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Abstract - Mobile Ad-Hoc Networks (MANETs) 

have witnessed significant growth, driven by the 

proliferation of wireless-enabled portable devices. 

This article explores critical aspects of MANETs, 

including cluster formation, fault tolerance, and 

the innovative concept of Energy-Based Byzantine 

Fault Tolerance (BFT). Cluster formation is 

essential for efficient communication and resource 

management in MANETs. This article delves into 

proximity-based clustering, node distance 

calculation, and cluster head election to create 

robust communication structures. Fault tolerance 

is paramount in MANETs, where node failures can 

occur due to various factors. Clustering-based 

fault tolerance is discussed, emphasizing fault 

detection, isolation, and redundancy to ensure 

network resilience. The article introduces the 

concept of Energy-Based Byzantine Fault 

Tolerance (BFT) as a novel approach to address 

the unique challenges of MANETs. Energy-aware 

strategies are integrated with Byzantine Fault 

Tolerance to enhance network reliability and 

energy efficiency. The Energy-Based BFT 

algorithm aims to optimize cluster formation, 

Byzantine fault tolerance, energy-efficient 

communication, dynamic energy management, 

energy-aware quorum selection, fault detection 

with energy conservation, and head election based 

on energy reserves. The expected outcomes of this 

research include developing and validating the 

Energy-Based BFT algorithm, tailored for 

MANET clustering, to improve fault tolerance, 

energy efficiency, and network reliability. The 

article highlights the promising potential of 

Energy-Based BFT in fortifying MANETs against 

malicious attacks while extending their operational 

lifespan. Further research and empirical 

evaluations are suggested to fully understand its 

practical implications. 

 

Indexed Terms- MANET, Fault tolerance, BFT, 

Energy Efficiency 

I. INTRODUCTION 

 

The growth of wireless-enabled devices has driven 

Mobile Ad-Hoc Networks (MANETs) characterized 

by mobile nodes freely establishing wireless 

connections. MANETs adapt to changing network 

conditions and are essential in infrastructure-limited 

areas. Clustering, a core MANET feature, promotes 

scalability and efficiency. 

 

In MANETs, efficient cluster formation is crucial for 

reducing routing overhead and enhancing network 

management. Clusters, led by cluster heads, 

facilitate communication within their boundaries. 

Cluster heads also manage intra-cluster 

communication, while gateway nodes enable inter-

cluster communication. 

 

Clustering offers several advantages: 

1. Improved system capacity through resource 

reuse within clusters. 

2. Reduced routing information and delays via a 

virtual backbone created by cluster heads. 

3. Minimized data for representing network state. 

4. Reduced topology update messages by updating 

information within clusters. 

 

II. FAULT TOLERANCE 

 

Fault tolerance is vital in MANETs due to node 

failures caused by factors like battery depletion or 

hardware issues. Clustering-based fault tolerance 

leverages cluster structures to enhance network 

resilience. Key steps include cluster formation, fault 

detection, fault isolation, and redundancy with 

backup nodes. 

 

Clustering-Based Fault Tolerance 

Clustering-based fault tolerance is an approach that 

leverages the hybrid insights of cluster structure in a 

MANET to enhance the network's resilience to node 

failures.  
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Cluster Formation: Initially, the network is 

organized into clusters. Each cluster has a head or 

cluster head responsible for coordinating 

communication within the cluster. 

 

Fault Detection: Nodes within a cluster monitor the 

status of their neighbors. If a node detects a 

neighbor's failure or fault (e.g., no response to 

communication), it reports the fault to the cluster 

head. 

 

Fault Isolation: Upon receiving fault reports, the 

cluster head can isolate the faulty node or adjust 

routing paths to avoid it. This prevents the faulty 

node from affecting the entire network. 

 

Redundancy: clustering-based fault tolerance may 

involve redundant cluster heads or backup members. 

If the primary cluster head fails, these backup nodes 

can take over the responsibilities of the cluster head. 

 

III. EXISTING METHODOLOGY 

 

A.  Improved Performance Clustering Using 

Modified K-Means Algorithm  

Amit Gupta, Dr. Mahesh Motwani (2021) et.al 

proposed a network performance enhancement; 

clustering has been identified as a valuable 

technique since it limits the active participation in 

routing processes to cluster heads exclusively. This 

approach involves the random distribution of 

network nodes, which are subsequently grouped into 

clusters by applying a modified K-means clustering 

methodology. This research introduces an 

innovative method for initializing centroids within 

the K-means algorithm. Here, we utilize Geographic 

Centers as the initial centroids for cluster formation. 

Furthermore, the paper addresses the crucial task of 

cluster head selection, which plays a pivotal role in 

network optimization. To accomplish this, we 

employ the weighted multi-criterion acceptability 

method, which considers various performance 

metrics for cluster head designation. This selection 

method leads to substantial improvements in 

network performance, specifically concerning Load 

Balancing Factor, PDF, and Throughput. 

 

B. Trust Value Updation Algorithm 

Sapna B. Kulkarni (2017), et.al proposed a Trust 

Value Update Algorithm for Multicast Routing in 

Cluster-Based MANETs. The selection of a cluster 

head plays a crucial role in the network. However, 

suppose the chosen cluster head node becomes 

selfish or malicious. In that case, it can negatively 

impact the overall cluster communication, leading to 

a decrease in the throughput and efficiency of the 

MANET. Therefore, trust needs to be established for 

all nodes within the cluster, making trust 

management essential. In contrast to previous 

methods, the proposed algorithm reduces energy 

consumption and minimizes delays. It ensures the 

cluster head is trustworthy and avoids selecting 

malicious, selfish, or dark-hole attacker nodes as 

cluster heads. Hence, trust management is vital in 

this context. The trust value of nodes within the 

cluster is determined using a challenge assessment 

algorithm to identify malicious nodes. Trust or trust 

value represents the extent to which one can rely on 

or have confidence in a node. Nodes whose trust 

value falls below the threshold are added to the 

blacklist. The cluster head selection considers the 

node's trust value and parameters such as bandwidth, 

power consumption, and network connectivity. The 

trust value of nodes should be continuously 

monitored over a specified period. If the trust value 

falls below the threshold, the node is identified as 

malicious and removed from the blacklist. 

 

C. Fuzzy Approach for Secure Clustering in MANET 

Kosuke Ozera (2017), et.al proposed an approach 

using fuzzy logic to enhance secure clustering in 

Mobile Ad hoc Networks (MANETs) and studied 

the effects of the distance parameter on system 

performance. MANET is a wireless network where 

mobile nodes are dynamic, have limited bandwidth, 

and operate on minimal battery power. Clustering is 

the process of grouping mobile nodes, and it 

involves selecting a head node to manage the entire 

network. Various clustering schemes have been 

introduced, including Mobility-based, Energy-

efficient, Connectivity-based, and Weighted-based. 

The authors then presented and compared two 

fuzzy-based frameworks, namely F2SMC1 and 

F2SMC2, to improve the security of cluster nodes in 

MANETs. They examined the performance of 

F2SMC1 and F2SMC2 and demonstrated that 

F2SMC2 exhibits greater effectiveness in terms of 

its degree of fuzziness compared to F2SMC1. 

Additionally, F2SMC2 showed better management 

of nodes within the cluster when compared to 

F2SMC1. This algorithm effectively reduces power 

consumption, resulting in an extended network 

lifetime. 
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D. Improving Reliability of Cluster Nodes in 

MANETs:  A Fuzzy-Based Approach 

Mirjeta Alinci (2016), et.al proposed a Fuzzy-Based 

Approach to improve the reliability of cluster nodes 

in Mobile Ad hoc Networks (MANETs). MANET is 

a wireless network where mobile nodes are dynamic, 

have limited bandwidth, and operate on minimal 

battery power. Mobile nodes can be grouped into 

clusters to enhance stability and scalability in 

challenging environments. Clustering involves 

selecting a head node to manage the entire network, 

and various clustering approaches focusing on 

different performance metrics have been introduced. 

Several clustering schemes have been presented: 

Mobility-based, Energy-efficient, Connectivity-

based, and weighted clustering. The system can 

achieve higher reliability and improved performance 

by selecting nodes with low Packet Loss (PL) rates. 

In this type of network, each device acts as both a 

host and a router and can reconfigure itself. It can be 

rapidly deployed and reconfigured when a 

communication infrastructure is unavailable. 

Consequently, MANET faces several challenges, 

including host mobility, dynamic topology, multi-

hop transmission, limited bandwidth, and battery 

constraints. Therefore, studying MANET is a 

challenging task. The network is divided into logical 

entities called clusters to enable efficient routing and 

monitoring. Within a cluster, the nodes responsible 

for coordinating cluster activities are called Cluster 

Heads (CH). CHs provide services to other nodes, 

while the remaining nodes are common or cluster 

members. 

  

IV. PROPOSED ENERGY-EFFICIENT 

CLUSTERING BASED BYZANTINE 

FAULT TOLERANT (BFT) ALGORITHM 

FOR MANET 

 

Mobile Ad Hoc Networks (MANETs) represent a 

dynamic and self-organizing paradigm for wireless 

communication, enabling the formation of networks 

without the reliance on a fixed infrastructure. These 

networks have found applications in many 

scenarios, from military operations and disaster 

management to Internet of Things (IoT) 

deployments. However, their unique characteristics, 

inherent mobility, and constrained energy resources 

pose significant challenges in ensuring reliable and 

secure communication. 

 

The unreliability of wireless communication 

channels and the potential presence of Byzantine-

faulty nodes, which may exhibit arbitrary and 

malicious behavior, are among the key challenges 

that MANETs face. Byzantine failures can disrupt 

network operations, compromise data integrity, and 

hinder consensus among network nodes. Therefore, 

the development of Byzantine Fault Tolerant (BFT) 

algorithms is critical for safeguarding MANETs 

against the perils of malicious actors and unreliable 

communication. 

 

A. Problem statements 

Mobile Ad Hoc Networks (MANETs) are 

characterized by their dynamic and self-organizing 

nature, making them susceptible to various 

challenges, including energy constraints and 

Byzantine failures. The problem involves the 

development of an Energy-based Byzantine Fault 

Tolerant algorithm tailored for MANET clustering. 

The algorithm aims to enhance the communication 

and consensus process’s reliability and energy 

efficiency within MANET clusters. 

 

B. Problem Description 

In MANETs, nodes communicate without a fixed 

infrastructure, forming clusters to optimize network 

performance and resource management. However, 

the dynamic nature of MANETs and energy 

constraints present challenges in achieving fault 

tolerance and energy efficiency within clusters. The 

problem involves designing a BFT algorithm that 

incorporates energy-aware strategies and provides 

the following: 

1. Energy-Aware Cluster Formation: Develop 

mechanisms for forming clusters within the 

MANET that consider nodes' energy levels and 

characteristics. Nodes with similar energy 

profiles may be grouped to optimize energy 

usage. 

2. Byzantine Fault Tolerance: Design a robust 

Byzantine fault tolerance mechanism that 

tolerates Byzantine failures, including malicious 

node behavior, within MANET clusters. The 

algorithm should ensure reliable consensus even 

when Byzantine-faulty nodes are present. 

3. Energy-Efficient Communication: Implement 

energy-efficient communication protocols that 

minimize energy consumption during message 

transmission and reception. Optimize routing 

and data aggregation to reduce energy overhead. 
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4. Dynamic Energy Management: Create adaptive 

energy management strategies that allow nodes 

to adjust their roles and responsibilities based on 

their energy levels. Ensure that energy-depleted 

nodes are not overburdened with tasks. 

5. Energy-Aware Quorum Selection: Develop 

quorum-based decision-making processes that 

consider energy levels when selecting quorums. 

Minimize the energy expenditure required for 

achieving consensus within clusters. 

6. Fault Detection with Energy Conservation: 

Implement fault detection mechanisms that 

efficiently identify Byzantine-faulty nodes 

without imposing excessive energy overhead on 

the network. 

7. Head Election and Energy Reserves: Design 

head election processes considering nodes' 

energy reserves. Ensure that cluster heads are 

selected based on energy availability to maintain 

cluster operations. 

 

C. Proposed Methodology 

• To develop an Energy-Efficient Clustering-based 

BFT algorithm customized for MANET 

clustering. 

• To enhance the reliability of MANET clusters 

while considering energy constraints. 

• To optimize energy usage in communication and 

consensus processes within clusters. 

• To extend network lifetime and sustainability by 

conserving energy resources. 

 

D. Expected Outcomes 

The expected outcomes of this research are the 

development and validation of an Energy-Efficient 

clustering-based BFT algorithm specifically tailored 

for MANET clustering. The algorithm should 

demonstrate improved fault tolerance, energy 

efficiency, and reliability within MANET clusters. 

 

E. Manet cluster formation 

Mobile Ad Hoc Networks (MANETs) are dynamic 

wireless networks consisting of mobile nodes that 

communicate with each other without a fixed 

infrastructure. These networks are highly adaptable 

and find applications in various scenarios, including 

military operations, emergency response, IoT 

deployments, etc. Cluster formation plays a pivotal 

role in managing the inherent challenges of 

MANETs, such as limited resources, network 

scalability, and dynamic topologies. MANETs are 

characterized by their decentralized nature, where 

each node can communicate directly with any other 

node within its communication range. However, this 

unrestricted communication can lead to high 

overhead, inefficient resource utilization, and 

increased energy consumption. Cluster formation 

addresses these challenges by organizing nodes into 

groups or clusters, each with a designated leader or 

cluster head. This hierarchical structure streamlines 

communication, reduces overhead, and enhances 

network efficiency. 

 

F. Neighbor Discovery Protocol 

Neighbor Discovery Protocol (NDP) is a 

fundamental component of Mobile Ad Hoc 

Networks (MANETs), including within the context 

of clustering. NDP is responsible for nodes in the 

network discovering and maintaining information 

about their neighboring nodes. Here's how NDP can 

be used in the context of clustering in a MANET: 

 

1. Neighbor Detection: 

NDP helps nodes detect and identify their 

neighboring nodes within their communication 

range. This is crucial for clustering as nodes need to 

know which other nodes are nearby to form clusters 

effectively. 

 

2. Cluster Formation: 

Once nodes have identified their neighbors, they can 

use this information to initiate cluster formation. 

NDP assists in this process by providing information 

about potential cluster members. 

 

3. Cluster Head Selection: 

NDP can be utilized to facilitate the selection of 

cluster heads. Nodes can exchange information 

about their resources, such as available battery 

power, processing capability, and communication 

quality, through NDP messages. This information 

lets nodes decide which nodes should serve as 

cluster heads. 

 

4. Dynamic Cluster Maintenance: 

NDP continuously updates the information about 

neighboring nodes. In the context of clustering, this 

information can be used to dynamically adapt the 

cluster structure. For example, if a node with a 

higher battery power level becomes a neighbor, it 

might be considered as a potential cluster head. 
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5. Cluster Communication: 

NDP ensures that cluster members maintain 

connectivity with each other. It helps nodes within 

the same cluster exchange control messages and data 

efficiently. 

 

6. Fault Tolerance: 

NDP's neighbor information can also be used for 

fault tolerance. If a cluster head fails or loses 

connectivity with its cluster members, NDP can aid 

in identifying a suitable replacement or rerouting 

communication paths. 

 

7. Energy Efficiency: 

NDP messages can include information about nodes' 

energy levels. This information can be used in 

clustering algorithms to favor nodes with higher 

energy reserves as cluster heads to prolong the 

network lifetime. 

 

8. Adaptation to Mobility: 

MANETs are dynamic, and nodes may change their 

positions frequently. NDP continuously updates 

neighbor information, allowing clusters to adapt to 

changes in network topology due to node mobility. 

 

Neighbors Table 

In a Mobile Ad Hoc Network (MANET) cluster, the 

"Neighbors Table" (NTAB) is a data structure or a 

table used by nodes to maintain information about 

their neighboring nodes within the cluster. The 

NTAB is an essential cluster management 

component and facilitates efficient communication 

and coordination among cluster members. Here is 

what you might typically find in a Neighbors Table 

for a MANET cluster: 

 

1. Node Information: 

Each entry in the NTAB includes information about 

neighboring nodes. This information may include: 

Node ID or address: A unique identifier for each 

neighboring node. 

Location: The physical or logical location of the 

neighboring node within the cluster. 

Battery Power: The remaining energy level of the 

neighboring node's battery. 

Communication Range: The maximum distance 

over which the neighboring node can communicate. 

Mobility Status: Information about the mobility 

pattern of the neighboring node (e.g., static or 

mobile). 

 

2. Cluster Role Information: 

The NTAB may include information about the role 

of each neighboring node within the cluster. For 

example: 

Cluster Head: Indicates whether a neighboring node 

is a cluster head. 

Cluster Member: Indicates whether a neighboring 

node is a regular cluster member. 

Relay Node: Indicates whether a neighboring node 

is a relay node within the cluster. 

 

3. Communication Quality Metrics: 

The NTAB may store metrics related to the quality 

of communication links with neighboring nodes. 

This could include signal strength, packet loss rates, 

and latency. 

 

4. Cluster Topology Information: 

Information about the connectivity and topology 

within the cluster. This may include details about 

how neighboring nodes are interconnected within 

the cluster. 

 

5. Neighbor Status and Health: 

Information about the status and health of 

neighboring nodes, including any recent 

connectivity or health issues. For example, this 

information might be recorded if a neighboring node 

has experienced communication problems or has a 

low battery. 

 

6. Dynamic Updates: 

The NTAB is typically dynamic and continuously 

updated as nodes move, join, or leave the cluster. 

Nodes exchange information periodically to keep 

the NTAB up to date. 

 

7. Security Information: 

Depending on the MANET's security requirements, 

the NTAB may also include information related to 

node authentication and trust levels for secure 

communication within the cluster. The Neighbor’s 

Table is critical in cluster management, helping 

nodes make informed decisions about routing, 

cluster head selection, and resource allocation. It 

provides the necessary awareness of neighboring 

nodes' characteristics and status, contributing to 

efficient and reliable communication within the 

MANET cluster. 
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Calculation of the Node weight 

Node weight calculation is a critical aspect of the 

process. The movement patterns of individual nodes 

exert a notable impact on the overall system's 

stability, consequently influencing the network's 

topology. Selecting a limited number of highly 

stable, less mobile nodes is advisable to foster a 

robust virtual backbone. This choice bolsters the 

backbone's security and mitigates the risk of 

depleting energy resources in lightweight nodes 

when routing packets through them, which could 

result in link failures. In such instances, the routing 

path becomes disrupted, necessitating the 

establishment of alternative routes to handle 

failures, a topic explored in the relevant section. 

 

In designing and managing Mobile Ad hoc 

Networks (MANETs), selecting Cluster Heads 

(CHs) and cluster members is pivotal in optimizing 

network performance and ensuring robustness. A 

key consideration in this process is the calculation of 

node weights, which help determine the suitability 

of individual nodes for specific roles. Node weight 

is typically derived from three critical factors: 

Energy Level (E), Mobility (M), and Connectivity 

(C). By assigning weight coefficients (alpha, beta, 

and gamma) to these factors, nodes can be ranked 

based on their suitability for CH roles or cluster 

membership. The Energy Level reflects a node's 

remaining energy reserves, crucial for energy-

efficient routing and operation. Mobility captures a 

node's ability to move or adapt to network dynamics, 

influencing its role in maintaining cluster stability. 

Connectivity assesses a node's communication links 

within the network, affecting its ability to relay data. 

A weighted sum of these normalized factors 

determines each node's weight, enabling the 

selection of CHs or cluster members that best align 

with network goals, whether it is optimizing energy 

consumption, ensuring load balancing, or enhancing 

fault tolerance. 

 

Mobility Model 

A Mobility Model in Mobile Ad Hoc Networks 

(MANETs) is a fundamental component that 

simulates the movement and behavior of nodes 

within the network. Understanding node mobility is 

crucial for assessing performance metrics, such as 

routing protocols, energy consumption, and network 

connectivity. One commonly used mobility model is 

the Random Waypoint Model, which emulates 

realistic movement patterns in MANETs. In this 

model, nodes move randomly within a defined area, 

pausing at specific waypoints before selecting a new 

destination. The model introduces key parameters to 

control node movement, such as maximum velocity, 

pause time, and the area's dimensions. The Random 

Waypoint Model starts with nodes distributed 

randomly across the simulation area. Each node 

selects a random destination within the simulation 

area and computes its velocity vector to move 

toward that destination. Once it reaches the 

destination or surpasses a predefined pause time, the 

node selects a new random destination, and the 

process repeats. This mobility model helps 

researchers evaluate the impact of node mobility on 

network performance. It can be customized to 

emulate specific scenarios, like urban environments 

or vehicular networks, by adjusting parameters to 

match real-world conditions. In summary, mobility 

models play a crucial role in simulating and 

analyzing the dynamic nature of MANETs, allowing 

researchers to study the effects of node movement 

on various network aspects, making them a valuable 

tool for MANET research and development. 

 

Random Waypoint Model 

The Random Waypoint Model is a widely used 

mobility model in Mobile Ad Hoc Networks 

(MANETs) and wireless communication research. It 

serves as a fundamental tool for simulating the 

movement patterns of mobile nodes within these 

networks. The model's significance lies in its ability 

to replicate real-world scenarios where nodes, such 

as smartphones or sensor devices, move 

autonomously, leading to dynamic changes in 

network topology. In the Random Waypoint Model, 

each node within the MANET exhibits a form of 

nomadic behavior akin to how a traveler navigates 

through various waypoints on a journey. This 

mobility pattern is characterized by nodes 

transitioning between periods of movement and 

pause, mirroring human-like mobility dynamics. 

During the movement phase, nodes select random 

destinations within the network area and traverse the 

terrain toward these destinations at a predefined 

maximum velocity. Upon reaching a destination or 

after a specified pause time, nodes choose new 

waypoints, initiating a new cycle of movement and 

pausing.  

 

This model encapsulates the inherent randomness 

and unpredictability of real-world mobility 

scenarios, making it a valuable tool for researchers 
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and engineers seeking to evaluate the performance 

of wireless communication protocols, routing 

algorithms, clustering strategies, and fault tolerance 

mechanisms within MANETs. The Random 

Waypoint Model's versatility and capability to 

simulate complex mobility patterns contribute 

significantly to our understanding of mobile network 

behaviors and aid in developing efficient and 

resilient wireless networks. Researchers leverage 

this model to assess various network metrics, such 

as packet delivery, latency, and energy consumption, 

under dynamic and mobile conditions, offering 

valuable insights for designing and optimizing 

MANETs. 

 

V. PROPOSED ALGORITHM 

FUNDAMENTALS 

 

A. Primary Cluster Head Selection 

Once the node loads are determined, the initial 

clustering algorithm is invoked to select the initial 

cluster heads. Each node broadcasts its ID value and 

weight (Wi) to its neighboring nodes, storing its 

neighbor’s weights within another node. Each node 

maintains a neighbors table (NTAB) that stores the 

list of its neighbors obtained through the 

implementation of the Neighbor Discovery Protocol 

(NDP) discussed in the previous section. If a node 

fails to find any 1-hop neighbor with a weight higher 

than its own, it declares itself as an initial cluster 

head. Its 1-hop neighbors, whose roles have not been 

determined yet, become its cluster members. If two 

nodes have equal weights, the node with the lower 

ID is selected as the cluster head. Here is a 

mathematical model for the primary CH selection 

process in a Mobile Ad hoc Network (MANET): 

Ei be the energy level of node i,  

where 0 ≤ 𝐸𝑖 ≤ 𝐸𝑚𝑎𝑥 (maximum energy capacity). 

Mi be the mobility score of nodes i, where 0 ≤

𝑀𝑖 ≤ 𝑀𝑚𝑎𝑥 (maximum mobility score). 

Ci be the connectivity score of nodes i, where 0 ≤

𝐶𝑖 ≤ 𝐶𝑚𝑎𝑥  (maximum connectivity score). 

Wi be the weight assigned to node i. 

 

To calculate the node weight Wi, we can use a 

weighted sum of the normalized energy level, 

mobility score, and connectivity score with weight 

coefficients 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 respectively: 

𝑊𝑖  =  𝛼 (
𝐸𝑖

𝐸𝑚𝑎𝑥

)  + 𝛽 (
𝑀𝑖

𝑀𝑚𝑎𝑥

)  + 𝛾 (
𝐶𝑖

𝐶𝑚𝑎𝑥

) 

Where: 

 𝛼 is a weight coefficient for energy. 

 𝛽 is a weight coefficient for mobility. 

𝛾 is a weight coefficient for connectivity. 

Nodes are then ranked based on their calculated 

weights in descending order. The primary CHs are 

selected from the top (N) nodes, where (N) is the 

total number of nodes. 

 

To Select the top (N) nodes as primary CHs: 

𝑁 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐶𝐻𝑠  {𝑖 𝑊𝑖  ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 } 

Where: 

 

The threshold is the weight threshold that 

determines the selection of the top (N) nodes.  

 

The proposed algorithm is visually depicted in the 

figure below, illustrating determining the initial 

cluster heads.  

Figure. 1 Primary Cluster heads are selected to 

form clusters 

 

Each node in the figure is represented by a unique 

ID along with their corresponding loads provided in 

the sections. Assuming that loads of the nodes have 

already been calculated, the network between each 

pair of nodes indicates that they are within each 

other's transmission range, forming bidirectional 

connections as one-hop neighbors. The solid circles 

in the figure represent the initial cluster heads, as 

their weights are exchanged within the local 

topology. The node with the highest weight among 

its one-hop neighbors is the cluster head, while its 

neighboring nodes with undetermined roles become 

its cluster members. Additionally, the solid circles 

represent the initial cluster heads, as their weights 

are exchanged within the local topology. The nodes 

within the network maintain a cluster table, referred 

to as CTAB, which stores clustering data. The cluster 

table (CTAB) structure can be organized as follows. 
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MID MWT MDIST MTtrange 

MID- Member ID  

MWT- Member weight  

MDIST- Member distance  

MT- Member Transmission range 

 

The cluster table is updated whenever a member 

node re-affiliates or a cluster head is reappointed. 

This updating process occurs when a cluster member 

moves out of the transmission range of its cluster 

head or when another node enters within the 

transmission range. Figure.1 shows that several 

cluster heads, such as D, H, K, and M, have multiple 

members associated with them. On the other hand, 

no members are connected to cluster head G. In the 

figure, node K has a higher load than G, so it 

becomes a member of node K, leaving node G as an 

isolated node without any cluster member. Similarly, 

another node has two cluster heads, D and K, within 

its transmission range. Since the weight of D is 

higher than that of node K, it becomes affiliated with 

cluster head D. Similarly, node A is associated with 

cluster head H instead of M. This demonstrates that 

cluster members always align with higher-weighted 

cluster heads when multiple cluster heads are within 

their vicinity. 

 

B. Secondary Cluster Head Selection 

As discussed in the previous section, the cluster 

heads consume more energy from their batteries than 

the cluster members, leading to faster battery 

depletion and node failure. To ensure a well-

balanced cluster, it is crucial to have an equitable 

distribution of energy consumption among the nodes 

in the network. Nodes are then ranked based on their 

calculated weights in descending order. The 

secondary CHs are selected from the next set of top 

N nodes after the primary CHs have been selected. 

Therefore, this work incorporates a local selection 

process for subsequent cluster heads when the 

current cluster head, whether initial or subsequent, 

depletes its battery power below a threshold value. 

𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝐻𝑠 =  {𝑖 𝑊𝑖 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑖 

∉ 𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦} 

Where: 

The weight threshold determines the selection of the 

top  𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝐻𝑠 nodes as secondary CHs. 

𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦  is the set of nodes already selected as 

primary CHs. 

 

In this process, the current cluster head selects a 

cluster member from its cluster, based on the 

member with the highest load among others, and 

sends a request for the cluster head position. The 

cluster head can accept or reject this request based 

on resource availability. If the request is received, 

the requesting member becomes the new cluster 

head for the cluster, and the existing cluster head 

hands off its members who are not already headed 

and are within the transmission range of the current 

cluster head. 

 

Since the resource allocation to the members 

remains unchanged during this cluster head 

transition, the handoff is smooth or soft. Nodes that 

are not within the transmission range of the new 

cluster head attempt to connect with another cluster 

head in their vicinity. If there is no suitable cluster 

head with appropriate loads, the node establishes 

itself as an independent primary cluster head. 

Finally, the current primary cluster head becomes a 

cluster member of the newly selected secondary 

cluster head. 

 

The local nature of the secondary cluster head 

selection reduces the computational and 

communication overhead that would have been 

involved in a global cluster head selection process. 

During the initial cluster head selection, node 4 is 

chosen as the cluster head. However, due to a 

decrease in battery power beyond a threshold value, 

the current cluster head node D selects node C, 

which has the highest load among other cluster 

members (C, I, K, and E), as the subsequent cluster 

head. The existing cluster members of node D, node 

I, and node K, are within the transmission range of 

the new subsequent cluster head (node C). As a 

result, both nodes are reaffiliated with the new 

subsequent cluster head. However, node E is not 

within the range of node C nor in the vicinity of node 

L. Consequently, node E declares itself as an isolated 

cluster head without any members. In the end, the 

former cluster head, node D, becomes a member of 

the newly selected subsequent head, node C. 

 

C. Byzantine Fault Tolerance 

Byzantine Fault Tolerance is a fundamental concept 

in Mobile Ad Hoc Networks (MANETs) that 

addresses the challenges of maintaining network 

reliability and integrity in the presence of faulty or 

malicious nodes. In MANETs, where nodes 

dynamically self-organize and may have limited 

resources, Byzantine Fault Tolerance is pivotal in 

ensuring network communication robustness, 
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energy, and security. Byzantine Fault Tolerance is a 

mechanism that empowers a MANET to continue 

functioning correctly and reliably even when a 

subset of its nodes behaves in a Byzantine, 

malicious, or erroneous manner. In a Byzantine 

Fault Tolerant MANET, the network is designed to 

withstand the adverse effects of nodes exhibiting 

arbitrary and potentially disruptive behavior, 

thereby ensuring that critical tasks such as routing, 

consensus, and data exchange can proceed 

confidently and highly efficiently. 

 

Byzantine Fault Tolerance algorithms often employ 

consensus mechanisms to achieve agreement among 

nodes. Consensus ensures that most nodes, despite 

potential Byzantine faults, can reach a consistent 

decision. Systems include mechanisms for detecting 

Byzantine-faulty nodes. Detected faulty nodes can 

be isolated or their influence mitigated to prevent 

disruption. Byzantine Fault Tolerance solutions aim 

to be scalable to accommodate networks of varying 

sizes. Performance considerations, such as latency 

and message overhead, are crucial to maintaining 

network efficiency. Byzantine Fault Tolerance finds 

applications in various MANET scenarios, including 

Secure routing and data forwarding, Consensus-

based decision-making, and network resilience 

against malicious attacks. Byzantine Fault Tolerance 

is a cornerstone concept in MANETs, ensuring 

network operations can continue reliably despite 

malfunctioning or adversarial nodes. It is critical in 

efficient and stabilizing MANETs, making them 

suitable for various applications, including military, 

disaster recovery, and IoT networks. 

 

D. Fault Detection 

Byzantine Fault Tolerance mechanisms in Mobile 

Ad Hoc Networks (MANETs) are primarily 

designed to detect and mitigate Byzantine faults 

involving nodes that behave arbitrarily and exhibit 

malicious behavior. BFT aims to identify and handle 

these types of faults. Here are some specific types of 

faults that BFT can detect in MANETs: 

1. Malicious Data Injection: Byzantine Fault 

Tolerance can be detected when nodes inject 

false or malicious data into the network. This 

includes detecting nodes that generate and 

propagate fake routing updates or data packets 

with incorrect information. 

2. Misrouting: BFT mechanisms can detect 

misrouting of data packets. When a malicious 

node intentionally routes packets incorrectly, 

BFT algorithms can identify inconsistencies in 

the routing paths and mitigate the impact. 

3. Selective Forwarding: Byzantine Fault Tolerance 

can detect nodes that selectively forward or drop 

packets. By monitoring the behavior of nodes 

and analyzing the data packet reception patterns, 

BFT mechanisms can identify nodes that are not 

forwarding packets as expected. 

4. Sybil Attacks: BFT can detect Sybil attacks, 

where a single node impersonates multiple nodes 

in the network. BFT algorithms can identify 

anomalies in the network topology, such as 

nodes claiming to be in multiple places 

simultaneously, which can indicate a Sybil 

attack. 

5. Collusion: Byzantine Fault Tolerance 

mechanisms are designed to handle collusion 

among multiple malicious nodes. They can 

detect coordinated malicious activities that 

involve multiple nodes working together to 

disrupt the network. 

6. Denial-of-Service (DoS) Attacks: BFT can detect 

DoS attacks launched by nodes in the network. 

When nodes intentionally overwhelm the 

network with excessive traffic or engage in other 

disruptive behavior, BFT algorithms can identify 

the malicious nodes responsibly. 

 

E. Fault Recovery 

Recovering from faults in a Mobile Ad Hoc Network 

(MANET) using Byzantine Fault Tolerance (BFT) 

involves detecting the faults and taking appropriate 

actions to ensure the network continues operating 

correctly in Byzantine nodes' presence. Here's how 

recovery can be achieved through BFT: 

1. Byzantine Fault Detection: BFT mechanisms 

continuously monitor the behavior of nodes in 

the network. When a Byzantine fault is detected, 

the network identifies the misbehaving nodes. 

Detection can be based on agreement among 

nodes, reputation systems, or intrusion detection. 

2. Quarantine Byzantine Nodes: Once Byzantine 

nodes are identified, they can be isolated to 

prevent them from causing further harm to the 

network. This isolation can be achieved by 

limiting their communication privileges or 

blocking their participation in the network. 

3. Utilize Redundant Paths: BFT protocols often use 

redundant communication paths to ensure data 

can be successfully transmitted even if some 

nodes behave maliciously. The network reroutes 
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data through alternative paths to bypass 

Byzantine nodes. 

4. Achieve Consensus: Byzantine Fault Tolerance 

mechanisms use consensus algorithms to ensure 

that non-faulty nodes can agree on a consistent 

view of the network state. This consensus helps 

the network recover from Byzantine faults by 

ignoring conflicting information from malicious 

nodes. 

 

VI. ENERGY EFFICIENT CLUSTERING 

BASED BYZANTINE FAULT 

TOLERANCE ALGORITHM IN MANETS 

 

Deploying Mobile Ad Hoc Networks (MANETs) in 

dynamic and resource-constrained environments 

brings unique challenges that necessitate innovative 

solutions. One of the most critical concerns is the 

presence of Byzantine faults—malicious or faulty 

nodes that can disrupt communication, compromise 

data integrity, and compromise network security. 

Addressing these issues is essential for ensuring the 

reliability and resilience of MANETs. In this 

context, the Energy Efficient Clustering-based 

Byzantine Fault Tolerance concept emerges as a 

promising approach. Energy Efficient Clustering-

based BFT combines two vital aspects—Byzantine 

Fault Tolerance and energy awareness—to create a 

robust and sustainable network infrastructure. 

Traditional BFT mechanisms focus primarily on 

reaching consensus in the presence of adversarial 

nodes, and while they excel in maintaining data 

integrity, they often overlook the energy constraints 

inherent to MANETs. As a finite and exhaustible 

resource in mobile devices, energy demands careful 

management to prolong network lifetime and 

enhance sustainability.  

 

Energy Efficient Clustering-based BFT bridges this 

gap by infusing energy-awareness into Byzantine 

Fault Tolerance. It ensures that nodes reach a 

consensus even in the presence of malicious actors 

and considers the energy levels and consumption 

patterns of participating nodes. This amalgamation 

of security and energy optimization principles 

empowers MANETs to withstand Byzantine faults 

and operate efficiently within their energy 

constraints. We comprehensively explore Energy-

Efficient clustering-based Byzantine Fault 

Tolerance in MANETs as a cornerstone of this 

phase. Our research seeks to design, implement, and 

evaluate novel algorithms harmonizing BFT 

techniques with intelligent energy management 

strategies. By integrating Byzantine fault resilience 

with energy awareness, our approach aims to fortify 

the network against malicious attacks while 

extending its operational lifespan. Through 

empirical evaluations and real-world simulations, 

this thesis elucidates the benefits, challenges, and 

practical implications of Energy Efficient 

Clustering-based BFT in MANETs. 

 

Byzantine Fault Tolerance – Mathematical Model 

Parameters: 

N: Total number of nodes in the network. 

i: Index representing a specific node in the network 

(1 ≤ i ≤ N). 

E(i, t): Remaining energy of node i at time instance 

t. 

R(i): Communication range of node i. 

M(i): Mobility pattern stability score of node i. 

L(i): Load on node i. 

Ravail(i): Available resources on node i. 

θ: Byzantine fault tolerance threshold. 

t: Time instance. 

C(i, t): Cluster membership status of node i at time 

instance t (1 if cluster head, 0 if member). 

 

The objective of the BFT mechanism is to reach a 

consensus on a proposed value v, even in the 

presence of up to f Byzantine nodes. 

 

Mathematical Model: 

A. Node Behavior: 

Each node i ∈ R(i) can behave as follows: 

• Send a message Mij to another node j. 

• Generate a cryptographic signature Σij for the 

message Mij. 

• Verify the cryptographic signatures of messages 

received from other nodes. 

• Decide on a proposed value v based on the 

received messages and cryptographic 

verifications. 

B. Message Propagation: 

• Nodes in R(i) communicate by sending messages 

to Mij. 

• Messages may be forwarded to multiple nodes in 

the network as the protocol progresses. 

C. Cryptographic Verification: 

• Each node i verifies the cryptographic signatures 

Σij of messages received from other nodes. 

• If a message's signature is invalid or if a message 

is not received, the node may take specific 
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actions based on the protocol (e.g., request 

retransmission). 

D. Quorum-Based Decisions: 

• To reach consensus, nodes must agree on a value 

based on a quorum. 

• A quorum is a subset of nodes that satisfies 

certain criteria, such as a minimum number of 

nodes that must agree. 

• The quorum's size and criteria depending on the 

specific BFT algorithm. 

E. Decision Making: 

• Nodes use information from the received 

messages, cryptographic verifications, and 

quorum agreements to decide regarding the 

proposed value v. 

• The decision is reached when enough nodes in 

the quorum agree on the same value. 

F. Fault Tolerance Threshold: 

• The fault tolerance threshold f specifies the 

maximum number of Byzantine nodes the 

network can tolerate while achieving consensus. 

G. Termination: 

• The protocol should guarantee termination, 

meaning it eventually reaches a decision or 

terminates with an inconclusive result. 

 

Node Behavior: 

For each node i belonging to the set of nodes R(i), 

the behavior can be mathematically expressed as 

follows: 

1. Sending a Message Mij to Node j: 

This action can be represented as a function S that 

maps a node i to another node j and produces a 

message Mij.  

2. Generating a Cryptographic Signature Σij for the 

Message Mij: 

The generation of a cryptographic signature Σij can 

be defined as a function G that takes as input the 

message Mij and node i and produces the 

cryptographic signature Σij. 

 𝐺(𝑀𝑖𝑗  , 𝑖)  →  ∑ 𝑖𝑗 

3. Verifying Cryptographic Signatures of Received 

Messages: 

Verifying cryptographic signatures of messages 

received from other nodes can be represented as 

a verification function V that checks the validity 

of a signature Σij for a given message Mij and 

sender node i. 

𝑉(𝑀𝑖𝑗  , ∑𝑖𝑗, 𝑖)  →  𝑉𝑎𝑙𝑖𝑑 / 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 

4. Deciding on a Proposed Value v Based on 

Received Messages and Cryptographic 

Verifications:  

The decision-making process can be modeled as a 

function D that considers the received messages Mij, 

their cryptographic signatures Σij, and node i to 

determine a proposed value v. 

𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑖)  →  𝑣 

 

Each node i is associated with specific functions and 

actions in this mathematical representation. These 

functions describe the actions taken by nodes in a 

formalized manner, making it easier to analyze and 

reason about the behavior of nodes within a 

Byzantine Fault Tolerance mechanism. 

 

Message Propagation: 

The message propagation process can be 

mathematically described as follows: 

1. Nodes in Set Ri: 

Let R(i) represent the nodes to which node i belongs. 

2. Message Transmission Function T: 

Define a function T that takes as input a sender node 

i, a receiver node j, and a message Mij to represent 

the transmission of a message from node i to node j. 

 𝑇(𝑖, 𝑗, 𝑀𝑖𝑗) 

3. Forwarding Messages: 

 

Messages may be forwarded to multiple nodes in the 

network. This can be represented as an operation 

where a node i broadcasts or multicasts a message 

Mij to a subset of nodes Rk, where k ranges over all 

nodes in the network. for broadcasting: 𝑇(𝑖, 𝑘, 𝑀𝑖𝑗) 

for k in the set of all nodes in the network. for 

multicasting to a subset S of nodes: 𝑇(𝑖, 𝑘, 𝑀𝑖𝑗) for 

k in the set S. 

 

The message propagation process is formalized 

using a transmission function T. This function 

specifies how messages are sent from one node to 

another through direct communication or by 

broadcasting/multicasting to other nodes in the 

network. 

 

Cryptographic Verification: 

Each node i verifies the cryptographic signatures Σij 

of messages received from other nodes. If a 

message's signature is invalid or if a message is not 

received, the node may take specific actions based 

on the protocol. This process can be mathematically 

represented as follows: 

 

1. Verification Function V: 

Define a verification function V that takes as input a 

received message Mij, its associated cryptographic 
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signature Σij, and the sender node i. The function 

returns a result indicating whether the signature is 

valid or invalid. 

𝑉(𝑀𝑖𝑗  , ∑𝑖𝑗, 𝑖)  →  𝑉𝑎𝑙𝑖𝑑 / 𝐼𝑛𝑣𝑎𝑙𝑖𝑑    

2. Action Based on Verification Result: 

Based on the verification result, the node i may take 

specific actions as specified by the protocol. For 

example, if the signature is invalid or if a message is 

not received, node i may request retransmission of 

the message from the sender. These actions can be 

represented as a set of conditional statements within 

the protocol: 

𝑉(𝑀𝑖𝑗  , ∑𝑖𝑗, 𝑖)  =   𝐼𝑛𝑣𝑎𝑙𝑖𝑑     

 

If the above function is invalid, node i takes action 

A e.g., request retransmission. If a message is not 

received within a specified time frame, node i may 

also act B e.g., re-request the message. V verification 

function V is central in determining the validity of 

received messages' cryptographic signatures. The 

protocol specifies actions to be taken by node i based 

on the verification result, such as requesting 

retransmission in case of an invalid signature or non-

receipt of a message. 

 

Quorum-Based Decisions: 

To achieve consensus, nodes must agree on a value 

based on a quorum. A quorum is a subset of nodes 

that satisfies specific criteria, such as a minimum 

number of nodes that must agree. The quorum's size 

and criteria are algorithm-specific and may vary. 

This process can be mathematically represented as 

follows: 

1. Quorum Definition: 

Define a quorum as a subset Q of nodes R(i), where 

Q is a subset of R(i) that satisfies certain criteria 

determined by the specific BFT algorithm. 

   𝑄 ⊆ 𝑅(𝑖) 

2. Quorum Criteria: 

Specify the criteria a quorum Q must meet to be 

valid according to the BFT algorithm. This criterion 

typically includes a minimum number of nodes that 

must agree within the quorum. 

|𝑄|  ≥ 𝑀𝑖𝑚𝑖𝑚𝑢𝑚𝑄𝑢𝑎𝑟𝑢𝑚𝑆𝑖𝑧𝑒 

3. Quorum Agreement Function: 

Define a quorum agreement function A that 

determines whether a quorum Q agrees on a value v. 

This function considers the votes or decisions of 

nodes within the quorum. 

𝐴(𝑄, 𝑣)  =  𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑑 

/ 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑁𝑜𝑡𝑅𝑒𝑎𝑐ℎ𝑒𝑑 

4. Action Based on Quorum Agreement: 

Based on the outcome of the quorum agreement 

function, the protocol specifies actions to be taken. 

If a consensus is reached, node i may adopt the 

agreed-upon value v as the final decision. These 

actions can be represented as conditional statements 

within the protocol: 

 

If  𝐴(𝑄, 𝑣)  =  𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑑  then node i act 

C, e.g., adopts the agreed-upon value. If consensus 

is not reached, node i may take other actions or 

initiate further communication. The concept of a 

quorum, its criteria, and the quorum agreement 

function are formalized. The protocol determines the 

actions to be taken based on the consensus result 

within the quorum, with actions contingent on 

whether consensus is reached or not. 

 

Decision Making: 

Nodes use information from the received messages, 

cryptographic verifications, and quorum agreements 

to decide regarding the proposed value v. The 

decision is reached when enough nodes in the 

quorum agree on the same value. This process can 

be mathematically represented as follows: 

 

1. Decision-Making Function D: 

Define a decision-making function D that takes as 

input the following components: The set of received 

messages {Mij} from various nodes. The set of 

cryptographic verifications {Σij} for these messages. 

The quorum Q that has agreed upon a value v. 

𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄)  →  𝑣 

2. Consensus Criteria: 

Specify the criteria that determine when a consensus 

has been reached. Typically, a consensus is reached 

when sufficient nodes within the quorum Q agree on 

the same value v. 

|𝑄 ∩ {𝑖 𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄)  =  𝑣}|

≥ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

3. Decision Action: 

The protocol specifies actions to be taken based on 

whether the consensus criteria are met. If a 

consensus is reached, node i adopts the agreed-upon 

value v as the final decision. These actions can be 

represented as conditional statements within the 

protocol: 

|𝑄 ∩ {𝑖 𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄)  =  𝑣}| ≥

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

If above equation valid then node i adopts the value 

v as the final decision. If consensus is not reached, 

node i may take other actions or initiate further 

communication. The decision-making process is 
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formalized using a decision-making function D, 

which considers received messages, cryptographic 

verifications, and the consensus reached within the 

quorum Q. The protocol determines the actions to be 

taken based on whether a consensus is achieved, 

with actions contingent on meeting the consensus 

threshold. 

 

Fault Tolerance Threshold: 

The fault tolerance threshold f specifies the 

maximum number of Byzantine nodes the network 

can tolerate while achieving consensus. This 

threshold can be mathematically represented as 

follows: 

1. Fault Tolerance Threshold Definition: 

Define the fault tolerance threshold f as a parameter 

determining the maximum number of Byzantine 

nodes the network can withstand while reaching a 

consensus as f. 

2. Consensus Criteria Based on Threshold: 

Specify the consensus criteria based on the fault 

tolerance threshold f. Consensus is reached when the 

number of Byzantine nodes B within the network 

satisfies the condition: 

𝐵 ≤  𝑓 

3. Decision Action Based on Threshold: 

The protocol specifies actions to be taken based on 

whether the number of Byzantine nodes B in the 

network is within the fault tolerance threshold. If the 

condition  is met, node i may adopt the 

agreed-upon value v as the final decision. These 

actions can be represented as conditional statements 

within the protocol: If , then node i adopts 

the value v as the final decision. If the condition is 

not met, node i may take other actions or initiate 

further communication. 

 

The above representation formally defines the fault 

tolerance threshold f as the maximum allowable 

number of Byzantine nodes. The protocol 

determines whether consensus is reached based on 

comparing the number of Byzantine nodes B and the 

threshold f, with actions contingent on meeting the 

threshold criteria. 

 

Termination: 

The protocol should guarantee termination, which 

means it will eventually reach a decision or 

terminate with an inconclusive result. This 

termination guarantee can be mathematically 

represented as follows: 

1. Termination Guarantee Function T: 

Define a termination guarantee function T 

considering the protocol's progress over time. This 

function evaluates whether the protocol has reached 

a decision or terminated inconclusively. 

 𝑇( )  → 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛/𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 

2. Termination Criteria: 

Specify the criteria that determine when the protocol 

can declare a decision or inconclusive termination. 

This may include a maximum number of protocols 

rounds or a timeout threshold.  

 

𝑇( )𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑎𝑟𝑒 𝑚𝑒𝑡 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑇( )   =  𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 

3. Action Based on Termination Result: 

Based on the termination guarantee function T 

result, the protocol specifies actions to be taken. 

Node i may take appropriate actions based on the 

protocol's design if a decision is reached or 

inconclusive termination occurs. These actions can 

be represented as conditional statements within the 

protocol: 

If    𝑇() = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛    then node i acts D e.g., adopts 

the decision. 

If    𝑇() = 𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒  node i may take other 

actions or initiate further communication. 

 

In the above representation, the termination 

guarantee is formalized using the termination 

guarantee function T. The protocol determines 

whether the termination criteria are met, resulting in 

either a decision or an inconclusive termination. 

Actions are taken accordingly based on the 

termination result. 

 

Fault Detection 

1. Node Behavior Monitoring: 

Node behavior data:  

𝐵𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =  1,2,3, . . ..    

Here, 𝐵𝑖(𝑡) represents the behavior data for node i 

at time t. This data can include information about 

communication patterns, energy levels, and protocol 

adherence. 

2. Message Integrity Checks: 

Received messages:  

𝑀𝑖𝑗(𝑡) 𝑓𝑜𝑟 𝑖, 𝑗 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =  1,2,3, . ..    

Cryptographic signatures: 

These variables represent received messages and 

their associated cryptographic signatures. They are 

timestamped to indicate when they were received. 

3. Network Topology Information: 
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Topology data:  

𝑇𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =  1,2,3, . .. 

𝑇𝑖(𝑡) provides information about the current 

network topology for node i at time t. This can 

include connectivity information, node positions, 

and link quality. 

4. Resource Utilization Metrics: 

CPU usage:  

𝐶𝑃𝑈𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1,2,3, . .. 

Memory usage:  

 𝑀𝑒𝑚𝑜𝑟𝑦𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =

 1,2,3, . .. 

Available bandwidth:  

  𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =

 1,2,3, . .. 

These variables represent resource utilization 

metrics for each node over time. 

5. Timing and Synchronization Data: 

Timestamps: 

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

Synchronization data:  

𝑆𝑦𝑛𝑐𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =  1,2,3, . .. 

These variables capture timing and synchronization 

information for each node at different time 

instances. 

6. Neighbor and Routing Information: 

Neighbor relationships:  

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

Routing tables:  

𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑖 (𝑡)𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

These variables store data related to neighboring 

nodes and routing tables for each node at different 

time instances. 

7. Consensus and Agreement Information: 

Consensus progress:  

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

Agreement status: 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

These variables track the progress of consensus 

protocols and the agreement status of nodes. 

8. Security Alerts and Intrusion Detection: 

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑙𝑒𝑟𝑡𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

Intrusion logs:  

𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝐿𝑜𝑔𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

These variables represent security-related alerts and 

intrusion detection logs. 

9. Environmental and Physical Data: 

Environmental data:  

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 

=  1,2,3, . .. 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑖(𝑡) captures data related to the 

physical environment, such as temperature, 

humidity, and signal strength. 

10. Thresholds and Anomaly Detection Rules: 

Predefined thresholds:  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖   𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 

Anomaly detection rules:  

 𝑅𝑢𝑙𝑒𝑠𝑖   𝑓𝑜𝑟 𝑖 =  1,2,3, . . . , 𝑁. 

These variables store predefined thresholds and 

rules used for anomaly detection. 

 

11. Event Logs and History: 

Event logs:  

𝐸𝑣𝑒𝑛𝑡𝐿𝑜𝑔𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . .. 

Historical data:  

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐷𝑎𝑡𝑎𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . .. 

These variables contain event logs and historical 

data for each node. 

 

This model defines the various inputs for fault 

detection in a MANET, allowing for the 

representation and analysis of data related to node 

behavior, message integrity, network topology, 

resource utilization, timing, synchronization, 

neighbor relationships, consensus, security, 

environmental conditions, predefined thresholds, 

event logs, and historical data. The variables are 

indexed by node and time to capture the dynamic 

nature of network behavior. Actual fault detection 

algorithms and processes would use these inputs to 

identify and respond to faults. 

Fault recovery 

1. Node Recovery Status: 

Node recovery status:  

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . .. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠𝑖(𝑡)  represents the recovery status 

of node i at time t. It indicates whether a node is in a 

recovery process, has completed recovery, or is 

functioning normally. 

2. Recovery Actions: 

Recovery actions:  

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . .. 
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𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖(𝑡) describe the specific actions 

taken by node i as part of the recovery process. 

These actions may include rejoining the network, 

resynchronizing, or updating routing information. 

3. Network Configuration: 

Network configuration data:  

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑓𝑖𝑔𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . .. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑓𝑖𝑔𝑖(𝑡) stores information related to 

the network configuration, such as parameters, 

protocols, and settings. 

4. Recovery Policies: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑖   𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑖    define the rules and strategies 

that govern how node i should recover from a fault. 

These policies may vary from node to node. 

5. Resource Allocation: 

Resource allocation data: 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1,2,3, . . .. 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) indicates how resources 

e.g., bandwidth, CPU, memory is allocated during 

the recovery process to ensure a smooth transition 

back to normal operation. 

6. Recovery Progress: 

Recovery progress data: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 

=  1,2,3, . . .. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖(𝑡)  tracks the progress of 

recovery for each node, helping to determine when 

recovery is complete. 

7. Fault Identification: 

Fault identification data:  

 𝐹𝑎𝑢𝑙𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1,2,3, . . .. 

𝐹𝑎𝑢𝑙𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) provides information 

about how the fault or issue was identified, such as 

through fault detection mechanisms. 

8. Network State Information: 

Network state information:  

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒𝑡  𝑓𝑜𝑟 𝑡 =  1,2,3, . . .. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒𝑡   represents the overall state of the 

network at time t, including the statuses of all nodes 

and links. 

9. Fault Report and Logging: 

Fault reports and logs:  

𝐹𝑎𝑢𝑙𝑡𝑅𝑒𝑝𝑜𝑟𝑡𝑠𝑡  𝑓𝑜𝑟 𝑡 =  1,2,3, . . .. 

𝐹𝑎𝑢𝑙𝑡𝑅𝑒𝑝𝑜𝑟𝑡𝑠𝑡   contain detailed information about 

faults that occurred at different time instances. These 

reports help in diagnosing and addressing faults. 

10. Communication Protocols: 

Communication protocol settings:  

 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1,2,3, . . .. 

𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑖(𝑡) store configurations 

related to communication protocols used during 

recovery. 

 

This model defines various inputs for fault recovery 

in a MANET, allowing for the representation and 

analysis of data related to node recovery status, 

recovery actions, network configuration, recovery 

policies, resource allocation, recovery progress, 

fault identification, network state, fault reports, and 

communication protocols. The variables are indexed 

by node and time to capture the dynamic nature of 

the recovery process. Actual fault recovery 

algorithms and processes would use these inputs to 

facilitate the recovery of nodes and network 

services. 

Random Waypoint Mathematical Model  

Input Parameters: 

   N: Number of nodes in the MANET. 

   Vmax: Maximum velocity of a node. 

   P: Pause time, representing the time a node 

remains stationary at a waypoint. 

   Di: Destination waypoint for node i (randomly 

selected). 

   𝐷𝑑𝑖𝑟𝑖
(𝑡): Directional vector from node i current 

position to its destination at time t. 

Node Mobility in Random Waypoint Model: 

The node mobility in the Random 

Waypoint Model involves two main phases: pause 

and movement. 

During the pause phase, a node remains stationary at 

a waypoint for a duration P before selecting a new 

random destination Di. 

During the movement phase, the node moves 

towards Di with a constant velocity Vmax. 

Node Position at Time t: 

At time t the position of node i can be represented as 

Xi(t). 

A) 𝐼𝑓 ||𝐷𝑑𝑖𝑟𝑖
(𝑖)||  >

0, 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝ℎ𝑎𝑠𝑒 

𝑋𝑖(𝑡)

= 𝑋𝑖(0)

+  𝑉𝑚𝑎𝑥  .
𝐷𝑑𝑖𝑟𝑖

(𝑡)

||𝐷𝑑𝑖𝑟𝑖
(𝑡)||

 . 𝑚𝑖𝑛(||𝐷𝑑𝑖𝑟𝑖
(𝑡)||), 𝑉𝑚𝑎𝑥  . (𝑡 

− 𝑡0) 

𝐵) 𝐼𝑓 
𝐷𝑑𝑖𝑟𝑖

(𝑡)

||𝐷𝑑𝑖𝑟𝑖
(𝑡)||

= 0, 

Energy Consumption: 
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Energy consumption in the Random Waypoint 

Model can be modelled based on node movement 

and communication. 

 

Energy is consumed during movement phases due to 

node mobility. 

 

Energy is consumed during communication phases 

(e.g., data transmission and reception). 

EECBFT Algorithm Interaction: 

 

The EECBFT algorithm runs concurrently with node 

movements. Node weights (Wi) in the EECBFT 

algorithm are dynamically calculated based on node 

energy, mobility, and connectivity. Cluster 

formation and selection of primary and secondary 

cluster heads are influenced by node weights. 

Byzantine fault tolerance mechanisms are 

implemented based on cluster structures and 

communication. 

 

It allows for the analysis of network behavior, 

energy consumption, and clustering-based fault 

tolerance in MANETs under realistic mobility 

scenarios. Researchers can use this model to 

simulate and evaluate the performance of their 

clustering and fault tolerance algorithms in dynamic 

mobile environments. 

 

VII. EXPERIMENTAL RESULT 

 

In the context of an experiment, the findings derived 

from metrics such as Node Mobility Rate, Packet 

Delivery Ratio, Throughput, Energy Consumption 

and Transmission Delay serve as critical indicators 

of network reliability. 

 

A. Node Mobility Rate: 

The node mobility rate of a node based on its weight 

can be calculated using a formula that involves the 

node's weight and the change in position over time 

(Δw/Δt). The formula can be expressed as follows: 

𝑁𝑜𝑑𝑒 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑒 =  
∆𝑤

∆𝑡
 

 

As mentioned, the node's weight (w) is calculated 

based on energy, mobility, and connectivity factors. 

The weight change (Δw) can be measured by 

comparing the node's weight at the beginning and 

end of the interval (Δt).  To calculate the overall 

average mobility rate for N nodes, compute the sum 

of the mobility rates for all nodes and then divide 

this sum by the total number of nodes (N). The 

mobility rate provides an indication of how rapidly 

a node's characteristics are changing over time. 

 

Table.1 Comparison Table of Node Mobility Rate 

 

The Node Mobility Rate comparison table illustrates 

the various values for existing methods (TEBACA, 

PAOMR) and the proposed EECBFT method. When 

comparing the existing methods with the proposed 

EECBFT, the values are higher for the existing 

methods. The existing method values range from 

3.36 to 9.21 and 4.12 to 10.23, while the proposed 

EECBFT values range from 5.35 to 10.87. The 

proposed EECBFT method consistently delivers the 

best results. 

 

 
Figure.2 Comparison Chart of Node Mobility Rate 

 

In Figure.2 , the Comparison Chart of the Node 

Mobility Rate presents the values for existing and 

proposed methods. When comparing the values of 

the existing and proposed methods, it is observed 

that the proposed method values are higher than 

those of the existing method. The X-axis represents 

the number of nodes, while the Y-axis represents the 

node mobility rate. The existing methods 

(TEBACA, PAOMR) have values ranging from 3.36 

to 9.21 and 4.12 to 10.23, while the proposed 

EECBFT values range from 5.35 to 10.87. The 

proposed EECBFT method consistently delivers the 

best results. It can be concluded that the proposed 

EECBFT method yields the best results. 

 

 

 

No of 

nodes 
TEBACA PAOMR EECBFT 

100 3.36 4.12 5.35 

200 4.75 5.65 6.76 

300 7.27 8.35 9.32 

400 7.75 9.63 10.45 

500 9.21 10.23 10.87 
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Packet Delivery Ratio 

PDR measures the ratio of successfully delivered 

packets to the total number of packets sent or 

generated within the network. It provides insights 

into the network's ability to transmit data packets 

without loss or errors and is often expressed as a 

percentage. A high PDR indicates a robust and 

reliable network, while a low PDR suggests 

potential packet loss issues or transmission errors. 

To calculate the PDR as below 

𝑃𝐷𝑅(%)

=  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡
 

×  100 

 

Table. 2 Comparison Table of Packet Delivery Ratio 

 

 

The Packet Delivery Ratio comparison table 

illustrates the various values for existing methods 

(TEBACA, PAOMR) and the proposed EECBFT 

method. When comparing the existing methods with 

the proposed EECBFT, the values are higher for the 

existing methods. The existing method values range 

from 0.91 to 0.71 and 0.92 to 0.73, while the 

proposed EECBFT values range from 0.95 to 0.78. 

The proposed EECBFT method consistently 

delivers the best results. 

 

 
Figure.3 Comparison Chart of Packet Delivery 

Ratio 

 

In Figure.3, the Comparison Chart of the Packet 

Delivery Ratio presents the values for existing and 

proposed methods. When comparing the values of 

the existing and proposed methods, it is observed 

that the proposed method values are higher than 

those of the existing method. The X-axis represents 

the number of packets to transmit, while the Y-axis 

represents the packet delivery ratio. The existing 

methods (TEBACA, PAOMR) have values ranging 

from 0.91 to 0.71 and 0.92 to 0.73. On the other 

hand, the proposed EECBFT method has values 

ranging from 0.95 to 0.78. It can be concluded that 

the proposed EECBFT method yields the best 

results. 

 

Throughput 

Throughput refers to the rate at which data is 

successfully transmitted from source nodes to 

destination nodes within the network. It represents 

the network's capacity to deliver data effectively. 

The throughput can be influenced by various factors, 

including network topology, routing protocols, node 

mobility, interference, and channel conditions. 

 

The throughput can be calculated as: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 

=  
𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
 

 

Table. 3 Comparison Table of Throughput 

 

The throughput comparison table presents the 

different values for existing methods (TEBACA, 

PAOMR) and the proposed EECBFT method. Upon 

comparing the values of the existing and proposed 

methods, it is evident that the values of the proposed 

method are lower than those of the existing method. 

The existing method values range from 1500 to 6800 

and 1650 to 6300. In contrast, the proposed 

EECBFT method values range from 1900 to 7700. It 

can be concluded that the proposed EECBFT 

method provides the best result. 

 

No of 

nodes 
TEBACA PAOMR EECBFT 

100 0.91 0.92 0.95 

200 0.88 0.86 0.91 

300 0.81 0.82 0.85 

400 0.76 0.78 0.82 

500 0.71 0.73 0.78 

No of 

nodes 
TEBACA PAOMR EECBFT 

100 1500 1650 1900 

200 2600 2700 3100 

300 4500 4100 5500 

400 5900 5600 6400 

500 6800 6300 7700 
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Figure.4 Comparison Chart Throughput 

 

In Figure.4, Comparing the values of the existing 

and proposed methods, it is evident that the 

proposed method yields superior results compared to 

the existing method. The X-axis represents the 

number of nodes, while the Y-axis represents 

Throughput in kbps. The existing methods 

(TEBACA, PAOMR) have values ranging from 

1500 to 6800 and 1650 to 6300. On the other hand, 

the proposed EECBFT method exhibits values 

ranging from 1900 to 7700. It can be concluded that 

the proposed EECBFT method offers the best result. 

 

Average Energy Consumption 

The Average Energy Consumption can be calculated 

by summing up the energy consumption of all nodes 

in the network over a specific period and then 

dividing by the total number of nodes(N) and the 

specific time(T). Here is the formula for calculating 

the average energy consumption in a MANET: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
∑𝐸𝑖

𝑁 ×  𝑇
 

Table. 4 Comparison Table of Average Energy 

Consumption 

No of 

nodes 
TEBACA PAOMR EECBFT 

100 260.5 289.4 212.1 

200 345.1 421.5 298.4 

300 489.6 566.3 433.9 

400 656.8 675.4 563.7 

500 765.2 743.8 667.4 

The Average Energy Consumption comparison table 

illustrates the various values for existing methods 

(TEBACA, PAOMR) and the proposed EECBFT 

method. When comparing the values of the existing 

and proposed methods, it is observed that the 

proposed method values are lower than those of the 

existing method. The existing method values range 

from 260.5 to 765.2 and 289.4 to 743.8. Conversely, 

the proposed EECBFT method has values ranging 

from 212.1 to 667.4. It can be concluded that the 

proposed EECBFT method yields the best result. 

 

 
Figure. 5 Comparison Chart of Average Energy 

Consumption 

 

In Figure. 5, the Comparison Chart of Average 

Energy Consumption illustrates the distinct values 

for existing and proposed methods. Upon comparing 

the values of the existing and proposed methods, it 

is evident that the proposed method values are lower 

than those of the existing method. The X-axis 

represents the number of nodes, while the Y-axis 

represents energy consumption in joule. The existing 

methods (TEBACA, PAOMR) exhibit values 

ranging from 2605 to 7650 and 2890 to 7430. In 

contrast, the proposed EECBFT method showcases 

values ranging from 2120 to 6670. It can be 

concluded that the proposed EECBFT method 

provides the best result. 

 

Transmission Delay 

Transmission delay in a Mobile Ad Hoc Network 

(MANET) refers to the time it takes for a packet of 

data to be transmitted from the sender node to the 

receiver node in the network. It is one of the 

components contributing to the overall delay in data 

communication within a MANET. Transmission 

Delay is the time taken to transmit the packet. Packet 

Size is the size of the data packet in bits. Channel 

Capacity is the available bandwidth of the 

communication channel in bits per second 

(bps).𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =  
𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

 

Table.5 Comparison Table of Transmission Delay 

No of 

nodes 
TEBACA PAOMR EECBFT 

100 4.12 5.05 3.95 

200 5.65 6.76 5.81 

300 7.35 9.32 7.36 

400 9.63 10.45 8.75 

500 10.23 10.87 9.21 
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The Transmission delay comparison table presents 

the diverse values for existing methods (TEBACA, 

PAOMR) and the proposed EECBFT method. Upon 

comparing the values of the existing and proposed 

methods, it is apparent that the values of the 

proposed method are lower than those of the existing 

method. The existing method values range from 4.12 

to 10.23 and 5.05 to 10.87. In contrast, the proposed 

EECBFT method values range from 3.95 to 9.21. It 

can be concluded that the proposed EECBFT 

method yields the best result. 

 

 
Figure. 6 Comparison Chart of Transmission Delay 

 

In Figure. 6, the comparison chart of transmission 

delay illustrates the distinct values for the existing 

and proposed methods. Upon comparing the values 

of the existing and proposed methods, it is evident 

that the values of the proposed method are lower 

than those of the existing method. The X-axis 

represents the number of nodes, while the Y-axis 

represents the Transmission delay in sec. The 

existing methods (TEBACA, PAOMR) exhibit 

values ranging from 4.12 to 10.23 and 0.432 to 

1.021. Conversely, the proposed EECBFT method 

showcases values ranging from 3.95 to 9.21. It can 

be concluded that the proposed EECBFT method 

yields the best result. 

 

VIII. CHAPTER SUMMARY 

 

This phase has introduced the Energy-Efficient 

clustering-based Byzantine Fault Tolerance 

Algorithm for Clustering in Mobile Ad Hoc 

Networks (EECBFT) as an innovative solution to 

address Byzantine faults and enhance the clustering 

process within MANETs. The primary objectives 

were to improve network reliability and reduce 

energy consumption, both of which are critical 

challenges in MANETs. The experimental findings 

have clearly demonstrated the effectiveness of the 

EECBFT algorithm in achieving these goals. 

Notably, it has resulted in a significant reduction in 

energy consumption, primarily due to its energy-

efficient clustering approach and Byzantine fault 

tolerance mechanisms. Furthermore, EECBFT has 

showcased robust fault detection and recovery 

capabilities, thereby enhancing network reliability, 

even in the presence of malicious nodes or faulty 

behavior. In comparative analyses against existing 

clustering and fault tolerance methods, EECBFT has 

exhibited competitive performance, especially in 

terms of energy efficiency and fault tolerance. Its 

adaptability to dynamic network conditions and 

scalability across varying network sizes positions it 

as a promising choice for real-world MANET 

deployments.  

 

In conclusion, EECBFT represents a substantial 

contribution to MANET research, addressing critical 

challenges associated with energy consumption and 

network reliability. In summary, the EECBFT 

algorithm significantly enhances the efficiency, 

reliability, and fault tolerance of MANETs. This 

advancement paves the way for applications where 

dependable mobile communication is of utmost 

importance, making MANETs more energy-efficient 

and resilient. Additionally, the study integrates 

critical performance metrics such as Node Mobility 

Rate, Packet Delivery Ratio, Throughput, Average 

Energy Consumption, and Transmission Delay, 

enriching its contribution to the field. 


