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Abstract—The metal cutting industry constantly 

seeks to optimize machining techniques to 

guarantee highly accurate parts while minimizing 

costs. However, the complexity of the relationship 

between process parameters and performance 

measures such as metal removal rate (MRR), 

surface finish, chip flow pattern, specific energy 

consumption, and tool life presents a significant 

challenge for manufacturers. The paper introduces 

an innovative solution for determining the influence 

of bearing clearance on mild steel turning 

operations using the Adaptive Neuro Fuzzy 

Inference System (ANFIS) optimization model. By 

assimilating insights from training data onto a fuzzy 

inference system, ANFIS effectively maps solutions 

to complex problems. The proposed approach 

accurately predicts surface roughness, MRR, and 

tool wear for different sets of cutting parameters, 

offering a viable approach for improving product 

quality and profitability while reducing associated 

manufacturing costs. By applying substrative 

clustering with values of radius of parameter equal 

to 0.1, 0.2, and 0.3 respectively, the initial 

membership function of the independent variables 

and fuzzy rules were developed. Training was done 

by using an initial step size of 0.1, the value of 

MAPE obtained was 3.123% and correlation 

coefficient (R) of 0.9072. The results obtained 

indicate that the ANFIS model predicts surface 

roughness with high accuracy, with an average 

error of 0.17μm. The study also found that 

increasing bearing clearance results in a decrease 

in surface roughness, as seen with a reduction from 

3.96μm to 2.22 μm. Furthermore, the model 

predicted MRR with an average error of 0.6%, and 

it revealed that increasing bearing clearance results 

in a significant increase in MRR, ranging from 2.22 

m
3
/min to 5.98 m

3
/min at a clearance level of 

0.010mm. The findings contribute to the body of 

knowledge in manufacturing engineering, offering 

valuable insights into the relationship between 

bearing clearance, machining parameters, and 

performance measures. 

 

Indexed Terms—Accurate machining techniques, 

ANFIS model, Bearing clearance, Surface 
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I. INTRODUCTION 

 

In recent times, advancements in engineering design 

have played a crucial role in driving technological 

developments across various fields of engineering. 

One area where these advancements have been 

witnessed is in the metal cutting industry, where 

manufacturers are constantly on the lookout for 

suitable machining techniques that can guarantee 

highly-accurate parts while minimizing costs. 

According to Struzikiewicz and Sioma, developing 

appropriate machining techniques is crucial to meet 

engineering design requirements such as shape and 

dimension accuracy, surface quality, and optimal cost 

and/or rate of production [1]. However, relating the 

process parameters such as the number of passes, 

depth of cut for each pass, bearing clearance, feed 

rate, and cutting speed to performance measures like 

metal removal rate (MRR), surface finish, chip flow 

pattern, specific energy consumption, and tool life [2] 

is often challenging and complex for manufacturers. 

This challenge prevents them from achieving 

acceptable process performance [3]. Manufacturers in 

the past relied heavily on large empirical databases 

compiled from previous machining operations to 

carry out designs. This approach is associated with 
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limitations, and it is therefore a less preferred option 

in modern times. According to Koenigsburger and 

Melkote, in manufacturing, discrepancies can be 

classified into two main categories: random and 

assignable variations. Random fluctuations, such as 

those originating from machine cycles and vibrations, 

often occur unpredictably. In contrast, assignable 

variations surface due to inadequate control over the 

machining process. This differentiation holds 

immense significance [4], [5]. As pointed out by 

Groover, a lack of expertise when applying 

machining parameters in the production of batch 

components often leads to the creation of numerous 

substandard machined parts [6]. Alarmingly, it has 

been noted that roughly 50% of machining operations 

involve the improper use of cutting tools and process 

parameters [7]. To confront these challenges and 

elevate machining procedures, systematically 

developed methodologies like artificial intelligence 

(AI) tools have emerged as potent solutions. 

According to Rao and Mukherjee, artificial 

intelligence (Al)AI techniques encompass a broad 

spectrum of approaches, including adaptive neuro-

fuzzy inference systems, neural-based fuzzy 

interference systems (ANFIS), artificial neural 

networks (ANNs), particle swarm optimization 

(PSO), genetic algorithms (GAs), and geometric 

programming (GP). These AI-driven strategies have 

demonstrated remarkable efficacy in simulating and 

optimizing input and output machining parameters in 

machining processes, rendering them not only more 

efficient but also more effective [8]. Numerous 

research endeavors have been dedicated to enhancing 

the machining process, encompassing the quest for 

optimal process parameters [9] and the determination 

of hyper-parameters in artificial neural network 

(ANN) applications for modeling machining 

processes [10]. However, it is imperative to assess 

the adequacy of these techniques by evaluating their 

performance in predicting both process parameters 

and responses. Notably, ANFIS stands out as an 

exceptionally potent modelling technique, capable of 

delivering remarkably accurate outputs, even in the 

presence of variations within machining process 

parameters [11], [12]. ANFIS, classified as a soft 

computing modeling technique, harnesses the 

strengths of both artificial neural networks (ANNs) 

and fuzzy logic theory techniques [13]. Through the 

assimilation of insights gleaned from training data, 

which may encompass complex mathematical 

models, ANFIS effectively maps out solutions onto a 

fuzzy inference system (FIS) [14]. The incorporation 

of an FIS into the ANFIS framework endows it with 

the capability to ascertain hidden layers and enhance 

its predictive prowess. This removes the need for the 

laborious process of manually determining hidden 

layers, often a requisite in other simulation and 

modelling techniques employed for input and output 

machining parameters [15]. 

 

The theme of this study is focuses on the 

implementation of adaptive neuro fuzzy inference 

system in determining the influence of bearing 

clearance in mild steel turning operations. 30 

experimental runs will be the dataset used for surface 

roughness prediction in this work, while the data 

preparation will employ statistical preprocessing 

steps that are essential for sorting out "good" data 

from the "bad". 

 

Justification of Study 

The significance of this study in providing a solution 

to the challenges faced by manufacturers in 

constantly looking for suitable machining techniques 

that can guarantee highly accurate parts while 

minimizing costs the metal is justified by several 

reasons. 

 

First, in today's manufacturing landscape, being 

excellent isn't just an option; it's a must to stay 

competitive. The quality of machine-made parts 

directly impacts how well products perform, how 

long they last, and whether they find acceptance in 

the market. This research unquestionably justifies 

itself through its notable achievements in improving 

surface quality. By introducing a smart and highly 

effective method for optimizing machining 

operations, this study offers a practical solution to a 

persistent real-world problem faced by the metal 

cutting industry. It delves deep into the details of 

fine-tuning machining parameters using a blend of 

advanced techniques, including a hybrid Taguchi-

genetic learning algorithm, ANFIS, ANN, and RSM. 

The tangible result is a set of optimized parameters 

that consistently lead to better surface quality. This 

isn't just theory; it's a real advantage that 

manufacturers can use to outshine their competition 

[16], [17][18]. 
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Also, this research holds immense importance for 

various industries reliant on mechanical components. 

The surface roughness of these parts, a crucial factor, 

affects how well they function and how long they 

last. By enabling manufacturers to enhance product 

quality through better machining processes, this study 

directly addresses a fundamental concern in industrial 

production. Furthermore, the impact goes beyond 

quality improvement as manufacturing processes 

often carry substantial expenses related to quality 

control, waste, and rework. Hence, the precision and 

predictability achieved using the ANFIS model can 

help reduce these costs by minimizing deviations 

from desired surface roughness standards [19]. 

 

Additionally, this research is firmly grounded in the 

forward march of mechanical engineering. Its use of 

cutting-edge computational techniques, including 

ANFIS optimization models, demonstrates a 

commitment to technological advancement. The 

engineering industry is embracing a digital 

transformation where advanced methods play an 

increasingly central role in process optimization. The 

use of ANFIS doesn't just deepen our understanding 

of the intricate relationships between machining 

parameters and surface roughness; it also translates 

this understanding into practical benefits. By making 

machining processes more precise and efficient, this 

study aligns itself with the current trend of 

integrating computational intelligence and 

automation into manufacturing [17], [19][16]. 

 

Lastly, beyond its immediate applications, this work 

enriches the body of knowledge in mechanical 

engineering. It contributes valuable insights into 

surface roughness prediction, serving as a reference 

for future researchers and practitioners. The 

predictive models developed here act as a solid 

starting point for further research endeavors. In 

essence, this research isn't just about providing 

solutions; it's also a guiding light for future 

exploration in the field. 

 

II. LITERATURE REVIEW 

 

A. Historical Background of the Previous Use of 

ANFIS in Machining Processes 

ANFIS, or Adaptive Neuro Fuzzy Inference System, 

stands as a potent artificial intelligence model, 

drawing on the strengths of both artificial neural 

networks (ANNs) and the principles of fuzzy logic 

theory. This system of operation significantly 

enhances ANFIS's predictive capabilities, making it a 

formidable tool for various prediction and modeling 

tasks. Being first proposed by Jang in 1993, ANFIS 

closely mirrors the functional characteristics of the 

Takagi-Sugeno type inference model. It possesses the 

unique ability to learn from training data and 

dynamically adjust the parameters of the Takagi-

Sugeno inference model based on this acquired 

knowledge. ANFIS's prowess in prediction is further 

accentuated by its representation of solutions in 

linguistic terms, accomplished through a Fuzzy 

Inference System (FIS) [20]. The architecture of the 

ANFIS model comprises five distinctive strata: 

fuzzification, rule base, normalization of membership 

functions (MFs), defuzzification, and summation. For 

a more detailed understanding on how these layers 

synergize to enhance its predictive potential, observe 

Figure 1. 

 

 
Figure 1. General Architecture of ANFIS model 

 

In 2003, Lo conducted a study in which an ANFIS 

model was employed to predict the surface roughness 

subsequent to end milling. This investigation 

encompassed input variables such as spindle speed, 

feed rate, and depth of cut. These inputs underwent 

fuzzification employing triangular and trapezoidal 

functions. A set of 27 rules was formulated to 

showcase their association with surface roughness. 

The triangular membership function exhibited 

remarkable efficacy, yielding an average prediction 

error of merely 4%, resulting in a commendable 

accuracy rate of 96% [21]. Expanding upon Lo's 

groundwork, Ho and his collaborators in 2009 also 

harnessed ANFIS. They incorporated the Genetic 

Algorithm (GA) technique to govern workpiece 
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surface roughness while drawing upon the same 

dataset. In this methodology, 48 samples were 

allocated for training purposes, with 24 samples 

earmarked for testing. This approach, which adopted 

the Gaussian membership function, yielded outcomes 

related to those observed in Lo's 2003 study, 

registering an average error rate of 4.06% [22]. In 

2011, an investigation led by Sharkawy ventured into 

the region of surface roughness modeling during end 

milling procedures. This study harnessed three 

distinct artificial intelligence (AI) methodologies, 

specifically Radial Basis Function Neural Networks 

(RBFNs), the Adaptive Neuro Fuzzy Inference 

System (ANFIS), and the Genetic Fuzzy Inference 

System (G-FISs). It's important to underline that 

ANFIS represents a fusion of artificial neural 

networks and fuzzy logic theory. This order of 

operation enables ANFIS to acquire knowledge from 

training data and adapt the parameters of the Takagi-

Sugeno inference model. The hallmark of ANFIS lies 

in its capacity to translate solutions into linguistic 

terms through a Fuzzy Inference System (FIS), 

thereby amplifying its predictive capabilities [23]. 

Dong et al. also utilized ANFIS with a leave-one-out 

cross-validation (LOO-CV) approach to predict 

workpiece surface roughness in 2011. Based on the 

same dataset as the previous study, the predictive 

results of their ANFIS model outperformed the 

models reported recently in the literature, with an 

average error of only 3.62%. This study highlights 

the superiority of ANFIS models in predicting 

surface roughness compared to other models using 

the same dataset [24]. In a distinct exploration 

undertaken by Paturi, Devarasetti, Fadare, &Narala in 

2018, an artificial neural network (ANN) model and 

the response surface methodology (RSM) were 

enlisted for surface roughness modelling. Their 

findings underscored the potential of both statistical 

and AI modelling as credible substitutes for time-

intensive experimental endeavours, thereby curtailing 

the need for expensive machining test trials [25]. 

However, it is noteworthy that the utilization of a 

neural network can be relatively labor-intensive due 

to the iterative process involved in configuring the 

network structure, especially concerning middle layer 

nodes. In contrast, ANFIS offers a precise 

methodology for ascertaining nodes and concealed 

strata through the employment of fuzzy inference 

techniques. Therefore, ANFIS emerges as a highly 

auspicious avenue for the future of surface roughness 

modelling and control within machining processes. 

The creation of an ANFIS model necessitates the 

partitioning of input-output data into rule patches, a 

task that can be accomplished through a myriad of 

techniques, including grid partitioning, the 

subtractive clustering method, and fuzzy c-means 

(FCM) [26]. 

 

B. Fuzzy Logic 

Fuzzy sets were introduced by Zadeh[27], [28] as a 

means of representing and manipulating data that was 

not precise, but rather fuzzy. There is a strong 

relationship between Boolean logic and the concept 

of a subset, there is a similar strong relationship 

between fuzzy logic and fuzzy subset theory. It has 

been used to model complex systems that can be 

monitored, controlled and operated by humans based 

on if-then rules that were develop over years of 

knowledge and experience. It was used to predict the 

surface roughness in different cutting operations. Abd 

El-Raaouf, Osman, El-Axir and Elshanawani in 2001 

studied the applicability of the fuzzy technique in the 

field of machined surface quality. The document 

includes the operation of the fuzzy technique in 

combination with the parametric analysis for 

generating the different combinations of machining 

conditions that lead to high surface quality [29]. A 

mathematical model was developed to relate the four 

cutting parameters namely; cutting speed, un-

deformed chip thickness, tool rake angle and tool 

wear. The response considered were total force and 

power consumption in addition to the surface 

roughness during orthogonal cutting. The 

membership function was utilized to generate the 

fuzzy model. The nonlinear program is used 

throughout de-fuzzification process. The comparison 

of the results with respect to the reference crisp 

model proves the efficiency of the fuzzy technique in 

a wide class of engineering applications.  

 

C. Overview of Neuro-Fuzzy System 

Fuzzy logic can model nonlinear functions of 

arbitrary complexity. It involves creating fuzzy 

systems to match any set of input-output data. This 

process is made particularly easy by adaptive 

techniques like Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), which are available in Fuzzy 

Logic Toolbox software in Matlab. In most fuzzy 
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systems, fuzzy rules were obtained from the human 

expert. However, every expert does not want to share 

his knowledge and there is no standard method that 

exists to utilize expert knowledge. As a result, ANNs 

were incorporated into fuzzy systems to be able 

toacquire knowledge automatically by learning 

algorithms. The learning capability of the NNs was 

used for automatic fuzzy if then rules generation [30]. 

The connection of fuzzy systems with an ANN is 

called neuro-fuzzy (NF) systems. 

 

D. Membership Function and Rules Selection for 

ANFIS  

In a conventional fuzzy inference system, the number 

of rules is decided by an expert who is familiar with 

the target system to be modeled. While in ANFIS 

simulation, the services of an expert are not needed. 

The number of membership functions (MFs) assigned 

to each input variable is chosen empirically, that is, 

by plotting the data sets and examining them visually, 

or simply by trial and error. For data sets with more 

than three inputs, visualization techniques are not 

very effective so the practice relied on trial and error. 

This situation is similar to that of neural networks 

where, there is just no simple way to determine in 

advance the minimal number of hidden units needed 

to achieve a desired performance level. There are 

several other techniques for determining the numbers 

of MFs and rules, such as CART and clustering 

methods. In a fuzzy inference system, there are 

basically two types of input space partitioning and 

these are the Grid partitioning method and the Scatter 

partitioning method. The term Fuzzy-C refers to the 

clustering method and the subtractive clustering 

method. 

 

E. Subtractive Clustering  

When there is no clear idea of how many clusters 

there should be for a given set of data, subtractive 

clustering provides the solution in a fast, one-pass 

algorithm for estimating the number of clusters and 

cluster centers in a set of data. Subtractive clustering 

operates by finding the optimal data point to be 

defined as a cluster center, based on the density of 

surrounding data points. All data points within the 

radius distance of these points are then removed, in 

order to determine the next data cluster and its center. 

This process is repeated until all of the data is within 

the radius distance of a cluster center. This method is 

used for rules generation when number of inputs is 

larger. 

 

III. METHODOLOGY 

 

A.   Data Collection and Assessment ANFIS Surface 

Roughness Prediction 

The dataset used for surface roughness prediction in 

this work consists of 30 experimental runs. The first 

four (4) columns in every set represent the input 

variables while the last column represents the output. 

The set of input variables are bearing clearance (µm), 

depth of cut (mm), feed (mm/rev), spindle speed 

(rpm) while surface roughness is the output. 

 

B.    Data Preparation, Preprocessing and Removal 

of Outliers 

Data preparation includes statistical preprocessing 

steps that are essential for sorting out "good" data 

from the "bad". Experimental and personal error are 

often incurred when measurements were taken and 

recorded. The raw dataset was preprocessed in other 

to eliminate offset and remove outliers which are 

unusual points in the dataset. The presence of outliers 

in datasets is mostly due to error in measurement and 

recording. They were removed by running short 

program written using MATLAB. 

 

C.    Exhaustive Search 

To use ANFIS for system identification, the first step 

is to select the inputs. The sequential forward search 

method selects the input sequentially in such a way 

that the Root Mean Square Error (RMSE) is 

minimized. Exhaustive search method reveals the 

best "inputs" combination that yields the least RMSE. 

Two choice criteria was investigated in selecting the 

"best input combination". These criteria are; the 

minimum training RMSE and minimum checking 

RMSE as depicted in Figure 2. 
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Figure 2. Exhaustive search graph showing best two 

inputs combination that affects the surface roughness 

 

D.    ANFIS Based Subtractive Clustering Method 

Fuzzy subtractive clustering (FSC) method is 

implemented by dividing the data space into fuzzy 

clusters, in which each part represents a specific part 

of the system behaviour. the fuzzy rules are generated 

from each cluster.  Cluster centres are generated 

based on the following procedure; selection of data 

points with highest potential to be the first cluster 

centre, the removal of all data points in the vicinity of 

the first cluster (as predetermined by radii) in order to 

determine the next data cluster and its centre location 

and lastly perform again the process until all data are 

within the radius of a cluster centre. After clustering 

the data space, the number of fuzzy rules is 

determined and that of the premise fuzzy membership 

function (MF). Then the linear squares estimation is 

used to determine the consequence in the output MFs, 

resulting in a valid FIS. 

 

The MATLAB fuzzy logic toolbox was used for 

ANFIS model development. Subtractive clustering 

has four significant parameters; accept ratio 𝜀, reject 

ratio 𝜀, cluster radius 𝑟𝑎 , and squash factor 𝜂. These 

parameters have influence on the number of rules and 

the error performance measures. For example, a large 

value of cluster radius generally results in 

fewerclusters that lead to a coarse model. However, a 

small value of cluster radius can produce excessive 

number of rules that may result in an over-defined 

system. The optimal parameters suggested by Chiu 

are 1.25 ≤  𝜂 ≤ 1.25and 0.15 ≤  𝑟𝑎 ≤ 0.3.The 

membership functions of all data points in each input 

space are assigned with respect to all cluster centers 

as follows: 

𝑢𝑖𝑗 = 𝑒𝑥𝑝(−
𝛾  𝑥𝑖−𝑐𝑘   

2

𝑟𝑎
2 )(1) 

where  𝑥𝑖 − 𝑐𝑘   is the distance measure between the 

ith data point and kth cluster center. 

 

To understand the ANFIS architecture, consider the 

following fuzzy system which has two rules and is a 

first order Sugeno model: 

Rule 1:𝑖𝑓  𝑥 𝑖𝑠 𝐴1  𝑎𝑛𝑑  𝑦 𝑖𝑠 𝐵1 , 𝑡ℎ𝑒𝑛 (𝑓1 =

 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1)                      (2)       

Rule 2:  𝑖𝑓  𝑥 𝑖𝑠 𝐴2  𝑎𝑛𝑑  𝑦 𝑖𝑠 𝐵2 , 𝑡ℎ𝑒𝑛 (𝑓2 =

 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2)                    (3) 

 

The output of each rule is a linear combination of 

input variables plus a constant term, and the final 

output is the weighted average of each rule’s output. 

A possible ANFIS architecture to implement these 

two rules is shown in Figure 3. Note that a circle 

indicates a fixed node whereas a square indicates an 

adaptive. 

 
Figure 3. ANFIS Architecture The explanation of the 

layers of ANFIS is as follows: 

 

Layer 1: All the nodes in this layer are adaptive 

nodes. The output of each node is the degree of 

membership of the input of the fuzzy membership 

functions represented by the node: 

𝑂1.𝑖 =  𝜇𝐴𝑖
(x) i = 1, 2                                                         

(4) 

𝑂1.𝑖 =  𝜇𝐵𝑖
(x) i = 3, 4                                                                                    

(5) 
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where, 𝐴𝑖  and 𝐵𝑖  are any appropriate fuzzy sets in 

parametric form, and 𝑂1,𝑖  is the output of the node in 

the 𝑖𝑡ℎ  layer. The most common membership 

functions encompass Gaussian, generalized bell 

shaped, triangular, and trapezoidal shaped functions 

with maximum value of 1 and minimum value of 0. 

This study used the Gaussian membership function. 

A Gaussian membership function can be shown as 

follows: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝜇 𝐼 =  𝑒
−

(1−𝑐)2

2𝜎2    (6) 

 

Layer 2: The nodes in this layer are fixed (not 

adaptive). They are labelled by M to indicate that 

they play the role of a simple multiplier. The outputs 

of these nodes are given by: 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖
 𝑥 𝜇𝐵𝑖 𝑦  𝑖 = 1,2   (7) 

 

The output of each node in this layer represents the 

firing strength of the rule. 

Layer 3: Nodes in this layer are also fixed nodes. 

They are labelled by N to indicate that they perform a 

normalization of the firing strength from the previous 

layer. The Output of each node in this layer is given 

by: 

𝑂3,𝑖 =  𝜛𝑖=
𝑊𝑖

𝑊1+𝑊2
  𝑖 = 1,2   (8) 

 

Layer 4: All the nodes in this layer are adaptive 

nodes. The output of each node in this layer is simply 

the product of the normalized firing strength and a 

first order polynomial (for first order Sugeno model): 

𝑂4,𝑖 =  𝜛𝑖𝑓𝑖 = 𝜛𝑖(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1)  i = 1,2  (9) 

where 𝑝𝑖  , 𝑞𝑖  and 𝑟𝑖  are design parameters (referred to 

as consequent parameters since they deal with the 

then-part of the fuzzy rule). 

 

Layer 5: This layer has only one node labelled by S 

to indicate that it performs the function of a simple 

summation. The output of this single node is given 

by: 

𝑂5,𝑖 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝜛𝑖𝑓𝑖 =  
 𝑊𝑖𝑓𝑖𝑖

 𝑊𝑖𝑖
   𝑖 = 1,2𝑖  

(10) 

 

E. Adaptive Neuro Fuzzy Systems Modeling 

Below is the basic flow diagram of computations in 

ANFIS    

 

 
Figure 4. Flow diagram of ANFIS Computation 

 

F.    Loading of Training and Checking Data 

Matlab files ssdata and ssdata1 which contain the 

training dataset and checking dataset respectively 

where loaded from the Matlab workspace. The 

training data appears in the plot in the center of the 

graphical user interface (GUI) as a set of circles 

while the checking or test data pluses as depicted in 

Figure 5.  

 
Figure 5. Training and Checking Data Loaded into 

ANFIS GUI 

 

G. Generating Fuzzy Inference System using 

Subtractive Clustering 

The genfis2 function generates a model from data 

using clustering and required specifying a cluster 

radius as depicted in Figure 6. The cluster radius 

indicates the range of influence of a cluster when the 

data space is considered as a unit hypercube. 

Specifying a small cluster radius usually yield many 
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small clusters in the data, (resulting in many rules). 

Specifying a large cluster radius will usually yield a 

few large clusters in the data, (resulting in fewer 

rules). Three cluster radii of 0.1, 0.2, and 0.3 was 

used when the genfis2 function was called. 

 
Figure 6. FIS Generated from Subtractive Clustering 

 

H.  Training of Fuzzy Inference System to Generate 

ANFIS Model 

In other to generate the ANFIS model, a hybrid 

optimization method (least-squares estimation and 

back propagation algorithm) was employed. Error 

tolerance and epoch number were set to 0 and 500 

respectively. In Figure 7, the ANFIS model is shown 

as generated by training the Fuzzy inference system 

(FIS). Inputs and membership functions appear to the 

left of the ANFIS model, while the output on the 

right. All membership functions used in the chosen 

ANFIS model were Gaussians ones. There four input 

nodes, while 14 nodes representing the total number 

fuzzy rules are connected to input membership nodes. 

It is vital to examine the reliability of the ANFIS-

based model using statistical measures. The statistical 

measure that was employed for this analysis is the 

Mean Absolute Percentage Error (MAPE). 

 
Figure 7. ANFIS Model Structure with input-output 

membership functions generated by FIS training 

 

 

I.    Membership and Rules Generation 

The Gaussian membership function (mf) was selected 

for the input (mf) variables and linear for the output 

(mf) surface roughness as depicted in the 

membership function plots of Figure 8 to Figure 12 

respectively. Membership plots of training data 

evaluated to establish the fuzzy model. Three – 

dimensional (surface) views was generated using the 

ANFIS rule viewer in Figure 13. Figure 14 reveals 

that surface roughness is minimized at low values 

bearing clearance and depth of cut. Figure 15 shows 

that surface roughness is reduce at high feed and at 

moderate high bearing clearance. Figure 16 reveals 

that a combination of spindle speed and feed has no 

significant effect on the quality of surface roughness 

obtained. Figure 17 reveals that moderately high 

combination of feed and depth of cut minimizes 

surface roughness. Figure 18 depicts a combination 

of low spindle speed and a high depth of cut reduces 

surface roughness while Figure 19 reveals that 

moderately high bearing clearance minimizes surface 

roughness, while a varying spindle speed has a 

marginal effect on the surface quality obtained. The 

rule editor of ANFIS was used to generate the ANFIS 

rules (14) in as shown overleaf. 

 

 
Figure 8. Membership functions plot for bearing 

clearance 

 
Figure 9. Membership functions plot for depth of Cut 
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Figure 10. Membership functions plot for feed 

Figure 11. Membership functions plot for spindle 

speed 

 

 
Figure 12. Membership function plot for surface 

roughness 

 
Figure 13. Sensitivity rule viewer 

 

(Figure 13 displays the rule viewer showing input 

values framed as rules in ANFIS. Input values were 

experimented in the left-bottom box and the result 

shown in the output column. The Rule Viewer shows 

one calculation at a time and in great detail. In this 

sense, it presents a sort of micro view of the fuzzy 

inference system). 

 
Figure 14.  Effect of depth of cut and bearing 

clearance on surface roughness 

 
Figure 15.  Effect of feed and bearing clearance on 

surface roughness 
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Figure 16.  Effect of spindle speed and feed on 

surface roughness 

 
Figure 17.  Effect of feed and depth of cut on surface 

roughness 

 

 
Figure 18.  Effect of depth of cut and spindle speed 

on surface roughness 

 
Figure 19.  Effect of bearing clearance and spindle 

speed on surface roughness 

 

J.    Model Evaluation and Validation 

The analysis was carried out with Matlab 7.0. ANFIS 

toolbox was for training and checking or testing data. 

Subtractive clustering algorithm was applying to the 

training set. The membership functions and the fuzzy 

if then rules which were estimated by substractive 

clustering algorithm were employed as initial 

membership functions and if –then fuzzy rules in the 

neuro-fuzzy system as depicted in Fig. 3.20. Using 

cluster radius parameter of step size 0.1, each training 

process was done at the designated cluster radius. 

After the completion of each training process, the 

final mean absolute percentage error (MAPE), Root 

mean Square (RMS) of training data and correlation 

coefficient (R) of test data were recorded respectively 

based on various cluster radius. 

 

IV. RESULTS 

 

A. Examination of The ANFIS-Based Model 

Reliability and Validation 

The performance of the ANFIS-based model in its 

ability to predict surface roughness was tested by 

comparing the actual surface roughness output and 

the ANFIS-based model output using Fig. 4.42- 4.53. 

The results of using various cluster radii in 

developing ANFIS-based models and their 

corresponding MAPEs values are shown below. 

B. Predicted Surface Roughness when cluster radius 

= 0.1 

As depicted in Table 1 and Figure 20 and Figure 21 

the values of MAPE, RMSE and R-value obtained 

when cluster radius was set to 0.1 are given below. 

MAPE = 6.7018%; RMSE = 1.143; R-value = 0.1249 

respectively 

 

Table 1.  Comparison Between Actual and 

Forecasted Surface Roughness Radius = 0.1 

Actual Surface 

Roughness 

ANFIS Surface Roughness 

3.768 3.87297424744423 

3.042 3.04197863621449 

5.322 3.90400039930464 

3.534 3.90400039930464 

4.662 4.66200015570525 

3.072 3.07203726174231 

5.982 3.30359032731013 

4.26 4.26001025664795 

2.502 2.50201514777220 

2.22 2.21998868576469 

4.002 3.90400039930464 

2.898 2.89801600163166 

2.862 2.86195359221552 

2.478 2.47797377231471 
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4.74 4.73998704383266 

3.378 3.37797548898793 

3.978 3.87297424744423 

3.108 3.90400039930464 

3.078 3.07799780957485 

4.2 4.20005900288492 

3.12 3.12009063189457 

3.96 3.96004034012049 

4.26 3.90400039930464 

3.198 3.90400039930464 

3.924 3.92392472914219 

3.726 3.72597996703528 

3.792 3.79194754877787 

3.84 3.84006996253995 

3.87 3.87004865680532 

3.9 3.90003668208677 

 

 
Figure 20.  R-value = 0.1249 when cluster radius 

=0.1 

 

 
Figure 21. Actual Surface Roughness against the 

Predicted Surface Roughness. 

 

C. Predicted Surface Roughness when cluster radius 

= 0.2 

As given in Table 2 and Figure 22 and Figure 23 the 

values of MAPE, RMSE and R-value obtained when 

cluster radius was set to 0.2 are MAPE = 3.6545%, 

RMSE = 0.3440 and R-value = 0.9072 respectively. 

 

Table 2.  Comparison Between Actual and 

Forecasted Surface Roughness Radius = 0.2 

Actual Surface 

Roughness 

ANFIS Surface Roughness 

3.768 3.87295852785345 

3.042 3.04198134852021 

5.322 3.90399120337429 

3.534 3.90399120337429 

4.662 4.60337461375213 

3.072 3.07202293850242 

5.982 6.30573977497569 

4.26 4.26003983734925 

2.502 2.50197260188469 

2.22 2.21995945339053 

4.002 3.90399120337429 

2.898 2.89791301811571 

2.862 2.86204767051341 

2.478 2.47798498580938 

4.74 4.73993426619983 

3.378 3.37797020985640 

3.978 3.87295852785345 

3.108 3.90399120337429 

3.078 3.13666417364239 

4.2 4.19990983954815 

3.12 3.12000139793288 

3.96 3.95997624849304 

4.26 3.90399120337429 

3.198 3.90399120337429 

3.924 3.92404546633559 

3.726 3.72599845974517 

3.792 3.79194786553262 

3.84 3.83998136972471 

3.87 3.87009225115465 

3.9 3.90022011489956 
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Figure 22.  R-value = 0.9072 when cluster radius 

=0.2 

 

 
Figure 23.  Experimental Surface Roughness against 

Predicted Surface Roughness 

 

D. Predicted Surface Roughness when cluster radius 

= 0.3 

As depicted in Table 3 and Figure 24 and Figure 25, 

the values of MAPE, RMSE and R-value obtained 

when cluster radius was set to 0.3 are MAPE = 

4.6744%, RMSE = 0.5453 and R-value = 0.8582 

respectively. 

 

Table 3.  Comparison between Actual and 

Forecasted Surface Roughness Radius = 0.3 

Actual Surface 

Roughness 

ANFIS Surface Roughness 

3.768 3.87288683557864 

3.042 3.04203644349054 

5.322 3.90397323633056 

3.534 3.90397323633056 

4.662 4.66202224032497 

3.072 3.07226291849535 

5.982 8.32318328977092 

4.26 4.26002485136123 

2.502 2.50192584178921 

2.22 2.21986942992832 

4.002 3.90397323633056 

2.898 2.89837851265937 

2.862 2.86180662446920 

2.478 2.47813690450970 

4.74 4.74015174416318 

3.378 3.37798500897465 

3.978 3.87288683557864 

3.108 3.90397323633056 

3.078 3.07799195584409 

4.2 4.19994915717955 

3.12 3.12007713541054 

3.96 3.96005791156725 

4.26 3.90397323633056 

3.198 3.90397323633056 

3.924 3.92403218072368 

3.726 3.72589427180518 

3.792 3.79203106154122 

3.84 3.83997955301256 

3.87 3.86985160147591 

3.9 3.89998094061090 

 

 
Figure 24. R-value = 0.8582 when cluster radius = 

0.3 

Figure 25. Experimental Surface Roughness against 

Predicted Surface Roughness 
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The best model is one with the least MAPE of 

3.6545%. Table 4 depicts the values of experimental 

and predicted values of surface roughness obtained 

when cluster radius was set to 0.2. An R-value of 

0.9072 obtained in Figure 25 shows good correlation 

between predicted and experimental surface 

roughness. The reliability of the model was therefore 

validated. 

 

From the R-value and MAPE obtained, it is 

conspicuously evident that given all the assumption 

on the data, the ANFIS-based model was appropriate 

for predicting surface roughness, which is considered 

as the performance parameter for monitoring surface 

texture in metals. 

 

Table 4.  Best Model Developed using Adaptive 

Neuro Fuzzy Inference Systems 

R

u

n 

Bearin

g 

Cleara

nce 

(µm) 

Dep

th of 

cut 

(m

m) 

Feed 

rate 

(mm

/rev) 

Spi

ndle 

spee

d(rp

m) 

Actual 

Surfac

e 

roughn

ess 

(µm) 

ANFI

S 

Surfac

e 

Rough

ness  

(µm) 

1

. 

90 2.50

0 

0.02

0 

450 3.768 3.8729

58527

8 

2

. 

70 1.50

0 

0.01

0 

450 3.042 3.0419

81348

5 

3

. 

80 2.00

0 

0.01

5 

400 5.322 3.9039

91203

3 

4

. 

80 2.00

0 

0.01

5 

400 3.534 3.9039

91203

3 

5

. 

90 1.50

0 

0.01

0 

350 4.662 4.6033

74613

7 

6

. 

70 2.50

0 

0.02

0 

450 3.072 3.0720

22938

5 

7

. 

70 1.50

0 

0.01

0 

350 5.982 6.3057

39774

9 

8

. 

80 2.00

0 

0.01

5 

250 4.260 4.2600

39837

3 

9

. 

70 2.50

0 

0.01

0 

350 2.502 2.5019

72601

8 

1

0

. 

70 2.50

0 

0.01

0 

450 2.220 2.2199

59453

3 

1

1

. 

80 2.00

0 

0.01

5 

400 4.002 3.9039

91203

3 

1

2

. 

80 2.00

0 

0.02

5 

400 2.898 2.8979

13018

1 

1

3

. 

90 1.50

0 

0.01

0 

450 2.862 2.8620

47670

5 

1

4

. 

70 2.50

0 

0.02

0 

350 2.478 2.4779

84985

8 

1

5

. 

80 1.00

0 

0.01

5 

400 4.740 4.7399

34266

1 

1

6

. 

90 2.50

0 

0.01

0 

350 3.378 3.3779

70209

8 

1

7

. 

90 2.50

0 

0.02

0 

450 3.978 3.8729

58527

8 

1

8

. 

80 2.00

0 

0.01

5 

400 3.108 3.9039

91203

3 

1

9

. 

90 1.50

0 

0.01

5 

350 3.078 3.1366

64173

6 

2

0

. 

70 1.50

0 

0.02

0 

450 4.200 4.1999

09839

5 

2

1

. 

80 2.00

0 

0.01

5 

500 3.120 3.1200

01397

9 

2

2

. 

90 2.50

0 

0.02

0 

350 3.960 3.9599

76248

4 

2

3

. 

80 2.00

0 

0.01

5 

400 4.260 3.9039

91203

3 

2

4

80 2.00

0 

0.01

5 

400 3.198 3.9039

91203
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. 3 

2

5

. 

90 1.50

0 

0.02

0 

450 3.924 3.9240

45466

3 

2

6

. 

60 2.00

0 

0.02

0 

400 3.726 3.7259

98459

7 

2

7

. 

110 2.00

0 

0.01

5 

400 3.792 3.7919

47865

5 

2

8

. 

80 3.00

0 

0.01

5 

400 3.840 3.8399

81369

7 

2

9

. 

80 2.00

0 

0.00

5 

400 3.870 3.8700

92251

1 

3

0

. 

70 1.50

0 

0.02

0 

350 3.900 3.9002

20114

8 

 

V. CONCLUSION AND RECOMMENDATION 

 

A Neuro-fuzzy inference system was implemented in 

order to predict surface roughness in turning. By 

applying substrative clustering with values of radius 

of parameter equal to 0.1, 0.2, and 0.3 respectively, 

the initial membership function of the independent 

variables and fuzzy rules were developed. Training 

was done by using an initial step size of 0.1, the value 

of MAPE obtained was 3.123% and correlation 

coefficient (R) of 0.9072. Considering to values of 

MAPE and correlation coefficient obtained, the ANN 

model has better predictive capability compared with 

the ANFIS model. 

 

Recommendations 

Predictive modelling and optimization is a complex 

and re-emerging field of research. The scope of the 

research work is endless due to large number of 

variables involved in machining of materials. The 

effect of machining parameters like tool geometry, 

tool coatings, coolants, considering the bearing 

clearance effect on the surface roughness and power 

consumption has not been studied. Further, the effect 

of machining parameters on material removal rate 

can be analyzed. This work can be extended to 

include the advanced materials like titanium alloys 

and composites materials. However, in practice 

surface roughness is not taken as a variable of the 

machining process but a fixed parameter (predefined 

range by designers). Therefore, future research can be 

directed at mapping of optimum machining 

parameters for minimum energy consumption for a 

range of expected surface finish. The results can also 

be analyzed using other optimization techniques such 

as particle swarm optimization, simulated annealing, 

artificial bee colony, etc., and the effectiveness of 

various optimization techniques can be compared.  
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