms that perform poorly on high-dimensional 

data [3]. 

 

A lot of methods exist for reducing the dimensionality 

of data. There are two categories of these methods; in 

the first category, each attribute in the reduced dataset 

is a linear combination of the attributes of the original 

dataset. In the second category, the set of attributes in 

the reduced dataset is a subset of the set of attributes 

in the original dataset [4]. Techniques belonging to the 

first category include Random Projection (RP), 

Singular Value Decomposition (SVD), Principal 

Component Analysis (PCA), and so on; while 

techniques in the second category include but are not 

limited to the Combined Approach (CA), Direct 

Approach (DA), Variance Approach (Var), New Top-

Down Approach (NTDn), New Bottom-Up Approach 

(NBUp), New Top-Down Approach (modified 

version) and New Bottom-Up Approach (modified 

version)  [5].  

 

Machine learning is a scientific field in which 

computer systems can automatically and intelligently 

learn their computation and improve on it through 

experience [6], [7]. Machine learning algorithms are 

of two main types: supervised learning algorithms and 

unsupervised learning algorithms. These algorithms 

have been used in solving a lot of complex real-world 

problems [8], [9]. In unsupervised learning, the set of 

observations are categorized into groups (clusters) 

basing the categorization on the similarity between 

them. This categorization is otherwise known as 

clustering [6]. Many clustering algorithms exist, 

among which k-means clustering is the most famous 

for a large number of observations [10].  
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Unlike clustering, classification is a supervised 

learning method in which the corresponding label for 

any valid input is predicted based on a number of 

training examples referred to as the "training set" [6], 

[10]. The learning algorithm is applied to the training 

set made up of past examples having the same set of 

attributes with the unseen example [6], [10]. However, 

before starting the training, the label of each example 

in the "training set" is known [12].  

 

Classification algorithms can further be categorized 

into eager and lazy learners, and this investigation 

considers one from each category. Eager learning 

algorithms attempt to construct a general rule or create 

a generalization during the training phase which can 

further be used in classifying unseen instances [11]. 

Examples of eager learners include decision trees, 

support vector machines, and the perceptron.  

 

To build a classifier model, an eager learner attempts 

to construct a general rule in the training phase which 

will subsequently be used in classifying unseen 

instances. On the other hand, a lazy learner delays the 

process until it is presented with an unseen instance 

[11]. The main disadvantage of eager learning is the 

long time which the learner takes in constructing the 

classification model but after the model is constructed, 

an eager learner is very fast in classifying unseen 

instances. For the lazy learner, the disadvantage is the 

amount of space it consumes in memory and the time 

it takes during the classification [13]. This makes 

dimensionality reduction a very crucial preprocessing 

step because it facilitates classification, and 

compression of high-dimensional data and thus 

conserves memory and provides a compact 

representation of an original high-dimensional data 

[5]. 

 

II. DIMENSIONALITY REDUCTION 

TECHNIQUES 

 

This section gives a description of all the 

Dimensionality Reduction techniques implemented 

for the purpose of this investigation. 

 

2.1 The New Random Approach 

This is a technique suggested by [5]. With this 

technique, to reduce a data set D of dimensionality d 

to one of dimensionality k, a set Sk is formed consisting 

of k numbers selected at random from the set S shown 

in equation 2.1 below: 

S = {x ϵ N | 1  x  d}     (2.1) 

Then, our reduced set, DR, is given by equation 3.2 

below: 

DR = D(:, Sk)     (2.2) 

That is, DR is a data set having the same number of 

rows as D, and if Ai is the ith attribute of DR, then Ai 

will be the jth attribute of D if j is the ith element of Sk. 

 

2.2 Modified New Random Approach 

This technique is a modification of the new random 

approach proposed by [14]. To reduce a data set D of 

dimensionality p to one of dimensionality k, we shall 

use the algorithm below which is meant to generate a 

result less random than the results generated by the 

New Random Approach. 

 

 
 

2.3 Principal Component Analysis (PCA)  

According to [15], to reduce a dataset, Dn x p, from p 

columns to q columns using PCA, we first find the 

Singular Value Decomposition of D. In other words 

we decompose D into three submatrices U, S and V as 

given in equation 2.3 below: 

                  𝐷 = 𝑈𝑆𝑉𝑇        (2.3) 

where: 

        U is an n x n orthogonal matrix whose columns 

are the left singular vectors of D, 

V is a p x p orthogonal matrix whose columns are right 

singular vectors of D and 

S is an n x p diagonal matrix whose diagonal elements 

are the singular values of D. 

 

The transformed matrix is computed from equation 2.4 

where 𝑉𝑞  is a p x q matrix consisting of the first q 

columns of V.  

DPCA = DVq      (2.4) 
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2.4 The Variance Approach 

As explained by [16], with the Variance approach, to 

reduce a dataset D to a data set DR, we start with an 

empty set, I, and then add dimensions of D to this set 

in decreasing order of their variances. That means that 

a set I of r dimensions will contain the dimensions of 

top r variances.  

 

Thus, Ir = {i1, . . . , ir} ⊂ {1, . . . , n}, the collection of 

dimensions corresponding to the top r variances. That 

is i1 denotes the dimension of largest variance, i2 the 

dimension of second largest variance, etc. The reduced 

database, DR, in equation 2.5 is obtained by extracting 

the data corresponding to the selected dimensions. 

DR = D(:, Ir)     (2.5) 

 

where DR has the same number of rows as D and r 

columns: the ith column of DR is the column of the 

original database with the ith largest variance”. 

 

2.5 The Combined Approach  

According to [16], “like the previous approach, the 

Combined Approach is one approach which reduces a 

dataset D to a subset of the original attribute set. To 

reduce a dataset Dnxp to a dataset containing k columns, 

the Combined Approach selects the combination of k 

attributes which best preserves the interpoint 

distances, and reduces the dataset to a dataset 

containing only those k attributes. To do so, it first 

determines the extent to which each attribute preserves 

the interpoint distances. In other words, for each 

attribute, x, in D, it computes gxm and gxM given by 

equation 2.6 and equation 2.7 respectively. 
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where u and v are any two rows of D, and f(u) and f(v) 

are the corresponding rows in the dataset reduced to 

the single attribute x. The average distance 

preservation for the attribute x is then computed using 

equation 2.8. 

         gxmid = (gxm + gxM)/2   (2.8) 

To reduce the dataset D from p columns to k columns, 

this approach then finds the combination of k attributes 

whose average value of gxmid is maximum”.  

 

 

2.6 The Direct Approach 

The authors of  [16] came up with the direct approach 

which is similar to the Combined Approach. 

According to the authors, to reduce a dataset Dnxp to a 

dataset containing k columns, the Direct Approach 

selects the combination of k attributes which best 

preserve the interpoint distances, and reduces the 

original dataset to a dataset containing only those k 

attributes. To do so, it first generates all possible 

combinations of k attributes from the original p 

attributes. Then, for each combination, C, it computes 

gcm and gcM given in equation 2.9 and equation 2.10 

respectively. 

  gCm = min{
2

2

||||

||)()(||

vu

vfuf

−

− }   (2.9) 

  gCM = max{
2

2

||||

||)()(||

vu

vfuf

−

− } (2.10) 

where u and v are any two rows of D, and f(u) and f(v) 

are the corresponding rows in the dataset reduced to 

the attributes in C. The average distance preservation 

for this combination of attributes is then computed 

using equation 2.11. 

gcmid = (gcm + gcM)/2    (2.11) 

 

As we can see, the difference between the Combined 

and Direct Approaches is that for the Combined 

Approach, we first find the average distance 

preservation for each attribute, and then, for any 

combination of attributes, we compute its average 

distance preservation by finding the averages of the 

distance preservations of the individual attributes. 

With the Direct Approach, on the other hand, to find 

the average distance preservation for any combination 

of attributes, C, we reduce the original dataset directly 

to the dataset containing only the attributes in C, and 

then compute the average distance preservation for 

this combination using the formulas above.  

 

2.7 Random Projection (RP)  

With RP, a given dataset with d dimensions is 

projected onto a lower-dimensional subspace of k-

dimensions using a random d*k matrix R whose 

columns have unit lengths [15].  

 

For instance, assuming 𝐷𝑛∗𝑑 is the given dataset with 

d-dimensions, then the reduced k-dimensional dataset, 

X, is obtained as shown in equation 2.12.  

Xnxk = Dnxd*Rdxk     (2.12) 
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2.8 The New Bottom-Up Approach  

This approach, proposed by [17], works by selecting 

subsets of attributes increased by one attribute at a 

time. With this technique, assuming we want to reduce 

a data set of p dimensions to another data set of m 

dimensions, the process is started with a subset S1, 

containing a single attribute, say y, from the original 

data set, which best preserves k-means clustering. It 

then increases to S2, which contains a total of two 

attributes including y that best preserves k-means 

clustering. S2 is then increased to another subset S3 

that contains three attributes (the two attributes of S2 

and another attribute from the original dataset apart 

from the two attributes of S2) which best preserves k-

means clustering. This process continues until 𝑆𝑚 (the 

subset that has the m attributes of the original dataset 

which best preserves k-means clustering) is obtained. 

The algorithm is shown in Algorithm 2.2. 

 

 

Algorithm 2.2 The New Bottom-Up Approach

 

2.9 The New Top-Down Approach  

This approach is also suggested by [17], and it operates 

in a very similar manner to the New Bottom-Up 

approach discussed above. However, instead of 

considering the subset of attributes increased by one 

attribute at a time, the Top-Down approach considers 

the subset of attributes decreased by one attribute at a 

time. Assuming we want to reduce a data set with p 

dimensions to one with m dimensions, the Top-Down 

approach starts by reducing the original dataset to the 

subset of p-1 attributes which best preserves k-means 

clustering, then to the subset of p-2 attributes which 



© AUG 2023 | IRE Journals | Volume 7 Issue 2 | ISSN: 2456-8880 

IRE 1704964          ICONIC RESEARCH AND ENGINEERING JOURNALS 249 

best preserve k-means clustering. The procedure 

continues until the subset of m attributes that best 

preserve the k-means clustering of the original data set 

is obtained. The algorithm is shown in Algorithm 2.3. 

   

 

Algorithm 2.3 The New Top-Down Approach

 

 
 

 

2.10 The New Top-Down Approach (Modified 

Version) 

This technique is proposed in [18]. It is a modification 

of the New Top-Down approach. In this technique, 

assuming we want to reduce a data set with p 

dimensions to one with m dimensions, the process is 

started by a reduction to the subset of p-1 attributes 

which best preserves the interpoint distances (instead 

of k-means clustering), then to the subset of p-2 

attributes which best preserve the interpoint distances, 

etc. The process continues till the subset of m attributes 

that best preserve the interpoint distances of the 

original data set is obtained.  

 

2.11 The New Bottom- Approach (Modified Version) 

This technique is also proposed in [18] as a 

modification of the New Bottom-Up approach. 

Suppose we want to reduce a data set of p dimensions 

to a data set containing m dimensions. This approach 

starts by looking for the subset S1 containing the single 

attribute x from the original data set which best 

preserves the interpoint distances (instead of k-means 

clustering as in the New Bottom-Up Approach 

described above).  It then finds the subset S2, which 

contains a total of two attributes including x that best 

preserves the interpoint distances. It then finds the 

subset S3 that contains three attributes (the two 
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attributes of S2 and another attribute from the original 

dataset) which best preserves the interpoint distances. 

This process continues until the subset 𝑆𝑚 that has the 

m attributes of the original dataset which best 

preserves the interpoint distances is obtained. 

 

2.12 First Novel Approach [30] 

Suppose we want to reduce a data set of p dimensions 

to another data set of m dimensions. The First Novel 

Approach finds the approximate extent to which the 

interpoint distances is preserved by each attribute x in 

the original data set. To do so, it computes  𝑔𝑥𝑚  and  

𝑔𝑥𝑀 as in equations 2.6 and 2.7 above. 

It then selects m attributes from the original dataset 

with the largest 𝑔𝑥𝑚𝑖𝑑 values. 

 

2.13 Second Novel Approach [30] 

Unlike the First Novel Approach, the Second Novel 

Approach starts by computing 𝑎𝑑𝑝𝑥 for each attribute 

x, which is the actual extent to which it preserves the 

interpoint distances (see equation 2.16 below). 
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𝑛𝑟 is the number of pairs of rows in the original dataset 

(represented in equation 2.17):                                        
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Then, to reduce a dataset from its original p 

dimensions to m dimensions, the m attributes with the 

largest 𝑎𝑑𝑝𝑥 values are selected. 

 

2.14 Third Novel Approach [30] 

For this approach, to reduce a dataset from its original 

d dimensions to k dimensions, after computing the 

extent to which each attribute in the original dataset 

preserves k-means clustering, the k attributes which 

best preserve k-means clustering are selected. 

 

III. THE K-NEAREST NEIGHBORS 

CLASSIFICATION ALGORITHM 

 

The K-Nearest Neighbors Algorithm is a supervised 

learning algorithm and also one of the simplest 

machine learning algorithms [17], [19] . In this 

classification technique, the result/label of any given 

instance is predicted based on the label most common 

to its k nearest neighbors. K in this case is a user-

defined positive integer, normally with a small value 

[20].  

 

Figure 3.1 below illustrates how this classification 

algorithm works. 

 
Figure 3.1: KNN example 

 

In Figure 3.1, the each data point either belongs to the 

class of squares or the class of triangles. If k is 3, the 

test sample will be classified as a triangle since its 3 

nearest neighbors include 2 triangles and 1 square. But 

if k is 5, the test sample will be classified as a square 

since its 5 nearest neighbors include 2 triangles and 3 

squares. 

 

The k-nearest neighbors algorithm is given below: 

 

 
Algorithm 3.1: The K-Nearest Neighbors Algorithm 

 

In this algorithm, the similarity between the test data 

and each observation in the training set is measured by 

computing the distance between them. For numerical 

data, which is the type of data used in this 

investigation, Euclidean distance is the most widely 

used distance metric. It performs relatively better than 

the cosine and Minkowsky distance [21]. For this 

reason, Euclidean distance is the distance metric that 

has been chosen for this investigation. 
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IV. THE PERCEPTRON 

 

The perceptron [22] is a supervised learning algorithm 

used for classifying each point of a data set into either 

a positive or a negative label [20]. Basically, the 

perceptron takes a weighted sum of observations (real 

values) and if the sum is greater than some threshold 

value, it sends an output of one otherwise it sends zero 

(or -1) [23].  Unfortunately, in some cases, it takes a 

long time to train the perceptron because of the process 

of adjusting the weights until all observations are 

correctly classified. However, after training, the 

algorithm is very efficient in using the weights 

obtained for classification of unseen instances [24].  

 

The perceptron is made up of a summation processor 

which takes the dot product of the inputs and the 

weights and then an activation function which uses a 

one-step function (shown in equation 4.1) to determine 

the output of the perceptron. Learning by the 

perceptron is completed when it happens that no error 

has occurred after an epoch (a complete pass through 

the training set) during the training phase [23]. When 

the training is complete, the perceptron will respond, 

for any input presented to it, with an output that is the 

same as the output of the observation used in the 

training phase.  

𝑓(𝑥) = {
−1 𝑖𝑓  𝑤. 𝑥 < 0

1     𝑖𝑓   𝑤. 𝑥 ≥  0
   (4.1) 

  

The perceptron algorithm is depicted in Algorithm 4.1.

  

 
Algorithm 4.1: The Perceptron 

 

V. EXPERIMENTAL RESULTS 

 

In this section, the dimensionality reduction 

techniques described in section 2 of this paper are 

compared by the extent to which they preserve the 

perceptron and K-Nearest Neighbors classification of 

the weather dataset, student dataset and ionosphere 

dataset obtained from UCI Machine Learning 

Repository [25]. The results obtained for the student 

data set are presented in Tables 5.1 and 5.2 below. 

 

5.1 The Rand Index 

One of the challenges faced during classification is in 

evaluating the performance of a classifier. Some 

common performance measures include Mean 

Squared Error (MSE), ROC Curves and so on. What 

these measures do is to compare the results of the 

supervised classification algorithm with the known 

labels, which means these measures do not consider 

the fact that the output labels could be switched even 

if the labels are perfectly identified [26].  

 

The Rand Index is a measure for evaluating clustering 

based on the pairs of data that are in complete 

agreement i.e. those that have same labels or belong to 

the same cluster after each clustering and those that are 

in different clusters after each clustering [17]. We shall 

use the Rand Index as the evaluation measure in this 

section. 

 

5.2 Preservation of K-Nearest Neighbors 

Classification using the Rand Index 

To obtain the results in this section, the training set in 

each of the three data sets is used in training the K-

Nearest Neighbors classifier. Each observation in the 

test set of the respective dataset is then assigned a label 

that is most common to its k nearest neighbors. The 

training and test sets of each of the three data sets are 

then reduced using each of the fourteen reduction 

techniques described in this paper, and each 

observation in the reduced test sets of the respective 

datasets is then assigned a label that is most common 

to its k nearest neighbors in the corresponding training 

set. The rand index is then used to measure the extent 

to which each of the fourteen techniques preserve the 

k-nearest neighbors classification of the original 

datasets.    

 

Table 5.1: Comparing the reduction techniques for K-

Nearest Neighbors classification preservation using 

the student data set 

Reduction 

Techniques 

12 

Attributes 

13 

Attributes  

14 

Attributes 
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Variance 100% 100% 100% 

Novel 

approach 1 

100% 100% 100% 

Novel 

approach 2 

100% 100% 100% 

Novel 

approach 3 

100% 100% 100% 

New 

Bottom-Up 

100% 100% 100% 

New Top-

Down 

100% 100% 100% 

New 

Bottom-Up 

(Modified) 

100% 100% 100% 

New Top-

Down 

(Modified) 

100% 100% 100% 

Principal 

Component 

Analysis 

100% 100% 100% 

Direct 

Approach 

100% 100% 100% 

Combined 

Approach 

100% 100% 100% 

New 

Random 

Approach 

100% 100% 100% 

New 

Random 

Approach 

(Mod) 

100% 100% 100% 

Random 

Projection 

100% 100% 100% 

 

Table 5.1 above shows the results obtained when we 

compared the reduction techniques for K-Nearest 

Neighbors classification preservation using the student 

data set. We obtained very similar results when we 

compared the reduction techniques for K-Nearest 

Neighbors classification preservation using the 

weather and ionosphere data sets. 

 

5.3 Preservation of Perceptron Classification Using 

the Rand Index 

To obtain the results in this section, the training set in 

each of the three datasets is used to train the 

perceptron. The weight vector obtained from the 

training phase then is then used in classifying the test 

set of each dataset. The training and test set of each 

dataset is reduced using the fourteen reduction 

techniques discussed in this paper, and the weight 

vector obtained using each reduced training set is used 

to classify the corresponding reduced test set. The rand 

is then used to evaluate the extent to which the 

perceptron classification of each dataset is preserved 

by each reduction technique. The results obtained 

when we compared the reduction techniques for 

perceptron classification preservation using the 

student data set are shown in Table 5.2 below. 

 

 

Table 5.2: Comparing the reduction techniques for the perceptron classification preservation using the student data 

set.

 

Reduction Techniques 12 Attributes 13 Attributes  14 Attributes 

Variance 83.3% 91.7% 91.7% 

Novel approach 1 83.3% 83.3% 83.3% 

Novel approach 2 83.3% 83.3% 91.7% 

Novel approach 3 100% 100% 91.7% 

New Bottom-Up (Modified) 83.3% 83.3% 66.7% 

New Top-Down (Modified) 83.3% 83.3% 91.7% 

New Bottom-Up 83.3% 83.3% 83.3% 

New Top-Down 75% 66.7% 58.3% 

Principal Component Analysis 58.3% 66.7% 83.3% 

Direct Approach 58.3% 83.3% 83.3% 

Combined Approach 83.3% 83.3% 83.3% 

New Random Approach (Modified) 83.3% 83.3% 91.7% 
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New Random Approach 75% 83.3% 83.3% 

Random Projection 91.7% 91.7% 75% 

As mentioned above, we also compared the reduction 

techniques for perceptron classification preservation 

using the weather and ionosphere data sets. All the 

results we obtained showed that, on the average, for a 

reduction of a dataset with p attributes to a dataset with 

q attributes, where q << p, the First, Second and the 

Third Novel Approaches perform better than all the 

other techniques in preserving the perceptron 

classification of the original datasets.  

 

VI. USE OF CONFUSION MATRICES 

 

This section describes how the reduction techniques – 

compared against each other – preserve the perceptron 

and K-Nearest Neighbors classification of the original 

dataset using confusion matrices.  

 

6.1 Confusion Matrix 

A confusion matrix is a table containing the 

description of the actual and predicted classifications 

performed by a classifier. It is a widely used and 

effective metric for evaluating the performance of 

classifiers [27] [28]. In the context of this study, the 

four parameters that constitute a confusion matrix 

include: 

a is the number of negative observations correctly 

predicted as negative 

b is the number of negative observations predicted as 

positive 

c is the number of positive observations predicted as 

negative and 

d is the number of positive observations correctly 

predicted as positive.  

 

 

 

 

 

 

 

 

 

 

 

Table 6.1 is commonly used to show the confusion 

matrix of a classifier model having two classes. 

 
Table 6.1: Confusion Matrix 

       

According to [29], some of the evaluation measures 

that can be obtained from the confusion matrix 

include: 

i) Accuracy (AC):  This is the proportion of the total 

number of predictions that were correct. It is 

calculated as:     𝐴𝐶 =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
 

ii) True Positive Rate (TP) or Recall: This is the 

proportion of the number of positive instances 

correctly classified as positive and can be 

calculated as:   𝑇𝑃 =
𝑑

𝑐+𝑑
 

iii) True Negative Rate (TN): This is the proportion 

of the number of negative instances correctly 

classified as negative and can be calculated as:   

𝑇𝑁 =
𝑎

𝑎+𝑏
 

iv) False Positive Rate (FP): This is the proportion 

of the number of  negative instances incorrectly 

classified as positive and can be calculated as:       

𝐹𝑃 =
𝑏

𝑎+𝑏
 

v) False Negative rate (FN): This is the proportion 

of the number of positive instances incorrectly 

classified as negative and can be calculated as:        

𝐹𝑁 =
𝑐

𝑐+𝑑
 

vi) Precision (P): This is the proportion of the 

number of correctly classified instances that are 

predicted as positive and can be calculated as:      

𝑃 =
𝑑

𝑏+𝑑
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6.2 Preservation of Perceptron Classification Using 

Confusion Matrices 

In this investigation, after partitioning a dataset D into 

training and test sets, a perceptron is built on the 

training set, and the weight vector obtained from the 

training phase is then used to classify the data points 

of the test set and the result of the classification is 

stored as Result1. The original dataset, D, is then 

reduced to fewer attributes using each of the fourteen 

dimensionality reduction techniques described above. 

A perceptron is also built for each of the reduced 

datasets (using the same size of training and test sets 

as in the original dataset, D) and then the weight vector 

obtained during the training phase of each of the 

reduced sets is used to classify the data points of the 

corresponding test set. The result of the classification 

is then saved as Result2.   

 

A confusion matrix is then used for the comparison of 

Result1 and Result2. This comparison gives us the 

extent to which the dimensionality reduction 

techniques preserve the classification of the original 

dataset using the perceptron.  

 

Figures 6.1 and 6.2 below are confusion matrices 

which show the extent to which the perceptron 

classification are preserved by a reduction of the 

weather data set from 30 to 24 attributes using PCA 

and the Variance Approach.  

 

 
Figure 6.1   Confusion matrix showing the extent to 

which the perceptron classification is preserved by a 

reduction of the Weather data set from 30 to 24 

attributes using PCA. 

 
Figure 6.2 Confusion matrix showing the extent to 

which perceptron classification is preserved by a 

reduction of the Weather data set from 30 to 24 

attributes using the Variance Approach. 

 

In the confusion matrices presented in this paper, the 

first two diagonal cells of the 3 X 3 matrix represent 

the number and percentage of correctly classified 

instances for the first and second classes, and the third 

shows the overall percentage of correctly classified 

instances.  

 

For example, in Figure 6.2 above, 11 instances are 

correctly predicted as positive which corresponds to 

73.3% of all 15 instances of the test data. 2 of the 

negative instances are correctly classified as negative 

which represents 13.3% of the data. In total, 86.7% of 

the 15 instances are correctly predicted as positive or 

negative. This percentage is referred to as the accuracy 

of the prediction by the given confusion matrix. All of 

the positive instances are correctly classified, and this 

corresponds to 100% of the positive instances. Two of 

the four negative instances are correctly classified, and 

this corresponds to 50% of the negative instances. 

84.6% of the 13 positive predictions are correct while 

15.4% are wrong. Both of the 2 negative predictions 

are correct which corresponds to 100% of the negative 

predictions.  

 

Apart from the two confusion matrices presented in 

this paper, we generated confusion matrices showing 

the extent to which the perceptron classification is 

preserved by a reduction of the weather data set from 

30 to 24 attributes using all the other twelve reduction 

techniques. The accuracy results obtained from all 

fourteen techniques showed that: 
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• For a reduction from 30 to 24 attributes, PCA has 

the best performance in preserving the perceptron 

classification of the weather dataset, followed by 

the modified version of the New Top Down 

Approach. The Combined Approach, on the other 

hand, has the worst performance. 

• All the other eleven reduction techniques are 

equally efficient in preserving the perceptron 

classification of the weather dataset. 

 

6.3 Preservation of K-Nearest Neighbors 

Classification Using Confusion Matrices 

For k-nearest neighbors classification, all the labels of 

the negative class (-1) of the Weather dataset are 

renamed to a class label “2”, where 2 means “warm”. 

As it was done with the perceptron above, after 

obtaining the result of the classification of the original 

test set, the Weather dataset is reduced using each of 

the dimensionality reduction techniques above and the 

results of classifying the reduced test sets are 

compared with the result of classifying the original test 

set to see the extent to which the techniques preserve 

classification using K-Nearest Neighbors. 

 

 
Figure 6.3  Confusion matrix showing the extent to 

which K-Nearest Neighbors classification is 

preserved by a reduction of the Weather data set from 

30 to 24 attributes using any of the 14 approaches 

 

The results in this section show that all the 

dimensionality reduction techniques perform much 

better at preserving the K-Nearest Neighbor 

classification of the Weather dataset than they do at 

preserving the classification of the Weather dataset 

using the perceptron.  

 

In general, the dimensionality reduction techniques 

implemented in this paper proved to be very efficient 

in preserving the classification of different datasets 

using both the lazy and eager learners used for this 

investigation. 

 

CONCLUSION 

 

This paper started by pointing out the challenges faced 

in the extraction of useful information from available 

large pools of data which increases at an alarming rate. 

Dimensionality reduction was introduced as a method 

that provides a compact representation of an original 

high-dimensional data, thus making it a very powerful 

tool and also an invaluable preprocessing step in 

facilitating the implementation of many machine 

learning algorithms. We implemented many 

algorithms including fourteen dimensionality 

reduction techniques, two classification algorithms 

(the perceptron and K-Nearest Neighbors algorithms), 

the Rand Index and the confusion matrix. The results 

revealed the extent to which dimensionality reduction 

techniques preserve the perceptron and K-Nearest 

Neighbors classification of a given dataset. 

 

The Rand Index and the confusion matrix were used to 

show the extent to which these fourteen 

dimensionality reduction techniques – compared 

against each other - preserve the perceptron and k-

nearest neighbor classifications of the original 

datasets. This investigation revealed that the 

dimensionality reduction techniques implemented in 

this paper seem to perform much better at preserving 

K-Nearest Neighbors classification than they do at 

preserving the classification of the original datasets 

using the perceptron. In general, the dimensionality 

reduction techniques proved to be very efficient in 

preserving the classification of different datasets using 

both the lazy and eager learners used for this 

investigation. 

 

It would be interesting and worth investigating the 

classification preservation of dimensionality reduction 

methods on more sophisticated classifiers like the 

support vector machine and decision trees. 

 

 

 

 



© AUG 2023 | IRE Journals | Volume 7 Issue 2 | ISSN: 2456-8880 

IRE 1704964          ICONIC RESEARCH AND ENGINEERING JOURNALS 256 

REFERENCES 

 

[1] N. Sharma and K. Saroha, “Study of 

dimension reduction methodologies in data 

mining,” in International Conference on 

Computing, Communication and 

Automation, 2015, pp. 133–137. 

[2] I. K. Fodor, “A survey of dimension 

reduction techniques,” Center for Applied 

Scientific Computing, Lawrence Livermore 

National Laboratory, no. 1, pp. 1–18, 2002. 

[3] D. H. Deshmukh, T. Ghorpade, and P. 

Padiya, “Improving classification using 

preprocessing and machine learning 

algorithms on NSL-KDD dataset,” in 

Proceedings - 2015 International 

Conference on Communication, Information 

and Computing Technology, ICCICT 2015, 

2015. 

[4] A. S. Nsang, I. Diaz, and A. Ralescu, 

“Ensemble Clustering based on 

Heterogeneous Dimensionality Reduction 

Methods and Context-dependent Similarity 

Measures,” Int. J. Adv. Sci. Technol., vol. 64, 

pp. 101–118, 2014. 

[5] A. S. Nsang , F. Oguntoyinbo,  H. Yusuf,  

and A. Maikori, “A New Random Approach 

To Dimensionality Reduction, in "Int’l 

Conf. on Advances in Big Data Analytics", 

pp. 69 – 74, 2015. 

[6] I. Kavakiotis, O. Tsave, A. Salifoglou, N. 

Maglaveras, I. Vlahavas, and I. Chouvarda, 

“Machine Learning and Data Mining 

Methods in Diabetes Research,” Comput. 

Struct. Biotechnol. J., vol. 15, pp. 104–116, 

2017. 

[7] T. M. Mitchell, Machine Learning, vol. 1, 

no. 3. 1997. 

[8] S. B. Kotsiantis, “Supervised machine 

learning: A review of classification 

techniques,” Informatica, vol. 31, pp. 249–

268, 2007. 

[9] S. B. Kotsiantis, I. D. Zaharakis, and P. E. 

Pintelas, “Machine learning: A review of 

classification and combining techniques,” 

Artif. Intell. Rev., vol. 26, no. 3, pp. 159–

190, 2006. 

[10] M. Capó, A. Pérez, and J. A. Lozano, “An 

efficient approximation to the K-means 

clustering for massive data,” Knowledge-

Based Systems, 2016. 

[11] Y. H. and W. Lam, “Lazy Learning for 

Classication Based on Query Projections,” 

in Proceedings of the 2005 SIAM 

International Conference on Data Mining, 

2005, pp. 227–238. 

[12] N. Singh, “Malware Analysis , Clustering 

and Classification : A Literature Review,” 

IJCST Int. J. Comput. Sci. Technol., vol. 

8491, pp. 68–72, 2015. 

[13] I. M. Galván, J. M. Valls, M. García, and P. 

Isasi, “A lazy learning approach for building 

classification models,” Int. J. Intell. Syst., 

vol. 26, no. 8, pp. 773–786, 2011. 

[14] A. S. Nsang, A. M. Bello, and H. 

Shamsudeen, “Image Reduction Using 

Assorted Dimensionality Reduction 

Techniques,” in Proceedings of the 26th 

Modern Artificial Intelligence and Cognitive 

Science Conference, pp 139 - 146, 2015. 

[15] E. Bingham and H. Mannila, “Random 

projection in dimensionality reduction: 

Applications To Image And Text Data,” Int. 

Conf. Knowl. Discov. Data Min., pp. 245–

250, 2001. 

[16] Augustine S. Nsang and Anca Ralescu. 

Approaches to Dimensionality Reduction to 

a Subset of the Original Dimensions. In 

Proceedings of the Twenty-First Midwest 

Artificial Intelligence and Cognitive Science 

Conference, 70-77, 2010. 

[17] Augustine Nsang. Novel Approaches to 

Dimensionality Reduction and Applications: 

An Empirical Study. Lambert Academic 

Publishing, Saarbrücken, Germany, 2011. 



© AUG 2023 | IRE Journals | Volume 7 Issue 2 | ISSN: 2456-8880 

IRE 1704964          ICONIC RESEARCH AND ENGINEERING JOURNALS 257 

[18] A. S. Nsang, D. Edi, and C. Ahanonu, 

“Query-Based Dimensionality Reduction 

Applied To Images,” in Int’l Conf. on 

Advances in Big Data Analytics, 2015, no. 2, 

pp. 81–86. 

[19] L. E. Peterson, “K-nearest neighbors,” 

Scholarpedia, vol. 4, no. 2, p. 1883, 2009. 

[20] W. Ertel, Introduction to Artificial 

Intelligence. 2011. 

[21] L.-Y. Hu, M.-W. Huang, S.-W. Ke, and C.-

F. Tsai, “The distance function effect on k-

nearest neighbor classification for medical 

datasets,” Springerplus, vol. 5, no. 1, p. 

1304, 2016. 

[22] F. Rosenblatt, “The perceptron: a 

probabilistic model for information storage 

and organization in the brain.,” Psychol. 

Rev., vol. 65, no. 6, pp. 386–408, 1958. 

[23] S. Haykin, Neural Networks and Learning 

Machines, vol. 3. 2008. 

[24] S. Haykin, “Rosenblatt’s Perceptron,” 

Neural Networks Learn. Mach., no. 1943, 

pp. 47–67, 2009. 

[25] K. Bache and M. Lichman, “UCI Machine 

Learning Repository,” University of 

California Irvine School of Information, vol. 

2008, no. 14/8. p. 0, 2013. 

[26] J. M. Santos and M. Embrechts, “On the Use 

of the Adjusted Rand Index as a Metric for 

Evaluating Supervised Classification.pdf,” 

in 19th International Conference on 

Artificial Neural Networks, 2009, pp. 1–10. 

[27] S. Visa, B. Ramsay, A. Ralescu, and E. Van 

Der Knaap, “Confusion matrix-based 

feature selection,” in CEUR Workshop 

Proceedings, 2011, vol. 710, pp. 120–127. 

[28] S. Singh and R. Singla, “Comparative 

Performance of Fault-Prone Prediction 

Classes with K-means Clustering and MLP,” 

in Proceedings of the Second International 

Conference on Information and 

Communication Technology for Competitive 

Strategies, 2016. 

[29] M. Sokolova and G. Lapalme, “A systematic 

analysis of performance measures for 

classification tasks,” Inf. Process. Manag., 

vol. 45, pp. 427–437, 2009. 

[30] U. A. Baba, A. S. Nsang and O. Adeseye. 

“Three Novel Approaches to Dimensionality 

Reduction.” In Proceedings of the 

International Conference of Artificial 

Intelligence, Las Vegas, 2018. 


