
© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 116

Energy-Efficient Clustering-Based Byzantine Fault

Tolerance Algorithm in Manet (EECBFT)

A. MAHENDRAN1, Dr. C. KAVITHA2, Dr. K. SAKTHIVEL3
1 Ph.D Research Scholar, Dept of Computer Science, Periyar University, Salem

2 Assistant Professor, Dept of Computer Science, Thiruvalluvar Govt Arts College, Rasipuram
3 Professor, Dept of CSE, KSR College of Technology, Tiruchengode

Abstract - Mobile Ad-Hoc Networks (MANETs)

have witnessed significant growth, driven by the

proliferation of wireless-enabled portable devices.

This article explores critical aspects of MANETs,

including cluster formation, fault tolerance, and

the innovative concept of Energy-Based Byzantine

Fault Tolerance (BFT). Cluster formation is

essential for efficient communication and resource

management in MANETs. This article delves into

proximity-based clustering, node distance

calculation, and cluster head election to create

robust communication structures. Fault tolerance

is paramount in MANETs, where node failures can

occur due to various factors. Clustering-based

fault tolerance is discussed, emphasizing fault

detection, isolation, and redundancy to ensure

network resilience. The article introduces the

concept of Energy-Based Byzantine Fault

Tolerance (BFT) as a novel approach to address

the unique challenges of MANETs. Energy-aware

strategies are integrated with Byzantine Fault

Tolerance to enhance network reliability and

energy efficiency. The Energy-Based BFT

algorithm aims to optimize cluster formation,

Byzantine fault tolerance, energy-efficient

communication, dynamic energy management,

energy-aware quorum selection, fault detection

with energy conservation, and head election based

on energy reserves. The expected outcomes of this

research include developing and validating the

Energy-Based BFT algorithm, tailored for

MANET clustering, to improve fault tolerance,

energy efficiency, and network reliability. The

article highlights the promising potential of

Energy-Based BFT in fortifying MANETs against

malicious attacks while extending their operational

lifespan. Further research and empirical

evaluations are suggested to fully understand its

practical implications.

Indexed Terms- MANET, Fault tolerance, BFT,

Energy Efficiency

I. INTRODUCTION

The growth of wireless-enabled devices has driven

Mobile Ad-Hoc Networks (MANETs) characterized

by mobile nodes freely establishing wireless

connections. MANETs adapt to changing network

conditions and are essential in infrastructure-limited

areas. Clustering, a core MANET feature, promotes

scalability and efficiency.

In MANETs, efficient cluster formation is crucial for

reducing routing overhead and enhancing network

management. Clusters, led by cluster heads,

facilitate communication within their boundaries.

Cluster heads also manage intra-cluster

communication, while gateway nodes enable inter-

cluster communication.

Clustering offers several advantages:

1. Improved system capacity through resource

reuse within clusters.

2. Reduced routing information and delays via a

virtual backbone created by cluster heads.

3. Minimized data for representing network state.

4. Reduced topology update messages by updating

information within clusters.

II. FAULT TOLERANCE

Fault tolerance is vital in MANETs due to node

failures caused by factors like battery depletion or

hardware issues. Clustering-based fault tolerance

leverages cluster structures to enhance network

resilience. Key steps include cluster formation, fault

detection, fault isolation, and redundancy with

backup nodes.

Clustering-Based Fault Tolerance

Clustering-based fault tolerance is an approach that

leverages the hybrid insights of cluster structure in a

MANET to enhance the network's resilience to node

failures.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 117

Cluster Formation: Initially, the network is

organized into clusters. Each cluster has a head or

cluster head responsible for coordinating

communication within the cluster.

Fault Detection: Nodes within a cluster monitor the

status of their neighbors. If a node detects a

neighbor's failure or fault (e.g., no response to

communication), it reports the fault to the cluster

head.

Fault Isolation: Upon receiving fault reports, the

cluster head can isolate the faulty node or adjust

routing paths to avoid it. This prevents the faulty

node from affecting the entire network.

Redundancy: clustering-based fault tolerance may

involve redundant cluster heads or backup members.

If the primary cluster head fails, these backup nodes

can take over the responsibilities of the cluster head.

III. EXISTING METHODOLOGY

A. Improved Performance Clustering Using

Modified K-Means Algorithm

Amit Gupta, Dr. Mahesh Motwani (2021) et.al

proposed a network performance enhancement;

clustering has been identified as a valuable

technique since it limits the active participation in

routing processes to cluster heads exclusively. This

approach involves the random distribution of

network nodes, which are subsequently grouped into

clusters by applying a modified K-means clustering

methodology. This research introduces an

innovative method for initializing centroids within

the K-means algorithm. Here, we utilize Geographic

Centers as the initial centroids for cluster formation.

Furthermore, the paper addresses the crucial task of

cluster head selection, which plays a pivotal role in

network optimization. To accomplish this, we

employ the weighted multi-criterion acceptability

method, which considers various performance

metrics for cluster head designation. This selection

method leads to substantial improvements in

network performance, specifically concerning Load

Balancing Factor, PDF, and Throughput.

B. Trust Value Updation Algorithm

Sapna B. Kulkarni (2017), et.al proposed a Trust

Value Update Algorithm for Multicast Routing in

Cluster-Based MANETs. The selection of a cluster

head plays a crucial role in the network. However,

suppose the chosen cluster head node becomes

selfish or malicious. In that case, it can negatively

impact the overall cluster communication, leading to

a decrease in the throughput and efficiency of the

MANET. Therefore, trust needs to be established for

all nodes within the cluster, making trust

management essential. In contrast to previous

methods, the proposed algorithm reduces energy

consumption and minimizes delays. It ensures the

cluster head is trustworthy and avoids selecting

malicious, selfish, or dark-hole attacker nodes as

cluster heads. Hence, trust management is vital in

this context. The trust value of nodes within the

cluster is determined using a challenge assessment

algorithm to identify malicious nodes. Trust or trust

value represents the extent to which one can rely on

or have confidence in a node. Nodes whose trust

value falls below the threshold are added to the

blacklist. The cluster head selection considers the

node's trust value and parameters such as bandwidth,

power consumption, and network connectivity. The

trust value of nodes should be continuously

monitored over a specified period. If the trust value

falls below the threshold, the node is identified as

malicious and removed from the blacklist.

C. Fuzzy Approach for Secure Clustering in MANET

Kosuke Ozera (2017), et.al proposed an approach

using fuzzy logic to enhance secure clustering in

Mobile Ad hoc Networks (MANETs) and studied

the effects of the distance parameter on system

performance. MANET is a wireless network where

mobile nodes are dynamic, have limited bandwidth,

and operate on minimal battery power. Clustering is

the process of grouping mobile nodes, and it

involves selecting a head node to manage the entire

network. Various clustering schemes have been

introduced, including Mobility-based, Energy-

efficient, Connectivity-based, and Weighted-based.

The authors then presented and compared two

fuzzy-based frameworks, namely F2SMC1 and

F2SMC2, to improve the security of cluster nodes in

MANETs. They examined the performance of

F2SMC1 and F2SMC2 and demonstrated that

F2SMC2 exhibits greater effectiveness in terms of

its degree of fuzziness compared to F2SMC1.

Additionally, F2SMC2 showed better management

of nodes within the cluster when compared to

F2SMC1. This algorithm effectively reduces power

consumption, resulting in an extended network

lifetime.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 118

D. Improving Reliability of Cluster Nodes in

MANETs: A Fuzzy-Based Approach

Mirjeta Alinci (2016), et.al proposed a Fuzzy-Based

Approach to improve the reliability of cluster nodes

in Mobile Ad hoc Networks (MANETs). MANET is

a wireless network where mobile nodes are dynamic,

have limited bandwidth, and operate on minimal

battery power. Mobile nodes can be grouped into

clusters to enhance stability and scalability in

challenging environments. Clustering involves

selecting a head node to manage the entire network,

and various clustering approaches focusing on

different performance metrics have been introduced.

Several clustering schemes have been presented:

Mobility-based, Energy-efficient, Connectivity-

based, and weighted clustering. The system can

achieve higher reliability and improved performance

by selecting nodes with low Packet Loss (PL) rates.

In this type of network, each device acts as both a

host and a router and can reconfigure itself. It can be

rapidly deployed and reconfigured when a

communication infrastructure is unavailable.

Consequently, MANET faces several challenges,

including host mobility, dynamic topology, multi-

hop transmission, limited bandwidth, and battery

constraints. Therefore, studying MANET is a

challenging task. The network is divided into logical

entities called clusters to enable efficient routing and

monitoring. Within a cluster, the nodes responsible

for coordinating cluster activities are called Cluster

Heads (CH). CHs provide services to other nodes,

while the remaining nodes are common or cluster

members.

IV. PROPOSED ENERGY-EFFICIENT

CLUSTERING BASED BYZANTINE

FAULT TOLERANT (BFT) ALGORITHM

FOR MANET

Mobile Ad Hoc Networks (MANETs) represent a

dynamic and self-organizing paradigm for wireless

communication, enabling the formation of networks

without the reliance on a fixed infrastructure. These

networks have found applications in many

scenarios, from military operations and disaster

management to Internet of Things (IoT)

deployments. However, their unique characteristics,

inherent mobility, and constrained energy resources

pose significant challenges in ensuring reliable and

secure communication.

The unreliability of wireless communication

channels and the potential presence of Byzantine-

faulty nodes, which may exhibit arbitrary and

malicious behavior, are among the key challenges

that MANETs face. Byzantine failures can disrupt

network operations, compromise data integrity, and

hinder consensus among network nodes. Therefore,

the development of Byzantine Fault Tolerant (BFT)

algorithms is critical for safeguarding MANETs

against the perils of malicious actors and unreliable

communication.

A. Problem statements

Mobile Ad Hoc Networks (MANETs) are

characterized by their dynamic and self-organizing

nature, making them susceptible to various

challenges, including energy constraints and

Byzantine failures. The problem involves the

development of an Energy-based Byzantine Fault

Tolerant algorithm tailored for MANET clustering.

The algorithm aims to enhance the communication

and consensus process’s reliability and energy

efficiency within MANET clusters.

B. Problem Description

In MANETs, nodes communicate without a fixed

infrastructure, forming clusters to optimize network

performance and resource management. However,

the dynamic nature of MANETs and energy

constraints present challenges in achieving fault

tolerance and energy efficiency within clusters. The

problem involves designing a BFT algorithm that

incorporates energy-aware strategies and provides

the following:

1. Energy-Aware Cluster Formation: Develop

mechanisms for forming clusters within the

MANET that consider nodes' energy levels and

characteristics. Nodes with similar energy

profiles may be grouped to optimize energy

usage.

2. Byzantine Fault Tolerance: Design a robust

Byzantine fault tolerance mechanism that

tolerates Byzantine failures, including malicious

node behavior, within MANET clusters. The

algorithm should ensure reliable consensus even

when Byzantine-faulty nodes are present.

3. Energy-Efficient Communication: Implement

energy-efficient communication protocols that

minimize energy consumption during message

transmission and reception. Optimize routing

and data aggregation to reduce energy overhead.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 119

4. Dynamic Energy Management: Create adaptive

energy management strategies that allow nodes

to adjust their roles and responsibilities based on

their energy levels. Ensure that energy-depleted

nodes are not overburdened with tasks.

5. Energy-Aware Quorum Selection: Develop

quorum-based decision-making processes that

consider energy levels when selecting quorums.

Minimize the energy expenditure required for

achieving consensus within clusters.

6. Fault Detection with Energy Conservation:

Implement fault detection mechanisms that

efficiently identify Byzantine-faulty nodes

without imposing excessive energy overhead on

the network.

7. Head Election and Energy Reserves: Design

head election processes considering nodes'

energy reserves. Ensure that cluster heads are

selected based on energy availability to maintain

cluster operations.

C. Proposed Methodology

• To develop an Energy-Efficient Clustering-based

BFT algorithm customized for MANET

clustering.

• To enhance the reliability of MANET clusters

while considering energy constraints.

• To optimize energy usage in communication and

consensus processes within clusters.

• To extend network lifetime and sustainability by

conserving energy resources.

D. Expected Outcomes

The expected outcomes of this research are the

development and validation of an Energy-Efficient

clustering-based BFT algorithm specifically tailored

for MANET clustering. The algorithm should

demonstrate improved fault tolerance, energy

efficiency, and reliability within MANET clusters.

E. Manet cluster formation

Mobile Ad Hoc Networks (MANETs) are dynamic

wireless networks consisting of mobile nodes that

communicate with each other without a fixed

infrastructure. These networks are highly adaptable

and find applications in various scenarios, including

military operations, emergency response, IoT

deployments, etc. Cluster formation plays a pivotal

role in managing the inherent challenges of

MANETs, such as limited resources, network

scalability, and dynamic topologies. MANETs are

characterized by their decentralized nature, where

each node can communicate directly with any other

node within its communication range. However, this

unrestricted communication can lead to high

overhead, inefficient resource utilization, and

increased energy consumption. Cluster formation

addresses these challenges by organizing nodes into

groups or clusters, each with a designated leader or

cluster head. This hierarchical structure streamlines

communication, reduces overhead, and enhances

network efficiency.

F. Neighbor Discovery Protocol

Neighbor Discovery Protocol (NDP) is a

fundamental component of Mobile Ad Hoc

Networks (MANETs), including within the context

of clustering. NDP is responsible for nodes in the

network discovering and maintaining information

about their neighboring nodes. Here's how NDP can

be used in the context of clustering in a MANET:

1. Neighbor Detection:

NDP helps nodes detect and identify their

neighboring nodes within their communication

range. This is crucial for clustering as nodes need to

know which other nodes are nearby to form clusters

effectively.

2. Cluster Formation:

Once nodes have identified their neighbors, they can

use this information to initiate cluster formation.

NDP assists in this process by providing information

about potential cluster members.

3. Cluster Head Selection:

NDP can be utilized to facilitate the selection of

cluster heads. Nodes can exchange information

about their resources, such as available battery

power, processing capability, and communication

quality, through NDP messages. This information

lets nodes decide which nodes should serve as

cluster heads.

4. Dynamic Cluster Maintenance:

NDP continuously updates the information about

neighboring nodes. In the context of clustering, this

information can be used to dynamically adapt the

cluster structure. For example, if a node with a

higher battery power level becomes a neighbor, it

might be considered as a potential cluster head.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 120

5. Cluster Communication:

NDP ensures that cluster members maintain

connectivity with each other. It helps nodes within

the same cluster exchange control messages and data

efficiently.

6. Fault Tolerance:

NDP's neighbor information can also be used for

fault tolerance. If a cluster head fails or loses

connectivity with its cluster members, NDP can aid

in identifying a suitable replacement or rerouting

communication paths.

7. Energy Efficiency:

NDP messages can include information about nodes'

energy levels. This information can be used in

clustering algorithms to favor nodes with higher

energy reserves as cluster heads to prolong the

network lifetime.

8. Adaptation to Mobility:

MANETs are dynamic, and nodes may change their

positions frequently. NDP continuously updates

neighbor information, allowing clusters to adapt to

changes in network topology due to node mobility.

Neighbors Table

In a Mobile Ad Hoc Network (MANET) cluster, the

"Neighbors Table" (NTAB) is a data structure or a

table used by nodes to maintain information about

their neighboring nodes within the cluster. The

NTAB is an essential cluster management

component and facilitates efficient communication

and coordination among cluster members. Here is

what you might typically find in a Neighbors Table

for a MANET cluster:

1. Node Information:

Each entry in the NTAB includes information about

neighboring nodes. This information may include:

Node ID or address: A unique identifier for each

neighboring node.

Location: The physical or logical location of the

neighboring node within the cluster.

Battery Power: The remaining energy level of the

neighboring node's battery.

Communication Range: The maximum distance

over which the neighboring node can communicate.

Mobility Status: Information about the mobility

pattern of the neighboring node (e.g., static or

mobile).

2. Cluster Role Information:

The NTAB may include information about the role

of each neighboring node within the cluster. For

example:

Cluster Head: Indicates whether a neighboring node

is a cluster head.

Cluster Member: Indicates whether a neighboring

node is a regular cluster member.

Relay Node: Indicates whether a neighboring node

is a relay node within the cluster.

3. Communication Quality Metrics:

The NTAB may store metrics related to the quality

of communication links with neighboring nodes.

This could include signal strength, packet loss rates,

and latency.

4. Cluster Topology Information:

Information about the connectivity and topology

within the cluster. This may include details about

how neighboring nodes are interconnected within

the cluster.

5. Neighbor Status and Health:

Information about the status and health of

neighboring nodes, including any recent

connectivity or health issues. For example, this

information might be recorded if a neighboring node

has experienced communication problems or has a

low battery.

6. Dynamic Updates:

The NTAB is typically dynamic and continuously

updated as nodes move, join, or leave the cluster.

Nodes exchange information periodically to keep

the NTAB up to date.

7. Security Information:

Depending on the MANET's security requirements,

the NTAB may also include information related to

node authentication and trust levels for secure

communication within the cluster. The Neighbor’s

Table is critical in cluster management, helping

nodes make informed decisions about routing,

cluster head selection, and resource allocation. It

provides the necessary awareness of neighboring

nodes' characteristics and status, contributing to

efficient and reliable communication within the

MANET cluster.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 121

Calculation of the Node weight

Node weight calculation is a critical aspect of the

process. The movement patterns of individual nodes

exert a notable impact on the overall system's

stability, consequently influencing the network's

topology. Selecting a limited number of highly

stable, less mobile nodes is advisable to foster a

robust virtual backbone. This choice bolsters the

backbone's security and mitigates the risk of

depleting energy resources in lightweight nodes

when routing packets through them, which could

result in link failures. In such instances, the routing

path becomes disrupted, necessitating the

establishment of alternative routes to handle

failures, a topic explored in the relevant section.

In designing and managing Mobile Ad hoc

Networks (MANETs), selecting Cluster Heads

(CHs) and cluster members is pivotal in optimizing

network performance and ensuring robustness. A

key consideration in this process is the calculation of

node weights, which help determine the suitability

of individual nodes for specific roles. Node weight

is typically derived from three critical factors:

Energy Level (E), Mobility (M), and Connectivity

(C). By assigning weight coefficients (alpha, beta,

and gamma) to these factors, nodes can be ranked

based on their suitability for CH roles or cluster

membership. The Energy Level reflects a node's

remaining energy reserves, crucial for energy-

efficient routing and operation. Mobility captures a

node's ability to move or adapt to network dynamics,

influencing its role in maintaining cluster stability.

Connectivity assesses a node's communication links

within the network, affecting its ability to relay data.

A weighted sum of these normalized factors

determines each node's weight, enabling the

selection of CHs or cluster members that best align

with network goals, whether it is optimizing energy

consumption, ensuring load balancing, or enhancing

fault tolerance.

Mobility Model

A Mobility Model in Mobile Ad Hoc Networks

(MANETs) is a fundamental component that

simulates the movement and behavior of nodes

within the network. Understanding node mobility is

crucial for assessing performance metrics, such as

routing protocols, energy consumption, and network

connectivity. One commonly used mobility model is

the Random Waypoint Model, which emulates

realistic movement patterns in MANETs. In this

model, nodes move randomly within a defined area,

pausing at specific waypoints before selecting a new

destination. The model introduces key parameters to

control node movement, such as maximum velocity,

pause time, and the area's dimensions. The Random

Waypoint Model starts with nodes distributed

randomly across the simulation area. Each node

selects a random destination within the simulation

area and computes its velocity vector to move

toward that destination. Once it reaches the

destination or surpasses a predefined pause time, the

node selects a new random destination, and the

process repeats. This mobility model helps

researchers evaluate the impact of node mobility on

network performance. It can be customized to

emulate specific scenarios, like urban environments

or vehicular networks, by adjusting parameters to

match real-world conditions. In summary, mobility

models play a crucial role in simulating and

analyzing the dynamic nature of MANETs, allowing

researchers to study the effects of node movement

on various network aspects, making them a valuable

tool for MANET research and development.

Random Waypoint Model

The Random Waypoint Model is a widely used

mobility model in Mobile Ad Hoc Networks

(MANETs) and wireless communication research. It

serves as a fundamental tool for simulating the

movement patterns of mobile nodes within these

networks. The model's significance lies in its ability

to replicate real-world scenarios where nodes, such

as smartphones or sensor devices, move

autonomously, leading to dynamic changes in

network topology. In the Random Waypoint Model,

each node within the MANET exhibits a form of

nomadic behavior akin to how a traveler navigates

through various waypoints on a journey. This

mobility pattern is characterized by nodes

transitioning between periods of movement and

pause, mirroring human-like mobility dynamics.

During the movement phase, nodes select random

destinations within the network area and traverse the

terrain toward these destinations at a predefined

maximum velocity. Upon reaching a destination or

after a specified pause time, nodes choose new

waypoints, initiating a new cycle of movement and

pausing.

This model encapsulates the inherent randomness

and unpredictability of real-world mobility

scenarios, making it a valuable tool for researchers

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 122

and engineers seeking to evaluate the performance

of wireless communication protocols, routing

algorithms, clustering strategies, and fault tolerance

mechanisms within MANETs. The Random

Waypoint Model's versatility and capability to

simulate complex mobility patterns contribute

significantly to our understanding of mobile network

behaviors and aid in developing efficient and

resilient wireless networks. Researchers leverage

this model to assess various network metrics, such

as packet delivery, latency, and energy consumption,

under dynamic and mobile conditions, offering

valuable insights for designing and optimizing

MANETs.

V. PROPOSED ALGORITHM

FUNDAMENTALS

A. Primary Cluster Head Selection

Once the node loads are determined, the initial

clustering algorithm is invoked to select the initial

cluster heads. Each node broadcasts its ID value and

weight (Wi) to its neighboring nodes, storing its

neighbor’s weights within another node. Each node

maintains a neighbors table (NTAB) that stores the

list of its neighbors obtained through the

implementation of the Neighbor Discovery Protocol

(NDP) discussed in the previous section. If a node

fails to find any 1-hop neighbor with a weight higher

than its own, it declares itself as an initial cluster

head. Its 1-hop neighbors, whose roles have not been

determined yet, become its cluster members. If two

nodes have equal weights, the node with the lower

ID is selected as the cluster head. Here is a

mathematical model for the primary CH selection

process in a Mobile Ad hoc Network (MANET):

Ei be the energy level of node i,

where 0 ≤ 𝐸𝑖 ≤ 𝐸𝑚𝑎𝑥 (maximum energy capacity).

Mi be the mobility score of nodes i, where 0 ≤

𝑀𝑖 ≤ 𝑀𝑚𝑎𝑥 (maximum mobility score).

Ci be the connectivity score of nodes i, where 0 ≤

𝐶𝑖 ≤ 𝐶𝑚𝑎𝑥 (maximum connectivity score).

Wi be the weight assigned to node i.

To calculate the node weight Wi, we can use a

weighted sum of the normalized energy level,

mobility score, and connectivity score with weight

coefficients 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 respectively:

𝑊𝑖 = 𝛼 (
𝐸𝑖

𝐸𝑚𝑎𝑥

) + 𝛽 (
𝑀𝑖

𝑀𝑚𝑎𝑥

) + 𝛾 (
𝐶𝑖

𝐶𝑚𝑎𝑥

)

Where:

 𝛼 is a weight coefficient for energy.

 𝛽 is a weight coefficient for mobility.

𝛾 is a weight coefficient for connectivity.

Nodes are then ranked based on their calculated

weights in descending order. The primary CHs are

selected from the top (N) nodes, where (N) is the

total number of nodes.

To Select the top (N) nodes as primary CHs:

𝑁 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐶𝐻𝑠 {𝑖 𝑊𝑖 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 }

Where:

The threshold is the weight threshold that

determines the selection of the top (N) nodes.

The proposed algorithm is visually depicted in the

figure below, illustrating determining the initial

cluster heads.

Figure. 1 Primary Cluster heads are selected to

form clusters

Each node in the figure is represented by a unique

ID along with their corresponding loads provided in

the sections. Assuming that loads of the nodes have

already been calculated, the network between each

pair of nodes indicates that they are within each

other's transmission range, forming bidirectional

connections as one-hop neighbors. The solid circles

in the figure represent the initial cluster heads, as

their weights are exchanged within the local

topology. The node with the highest weight among

its one-hop neighbors is the cluster head, while its

neighboring nodes with undetermined roles become

its cluster members. Additionally, the solid circles

represent the initial cluster heads, as their weights

are exchanged within the local topology. The nodes

within the network maintain a cluster table, referred

to as CTAB, which stores clustering data. The cluster

table (CTAB) structure can be organized as follows.

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 123

MID MWT MDIST MTtrange

MID- Member ID

MWT- Member weight

MDIST- Member distance

MT- Member Transmission range

The cluster table is updated whenever a member

node re-affiliates or a cluster head is reappointed.

This updating process occurs when a cluster member

moves out of the transmission range of its cluster

head or when another node enters within the

transmission range. Figure.1 shows that several

cluster heads, such as D, H, K, and M, have multiple

members associated with them. On the other hand,

no members are connected to cluster head G. In the

figure, node K has a higher load than G, so it

becomes a member of node K, leaving node G as an

isolated node without any cluster member. Similarly,

another node has two cluster heads, D and K, within

its transmission range. Since the weight of D is

higher than that of node K, it becomes affiliated with

cluster head D. Similarly, node A is associated with

cluster head H instead of M. This demonstrates that

cluster members always align with higher-weighted

cluster heads when multiple cluster heads are within

their vicinity.

B. Secondary Cluster Head Selection

As discussed in the previous section, the cluster

heads consume more energy from their batteries than

the cluster members, leading to faster battery

depletion and node failure. To ensure a well-

balanced cluster, it is crucial to have an equitable

distribution of energy consumption among the nodes

in the network. Nodes are then ranked based on their

calculated weights in descending order. The

secondary CHs are selected from the next set of top

N nodes after the primary CHs have been selected.

Therefore, this work incorporates a local selection

process for subsequent cluster heads when the

current cluster head, whether initial or subsequent,

depletes its battery power below a threshold value.

𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝐻𝑠 = {𝑖 𝑊𝑖 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑖

∉ 𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦}

Where:

The weight threshold determines the selection of the

top 𝑁𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝐻𝑠 nodes as secondary CHs.

𝑁𝑃𝑟𝑖𝑚𝑎𝑟𝑦 is the set of nodes already selected as

primary CHs.

In this process, the current cluster head selects a

cluster member from its cluster, based on the

member with the highest load among others, and

sends a request for the cluster head position. The

cluster head can accept or reject this request based

on resource availability. If the request is received,

the requesting member becomes the new cluster

head for the cluster, and the existing cluster head

hands off its members who are not already headed

and are within the transmission range of the current

cluster head.

Since the resource allocation to the members

remains unchanged during this cluster head

transition, the handoff is smooth or soft. Nodes that

are not within the transmission range of the new

cluster head attempt to connect with another cluster

head in their vicinity. If there is no suitable cluster

head with appropriate loads, the node establishes

itself as an independent primary cluster head.

Finally, the current primary cluster head becomes a

cluster member of the newly selected secondary

cluster head.

The local nature of the secondary cluster head

selection reduces the computational and

communication overhead that would have been

involved in a global cluster head selection process.

During the initial cluster head selection, node 4 is

chosen as the cluster head. However, due to a

decrease in battery power beyond a threshold value,

the current cluster head node D selects node C,

which has the highest load among other cluster

members (C, I, K, and E), as the subsequent cluster

head. The existing cluster members of node D, node

I, and node K, are within the transmission range of

the new subsequent cluster head (node C). As a

result, both nodes are reaffiliated with the new

subsequent cluster head. However, node E is not

within the range of node C nor in the vicinity of node

L. Consequently, node E declares itself as an isolated

cluster head without any members. In the end, the

former cluster head, node D, becomes a member of

the newly selected subsequent head, node C.

C. Byzantine Fault Tolerance

Byzantine Fault Tolerance is a fundamental concept

in Mobile Ad Hoc Networks (MANETs) that

addresses the challenges of maintaining network

reliability and integrity in the presence of faulty or

malicious nodes. In MANETs, where nodes

dynamically self-organize and may have limited

resources, Byzantine Fault Tolerance is pivotal in

ensuring network communication robustness,

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 124

energy, and security. Byzantine Fault Tolerance is a

mechanism that empowers a MANET to continue

functioning correctly and reliably even when a

subset of its nodes behaves in a Byzantine,

malicious, or erroneous manner. In a Byzantine

Fault Tolerant MANET, the network is designed to

withstand the adverse effects of nodes exhibiting

arbitrary and potentially disruptive behavior,

thereby ensuring that critical tasks such as routing,

consensus, and data exchange can proceed

confidently and highly efficiently.

Byzantine Fault Tolerance algorithms often employ

consensus mechanisms to achieve agreement among

nodes. Consensus ensures that most nodes, despite

potential Byzantine faults, can reach a consistent

decision. Systems include mechanisms for detecting

Byzantine-faulty nodes. Detected faulty nodes can

be isolated or their influence mitigated to prevent

disruption. Byzantine Fault Tolerance solutions aim

to be scalable to accommodate networks of varying

sizes. Performance considerations, such as latency

and message overhead, are crucial to maintaining

network efficiency. Byzantine Fault Tolerance finds

applications in various MANET scenarios, including

Secure routing and data forwarding, Consensus-

based decision-making, and network resilience

against malicious attacks. Byzantine Fault Tolerance

is a cornerstone concept in MANETs, ensuring

network operations can continue reliably despite

malfunctioning or adversarial nodes. It is critical in

efficient and stabilizing MANETs, making them

suitable for various applications, including military,

disaster recovery, and IoT networks.

D. Fault Detection

Byzantine Fault Tolerance mechanisms in Mobile

Ad Hoc Networks (MANETs) are primarily

designed to detect and mitigate Byzantine faults

involving nodes that behave arbitrarily and exhibit

malicious behavior. BFT aims to identify and handle

these types of faults. Here are some specific types of

faults that BFT can detect in MANETs:

1. Malicious Data Injection: Byzantine Fault

Tolerance can be detected when nodes inject

false or malicious data into the network. This

includes detecting nodes that generate and

propagate fake routing updates or data packets

with incorrect information.

2. Misrouting: BFT mechanisms can detect

misrouting of data packets. When a malicious

node intentionally routes packets incorrectly,

BFT algorithms can identify inconsistencies in

the routing paths and mitigate the impact.

3. Selective Forwarding: Byzantine Fault Tolerance

can detect nodes that selectively forward or drop

packets. By monitoring the behavior of nodes

and analyzing the data packet reception patterns,

BFT mechanisms can identify nodes that are not

forwarding packets as expected.

4. Sybil Attacks: BFT can detect Sybil attacks,

where a single node impersonates multiple nodes

in the network. BFT algorithms can identify

anomalies in the network topology, such as

nodes claiming to be in multiple places

simultaneously, which can indicate a Sybil

attack.

5. Collusion: Byzantine Fault Tolerance

mechanisms are designed to handle collusion

among multiple malicious nodes. They can

detect coordinated malicious activities that

involve multiple nodes working together to

disrupt the network.

6. Denial-of-Service (DoS) Attacks: BFT can detect

DoS attacks launched by nodes in the network.

When nodes intentionally overwhelm the

network with excessive traffic or engage in other

disruptive behavior, BFT algorithms can identify

the malicious nodes responsibly.

E. Fault Recovery

Recovering from faults in a Mobile Ad Hoc Network

(MANET) using Byzantine Fault Tolerance (BFT)

involves detecting the faults and taking appropriate

actions to ensure the network continues operating

correctly in Byzantine nodes' presence. Here's how

recovery can be achieved through BFT:

1. Byzantine Fault Detection: BFT mechanisms

continuously monitor the behavior of nodes in

the network. When a Byzantine fault is detected,

the network identifies the misbehaving nodes.

Detection can be based on agreement among

nodes, reputation systems, or intrusion detection.

2. Quarantine Byzantine Nodes: Once Byzantine

nodes are identified, they can be isolated to

prevent them from causing further harm to the

network. This isolation can be achieved by

limiting their communication privileges or

blocking their participation in the network.

3. Utilize Redundant Paths: BFT protocols often use

redundant communication paths to ensure data

can be successfully transmitted even if some

nodes behave maliciously. The network reroutes

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 125

data through alternative paths to bypass

Byzantine nodes.

4. Achieve Consensus: Byzantine Fault Tolerance

mechanisms use consensus algorithms to ensure

that non-faulty nodes can agree on a consistent

view of the network state. This consensus helps

the network recover from Byzantine faults by

ignoring conflicting information from malicious

nodes.

VI. ENERGY EFFICIENT CLUSTERING

BASED BYZANTINE FAULT

TOLERANCE ALGORITHM IN MANETS

Deploying Mobile Ad Hoc Networks (MANETs) in

dynamic and resource-constrained environments

brings unique challenges that necessitate innovative

solutions. One of the most critical concerns is the

presence of Byzantine faults—malicious or faulty

nodes that can disrupt communication, compromise

data integrity, and compromise network security.

Addressing these issues is essential for ensuring the

reliability and resilience of MANETs. In this

context, the Energy Efficient Clustering-based

Byzantine Fault Tolerance concept emerges as a

promising approach. Energy Efficient Clustering-

based BFT combines two vital aspects—Byzantine

Fault Tolerance and energy awareness—to create a

robust and sustainable network infrastructure.

Traditional BFT mechanisms focus primarily on

reaching consensus in the presence of adversarial

nodes, and while they excel in maintaining data

integrity, they often overlook the energy constraints

inherent to MANETs. As a finite and exhaustible

resource in mobile devices, energy demands careful

management to prolong network lifetime and

enhance sustainability.

Energy Efficient Clustering-based BFT bridges this

gap by infusing energy-awareness into Byzantine

Fault Tolerance. It ensures that nodes reach a

consensus even in the presence of malicious actors

and considers the energy levels and consumption

patterns of participating nodes. This amalgamation

of security and energy optimization principles

empowers MANETs to withstand Byzantine faults

and operate efficiently within their energy

constraints. We comprehensively explore Energy-

Efficient clustering-based Byzantine Fault

Tolerance in MANETs as a cornerstone of this

phase. Our research seeks to design, implement, and

evaluate novel algorithms harmonizing BFT

techniques with intelligent energy management

strategies. By integrating Byzantine fault resilience

with energy awareness, our approach aims to fortify

the network against malicious attacks while

extending its operational lifespan. Through

empirical evaluations and real-world simulations,

this thesis elucidates the benefits, challenges, and

practical implications of Energy Efficient

Clustering-based BFT in MANETs.

Byzantine Fault Tolerance – Mathematical Model

Parameters:

N: Total number of nodes in the network.

i: Index representing a specific node in the network

(1 ≤ i ≤ N).

E(i, t): Remaining energy of node i at time instance

t.

R(i): Communication range of node i.

M(i): Mobility pattern stability score of node i.

L(i): Load on node i.

Ravail(i): Available resources on node i.

θ: Byzantine fault tolerance threshold.

t: Time instance.

C(i, t): Cluster membership status of node i at time

instance t (1 if cluster head, 0 if member).

The objective of the BFT mechanism is to reach a

consensus on a proposed value v, even in the

presence of up to f Byzantine nodes.

Mathematical Model:

A. Node Behavior:

Each node i ∈ R(i) can behave as follows:

• Send a message Mij to another node j.

• Generate a cryptographic signature Σij for the

message Mij.

• Verify the cryptographic signatures of messages

received from other nodes.

• Decide on a proposed value v based on the

received messages and cryptographic

verifications.

B. Message Propagation:

• Nodes in R(i) communicate by sending messages

to Mij.

• Messages may be forwarded to multiple nodes in

the network as the protocol progresses.

C. Cryptographic Verification:

• Each node i verifies the cryptographic signatures

Σij of messages received from other nodes.

• If a message's signature is invalid or if a message

is not received, the node may take specific

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 126

actions based on the protocol (e.g., request

retransmission).

D. Quorum-Based Decisions:

• To reach consensus, nodes must agree on a value

based on a quorum.

• A quorum is a subset of nodes that satisfies

certain criteria, such as a minimum number of

nodes that must agree.

• The quorum's size and criteria depending on the

specific BFT algorithm.

E. Decision Making:

• Nodes use information from the received

messages, cryptographic verifications, and

quorum agreements to decide regarding the

proposed value v.

• The decision is reached when enough nodes in

the quorum agree on the same value.

F. Fault Tolerance Threshold:

• The fault tolerance threshold f specifies the

maximum number of Byzantine nodes the

network can tolerate while achieving consensus.

G. Termination:

• The protocol should guarantee termination,

meaning it eventually reaches a decision or

terminates with an inconclusive result.

Node Behavior:

For each node i belonging to the set of nodes R(i),

the behavior can be mathematically expressed as

follows:

1. Sending a Message Mij to Node j:

This action can be represented as a function S that

maps a node i to another node j and produces a

message Mij.

2. Generating a Cryptographic Signature Σij for the

Message Mij:

The generation of a cryptographic signature Σij can

be defined as a function G that takes as input the

message Mij and node i and produces the

cryptographic signature Σij.

 𝐺(𝑀𝑖𝑗 , 𝑖) → ∑ 𝑖𝑗

3. Verifying Cryptographic Signatures of Received

Messages:

Verifying cryptographic signatures of messages

received from other nodes can be represented as

a verification function V that checks the validity

of a signature Σij for a given message Mij and

sender node i.

𝑉(𝑀𝑖𝑗 , ∑𝑖𝑗, 𝑖) → 𝑉𝑎𝑙𝑖𝑑 / 𝐼𝑛𝑣𝑎𝑙𝑖𝑑

4. Deciding on a Proposed Value v Based on

Received Messages and Cryptographic

Verifications:

The decision-making process can be modeled as a

function D that considers the received messages Mij,

their cryptographic signatures Σij, and node i to

determine a proposed value v.

𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑖) → 𝑣

Each node i is associated with specific functions and

actions in this mathematical representation. These

functions describe the actions taken by nodes in a

formalized manner, making it easier to analyze and

reason about the behavior of nodes within a

Byzantine Fault Tolerance mechanism.

Message Propagation:

The message propagation process can be

mathematically described as follows:

1. Nodes in Set Ri:

Let R(i) represent the nodes to which node i belongs.

2. Message Transmission Function T:

Define a function T that takes as input a sender node

i, a receiver node j, and a message Mij to represent

the transmission of a message from node i to node j.

 𝑇(𝑖, 𝑗, 𝑀𝑖𝑗)

3. Forwarding Messages:

Messages may be forwarded to multiple nodes in the

network. This can be represented as an operation

where a node i broadcasts or multicasts a message

Mij to a subset of nodes Rk, where k ranges over all

nodes in the network. for broadcasting: 𝑇(𝑖, 𝑘, 𝑀𝑖𝑗)

for k in the set of all nodes in the network. for

multicasting to a subset S of nodes: 𝑇(𝑖, 𝑘, 𝑀𝑖𝑗) for

k in the set S.

The message propagation process is formalized

using a transmission function T. This function

specifies how messages are sent from one node to

another through direct communication or by

broadcasting/multicasting to other nodes in the

network.

Cryptographic Verification:

Each node i verifies the cryptographic signatures Σij

of messages received from other nodes. If a

message's signature is invalid or if a message is not

received, the node may take specific actions based

on the protocol. This process can be mathematically

represented as follows:

1. Verification Function V:

Define a verification function V that takes as input a

received message Mij, its associated cryptographic

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 127

signature Σij, and the sender node i. The function

returns a result indicating whether the signature is

valid or invalid.

𝑉(𝑀𝑖𝑗 , ∑𝑖𝑗, 𝑖) → 𝑉𝑎𝑙𝑖𝑑 / 𝐼𝑛𝑣𝑎𝑙𝑖𝑑

2. Action Based on Verification Result:

Based on the verification result, the node i may take

specific actions as specified by the protocol. For

example, if the signature is invalid or if a message is

not received, node i may request retransmission of

the message from the sender. These actions can be

represented as a set of conditional statements within

the protocol:

𝑉(𝑀𝑖𝑗 , ∑𝑖𝑗, 𝑖) = 𝐼𝑛𝑣𝑎𝑙𝑖𝑑

If the above function is invalid, node i takes action

A e.g., request retransmission. If a message is not

received within a specified time frame, node i may

also act B e.g., re-request the message. V verification

function V is central in determining the validity of

received messages' cryptographic signatures. The

protocol specifies actions to be taken by node i based

on the verification result, such as requesting

retransmission in case of an invalid signature or non-

receipt of a message.

Quorum-Based Decisions:

To achieve consensus, nodes must agree on a value

based on a quorum. A quorum is a subset of nodes

that satisfies specific criteria, such as a minimum

number of nodes that must agree. The quorum's size

and criteria are algorithm-specific and may vary.

This process can be mathematically represented as

follows:

1. Quorum Definition:

Define a quorum as a subset Q of nodes R(i), where

Q is a subset of R(i) that satisfies certain criteria

determined by the specific BFT algorithm.

 𝑄 ⊆ 𝑅(𝑖)

2. Quorum Criteria:

Specify the criteria a quorum Q must meet to be

valid according to the BFT algorithm. This criterion

typically includes a minimum number of nodes that

must agree within the quorum.

|𝑄| ≥ 𝑀𝑖𝑚𝑖𝑚𝑢𝑚𝑄𝑢𝑎𝑟𝑢𝑚𝑆𝑖𝑧𝑒

3. Quorum Agreement Function:

Define a quorum agreement function A that

determines whether a quorum Q agrees on a value v.

This function considers the votes or decisions of

nodes within the quorum.

𝐴(𝑄, 𝑣) = 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑑

/ 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑁𝑜𝑡𝑅𝑒𝑎𝑐ℎ𝑒𝑑

4. Action Based on Quorum Agreement:

Based on the outcome of the quorum agreement

function, the protocol specifies actions to be taken.

If a consensus is reached, node i may adopt the

agreed-upon value v as the final decision. These

actions can be represented as conditional statements

within the protocol:

If 𝐴(𝑄, 𝑣) = 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑅𝑒𝑎𝑐ℎ𝑒𝑑 then node i act

C, e.g., adopts the agreed-upon value. If consensus

is not reached, node i may take other actions or

initiate further communication. The concept of a

quorum, its criteria, and the quorum agreement

function are formalized. The protocol determines the

actions to be taken based on the consensus result

within the quorum, with actions contingent on

whether consensus is reached or not.

Decision Making:

Nodes use information from the received messages,

cryptographic verifications, and quorum agreements

to decide regarding the proposed value v. The

decision is reached when enough nodes in the

quorum agree on the same value. This process can

be mathematically represented as follows:

1. Decision-Making Function D:

Define a decision-making function D that takes as

input the following components: The set of received

messages {Mij} from various nodes. The set of

cryptographic verifications {Σij} for these messages.

The quorum Q that has agreed upon a value v.

𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄) → 𝑣

2. Consensus Criteria:

Specify the criteria that determine when a consensus

has been reached. Typically, a consensus is reached

when sufficient nodes within the quorum Q agree on

the same value v.

|𝑄 ∩ {𝑖 𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄) = 𝑣}|

≥ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

3. Decision Action:

The protocol specifies actions to be taken based on

whether the consensus criteria are met. If a

consensus is reached, node i adopts the agreed-upon

value v as the final decision. These actions can be

represented as conditional statements within the

protocol:

|𝑄 ∩ {𝑖 𝐷({𝑀𝑖𝑗}, {∑𝑖𝑗}, 𝑄) = 𝑣}| ≥

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

If above equation valid then node i adopts the value

v as the final decision. If consensus is not reached,

node i may take other actions or initiate further

communication. The decision-making process is

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 128

formalized using a decision-making function D,

which considers received messages, cryptographic

verifications, and the consensus reached within the

quorum Q. The protocol determines the actions to be

taken based on whether a consensus is achieved,

with actions contingent on meeting the consensus

threshold.

Fault Tolerance Threshold:

The fault tolerance threshold f specifies the

maximum number of Byzantine nodes the network

can tolerate while achieving consensus. This

threshold can be mathematically represented as

follows:

1. Fault Tolerance Threshold Definition:

Define the fault tolerance threshold f as a parameter

determining the maximum number of Byzantine

nodes the network can withstand while reaching a

consensus as f.

2. Consensus Criteria Based on Threshold:

Specify the consensus criteria based on the fault

tolerance threshold f. Consensus is reached when the

number of Byzantine nodes B within the network

satisfies the condition:

𝐵 ≤ 𝑓

3. Decision Action Based on Threshold:

The protocol specifies actions to be taken based on

whether the number of Byzantine nodes B in the

network is within the fault tolerance threshold. If the

condition is met, node i may adopt the

agreed-upon value v as the final decision. These

actions can be represented as conditional statements

within the protocol: If , then node i adopts

the value v as the final decision. If the condition is

not met, node i may take other actions or initiate

further communication.

The above representation formally defines the fault

tolerance threshold f as the maximum allowable

number of Byzantine nodes. The protocol

determines whether consensus is reached based on

comparing the number of Byzantine nodes B and the

threshold f, with actions contingent on meeting the

threshold criteria.

Termination:

The protocol should guarantee termination, which

means it will eventually reach a decision or

terminate with an inconclusive result. This

termination guarantee can be mathematically

represented as follows:

1. Termination Guarantee Function T:

Define a termination guarantee function T

considering the protocol's progress over time. This

function evaluates whether the protocol has reached

a decision or terminated inconclusively.

 𝑇() → 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛/𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒

2. Termination Criteria:

Specify the criteria that determine when the protocol

can declare a decision or inconclusive termination.

This may include a maximum number of protocols

rounds or a timeout threshold.

𝑇()𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑎𝑟𝑒 𝑚𝑒𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑇() = 𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒

3. Action Based on Termination Result:

Based on the termination guarantee function T

result, the protocol specifies actions to be taken.

Node i may take appropriate actions based on the

protocol's design if a decision is reached or

inconclusive termination occurs. These actions can

be represented as conditional statements within the

protocol:

If 𝑇() = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 then node i acts D e.g., adopts

the decision.

If 𝑇() = 𝐼𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 node i may take other

actions or initiate further communication.

In the above representation, the termination

guarantee is formalized using the termination

guarantee function T. The protocol determines

whether the termination criteria are met, resulting in

either a decision or an inconclusive termination.

Actions are taken accordingly based on the

termination result.

Fault Detection

1. Node Behavior Monitoring:

Node behavior data:

𝐵𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, , 𝑁. 𝑎𝑛𝑑 𝑡 = 1,2,3,

Here, 𝐵𝑖(𝑡) represents the behavior data for node i

at time t. This data can include information about

communication patterns, energy levels, and protocol

adherence.

2. Message Integrity Checks:

Received messages:

𝑀𝑖𝑗(𝑡) 𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 = 1,2,3, . ..

Cryptographic signatures:

These variables represent received messages and

their associated cryptographic signatures. They are

timestamped to indicate when they were received.

3. Network Topology Information:

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 129

Topology data:

𝑇𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 = 1,2,3, . ..

𝑇𝑖(𝑡) provides information about the current

network topology for node i at time t. This can

include connectivity information, node positions,

and link quality.

4. Resource Utilization Metrics:

CPU usage:

𝐶𝑃𝑈𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1,2,3, . ..

Memory usage:

 𝑀𝑒𝑚𝑜𝑟𝑦𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =

 1,2,3, . ..

Available bandwidth:

 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 =

 1,2,3, . ..

These variables represent resource utilization

metrics for each node over time.

5. Timing and Synchronization Data:

Timestamps:

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

Synchronization data:

𝑆𝑦𝑛𝑐𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡 = 1,2,3, . ..

These variables capture timing and synchronization

information for each node at different time

instances.

6. Neighbor and Routing Information:

Neighbor relationships:

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

Routing tables:

𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑖 (𝑡)𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

These variables store data related to neighboring

nodes and routing tables for each node at different

time instances.

7. Consensus and Agreement Information:

Consensus progress:

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

Agreement status:

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑖 (𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

These variables track the progress of consensus

protocols and the agreement status of nodes.

8. Security Alerts and Intrusion Detection:

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑙𝑒𝑟𝑡𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

Intrusion logs:

𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝐿𝑜𝑔𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

These variables represent security-related alerts and

intrusion detection logs.

9. Environmental and Physical Data:

Environmental data:

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁. 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑖(𝑡) captures data related to the

physical environment, such as temperature,

humidity, and signal strength.

10. Thresholds and Anomaly Detection Rules:

Predefined thresholds:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁.

Anomaly detection rules:

 𝑅𝑢𝑙𝑒𝑠𝑖 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁.

These variables store predefined thresholds and

rules used for anomaly detection.

11. Event Logs and History:

Event logs:

𝐸𝑣𝑒𝑛𝑡𝐿𝑜𝑔𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

Historical data:

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐷𝑎𝑡𝑎𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

These variables contain event logs and historical

data for each node.

This model defines the various inputs for fault

detection in a MANET, allowing for the

representation and analysis of data related to node

behavior, message integrity, network topology,

resource utilization, timing, synchronization,

neighbor relationships, consensus, security,

environmental conditions, predefined thresholds,

event logs, and historical data. The variables are

indexed by node and time to capture the dynamic

nature of network behavior. Actual fault detection

algorithms and processes would use these inputs to

identify and respond to faults.

Fault recovery

1. Node Recovery Status:

Node recovery status:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠𝑖(𝑡) represents the recovery status

of node i at time t. It indicates whether a node is in a

recovery process, has completed recovery, or is

functioning normally.

2. Recovery Actions:

Recovery actions:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 130

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑖(𝑡) describe the specific actions

taken by node i as part of the recovery process.

These actions may include rejoining the network,

resynchronizing, or updating routing information.

3. Network Configuration:

Network configuration data:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑓𝑖𝑔𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3, . ..

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑓𝑖𝑔𝑖(𝑡) stores information related to

the network configuration, such as parameters,

protocols, and settings.

4. Recovery Policies:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑖 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁.

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠𝑖 define the rules and strategies

that govern how node i should recover from a fault.

These policies may vary from node to node.

5. Resource Allocation:

Resource allocation data:

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1,2,3,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) indicates how resources

e.g., bandwidth, CPU, memory is allocated during

the recovery process to ensure a smooth transition

back to normal operation.

6. Recovery Progress:

Recovery progress data:

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖(𝑡) 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡

= 1,2,3,

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖(𝑡) tracks the progress of

recovery for each node, helping to determine when

recovery is complete.

7. Fault Identification:

Fault identification data:

 𝐹𝑎𝑢𝑙𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1,2,3,

𝐹𝑎𝑢𝑙𝑡𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖(𝑡) provides information

about how the fault or issue was identified, such as

through fault detection mechanisms.

8. Network State Information:

Network state information:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒𝑡 𝑓𝑜𝑟 𝑡 = 1,2,3,

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑡𝑒𝑡 represents the overall state of the

network at time t, including the statuses of all nodes

and links.

9. Fault Report and Logging:

Fault reports and logs:

𝐹𝑎𝑢𝑙𝑡𝑅𝑒𝑝𝑜𝑟𝑡𝑠𝑡 𝑓𝑜𝑟 𝑡 = 1,2,3,

𝐹𝑎𝑢𝑙𝑡𝑅𝑒𝑝𝑜𝑟𝑡𝑠𝑡 contain detailed information about

faults that occurred at different time instances. These

reports help in diagnosing and addressing faults.

10. Communication Protocols:

Communication protocol settings:

 𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑖(𝑡) 𝑓𝑜𝑟 𝑖 =

1,2,3, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1,2,3,

𝐶𝑜𝑚𝑚𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑖(𝑡) store configurations

related to communication protocols used during

recovery.

This model defines various inputs for fault recovery

in a MANET, allowing for the representation and

analysis of data related to node recovery status,

recovery actions, network configuration, recovery

policies, resource allocation, recovery progress,

fault identification, network state, fault reports, and

communication protocols. The variables are indexed

by node and time to capture the dynamic nature of

the recovery process. Actual fault recovery

algorithms and processes would use these inputs to

facilitate the recovery of nodes and network

services.

Random Waypoint Mathematical Model

Input Parameters:

 N: Number of nodes in the MANET.

 Vmax: Maximum velocity of a node.

 P: Pause time, representing the time a node

remains stationary at a waypoint.

 Di: Destination waypoint for node i (randomly

selected).

 𝐷𝑑𝑖𝑟𝑖
(𝑡): Directional vector from node i current

position to its destination at time t.

Node Mobility in Random Waypoint Model:

The node mobility in the Random

Waypoint Model involves two main phases: pause

and movement.

During the pause phase, a node remains stationary at

a waypoint for a duration P before selecting a new

random destination Di.

During the movement phase, the node moves

towards Di with a constant velocity Vmax.

Node Position at Time t:

At time t the position of node i can be represented as

Xi(t).

A) 𝐼𝑓 ||𝐷𝑑𝑖𝑟𝑖
(𝑖)|| >

0, 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝ℎ𝑎𝑠𝑒

𝑋𝑖(𝑡)

= 𝑋𝑖(0)

+ 𝑉𝑚𝑎𝑥 .
𝐷𝑑𝑖𝑟𝑖

(𝑡)

||𝐷𝑑𝑖𝑟𝑖
(𝑡)||

 . 𝑚𝑖𝑛(||𝐷𝑑𝑖𝑟𝑖
(𝑡)||), 𝑉𝑚𝑎𝑥 . (𝑡

− 𝑡0)

𝐵) 𝐼𝑓
𝐷𝑑𝑖𝑟𝑖

(𝑡)

||𝐷𝑑𝑖𝑟𝑖
(𝑡)||

= 0,

Energy Consumption:

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 131

Energy consumption in the Random Waypoint

Model can be modelled based on node movement

and communication.

Energy is consumed during movement phases due to

node mobility.

Energy is consumed during communication phases

(e.g., data transmission and reception).

EECBFT Algorithm Interaction:

The EECBFT algorithm runs concurrently with node

movements. Node weights (Wi) in the EECBFT

algorithm are dynamically calculated based on node

energy, mobility, and connectivity. Cluster

formation and selection of primary and secondary

cluster heads are influenced by node weights.

Byzantine fault tolerance mechanisms are

implemented based on cluster structures and

communication.

It allows for the analysis of network behavior,

energy consumption, and clustering-based fault

tolerance in MANETs under realistic mobility

scenarios. Researchers can use this model to

simulate and evaluate the performance of their

clustering and fault tolerance algorithms in dynamic

mobile environments.

VII. EXPERIMENTAL RESULT

In the context of an experiment, the findings derived

from metrics such as Node Mobility Rate, Packet

Delivery Ratio, Throughput, Energy Consumption

and Transmission Delay serve as critical indicators

of network reliability.

A. Node Mobility Rate:

The node mobility rate of a node based on its weight

can be calculated using a formula that involves the

node's weight and the change in position over time

(Δw/Δt). The formula can be expressed as follows:

𝑁𝑜𝑑𝑒 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑒 =
∆𝑤

∆𝑡

As mentioned, the node's weight (w) is calculated

based on energy, mobility, and connectivity factors.

The weight change (Δw) can be measured by

comparing the node's weight at the beginning and

end of the interval (Δt). To calculate the overall

average mobility rate for N nodes, compute the sum

of the mobility rates for all nodes and then divide

this sum by the total number of nodes (N). The

mobility rate provides an indication of how rapidly

a node's characteristics are changing over time.

Table.1 Comparison Table of Node Mobility Rate

The Node Mobility Rate comparison table illustrates

the various values for existing methods (TEBACA,

PAOMR) and the proposed EECBFT method. When

comparing the existing methods with the proposed

EECBFT, the values are higher for the existing

methods. The existing method values range from

3.36 to 9.21 and 4.12 to 10.23, while the proposed

EECBFT values range from 5.35 to 10.87. The

proposed EECBFT method consistently delivers the

best results.

Figure.2 Comparison Chart of Node Mobility Rate

In Figure.2 , the Comparison Chart of the Node

Mobility Rate presents the values for existing and

proposed methods. When comparing the values of

the existing and proposed methods, it is observed

that the proposed method values are higher than

those of the existing method. The X-axis represents

the number of nodes, while the Y-axis represents the

node mobility rate. The existing methods

(TEBACA, PAOMR) have values ranging from 3.36

to 9.21 and 4.12 to 10.23, while the proposed

EECBFT values range from 5.35 to 10.87. The

proposed EECBFT method consistently delivers the

best results. It can be concluded that the proposed

EECBFT method yields the best results.

No of

nodes
TEBACA PAOMR EECBFT

100 3.36 4.12 5.35

200 4.75 5.65 6.76

300 7.27 8.35 9.32

400 7.75 9.63 10.45

500 9.21 10.23 10.87

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 132

Packet Delivery Ratio

PDR measures the ratio of successfully delivered

packets to the total number of packets sent or

generated within the network. It provides insights

into the network's ability to transmit data packets

without loss or errors and is often expressed as a

percentage. A high PDR indicates a robust and

reliable network, while a low PDR suggests

potential packet loss issues or transmission errors.

To calculate the PDR as below

𝑃𝐷𝑅(%)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡

× 100

Table. 2 Comparison Table of Packet Delivery Ratio

The Packet Delivery Ratio comparison table

illustrates the various values for existing methods

(TEBACA, PAOMR) and the proposed EECBFT

method. When comparing the existing methods with

the proposed EECBFT, the values are higher for the

existing methods. The existing method values range

from 0.91 to 0.71 and 0.92 to 0.73, while the

proposed EECBFT values range from 0.95 to 0.78.

The proposed EECBFT method consistently

delivers the best results.

Figure.3 Comparison Chart of Packet Delivery

Ratio

In Figure.3, the Comparison Chart of the Packet

Delivery Ratio presents the values for existing and

proposed methods. When comparing the values of

the existing and proposed methods, it is observed

that the proposed method values are higher than

those of the existing method. The X-axis represents

the number of packets to transmit, while the Y-axis

represents the packet delivery ratio. The existing

methods (TEBACA, PAOMR) have values ranging

from 0.91 to 0.71 and 0.92 to 0.73. On the other

hand, the proposed EECBFT method has values

ranging from 0.95 to 0.78. It can be concluded that

the proposed EECBFT method yields the best

results.

Throughput

Throughput refers to the rate at which data is

successfully transmitted from source nodes to

destination nodes within the network. It represents

the network's capacity to deliver data effectively.

The throughput can be influenced by various factors,

including network topology, routing protocols, node

mobility, interference, and channel conditions.

The throughput can be calculated as:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

=
𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

Table. 3 Comparison Table of Throughput

The throughput comparison table presents the

different values for existing methods (TEBACA,

PAOMR) and the proposed EECBFT method. Upon

comparing the values of the existing and proposed

methods, it is evident that the values of the proposed

method are lower than those of the existing method.

The existing method values range from 1500 to 6800

and 1650 to 6300. In contrast, the proposed

EECBFT method values range from 1900 to 7700. It

can be concluded that the proposed EECBFT

method provides the best result.

No of

nodes
TEBACA PAOMR EECBFT

100 0.91 0.92 0.95

200 0.88 0.86 0.91

300 0.81 0.82 0.85

400 0.76 0.78 0.82

500 0.71 0.73 0.78

No of

nodes
TEBACA PAOMR EECBFT

100 1500 1650 1900

200 2600 2700 3100

300 4500 4100 5500

400 5900 5600 6400

500 6800 6300 7700

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 133

Figure.4 Comparison Chart Throughput

In Figure.4, Comparing the values of the existing

and proposed methods, it is evident that the

proposed method yields superior results compared to

the existing method. The X-axis represents the

number of nodes, while the Y-axis represents

Throughput in kbps. The existing methods

(TEBACA, PAOMR) have values ranging from

1500 to 6800 and 1650 to 6300. On the other hand,

the proposed EECBFT method exhibits values

ranging from 1900 to 7700. It can be concluded that

the proposed EECBFT method offers the best result.

Average Energy Consumption

The Average Energy Consumption can be calculated

by summing up the energy consumption of all nodes

in the network over a specific period and then

dividing by the total number of nodes(N) and the

specific time(T). Here is the formula for calculating

the average energy consumption in a MANET:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
∑𝐸𝑖

𝑁 × 𝑇

Table. 4 Comparison Table of Average Energy

Consumption

No of

nodes
TEBACA PAOMR EECBFT

100 260.5 289.4 212.1

200 345.1 421.5 298.4

300 489.6 566.3 433.9

400 656.8 675.4 563.7

500 765.2 743.8 667.4

The Average Energy Consumption comparison table

illustrates the various values for existing methods

(TEBACA, PAOMR) and the proposed EECBFT

method. When comparing the values of the existing

and proposed methods, it is observed that the

proposed method values are lower than those of the

existing method. The existing method values range

from 260.5 to 765.2 and 289.4 to 743.8. Conversely,

the proposed EECBFT method has values ranging

from 212.1 to 667.4. It can be concluded that the

proposed EECBFT method yields the best result.

Figure. 5 Comparison Chart of Average Energy

Consumption

In Figure. 5, the Comparison Chart of Average

Energy Consumption illustrates the distinct values

for existing and proposed methods. Upon comparing

the values of the existing and proposed methods, it

is evident that the proposed method values are lower

than those of the existing method. The X-axis

represents the number of nodes, while the Y-axis

represents energy consumption in joule. The existing

methods (TEBACA, PAOMR) exhibit values

ranging from 2605 to 7650 and 2890 to 7430. In

contrast, the proposed EECBFT method showcases

values ranging from 2120 to 6670. It can be

concluded that the proposed EECBFT method

provides the best result.

Transmission Delay

Transmission delay in a Mobile Ad Hoc Network

(MANET) refers to the time it takes for a packet of

data to be transmitted from the sender node to the

receiver node in the network. It is one of the

components contributing to the overall delay in data

communication within a MANET. Transmission

Delay is the time taken to transmit the packet. Packet

Size is the size of the data packet in bits. Channel

Capacity is the available bandwidth of the

communication channel in bits per second

(bps).𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Table.5 Comparison Table of Transmission Delay

No of

nodes
TEBACA PAOMR EECBFT

100 4.12 5.05 3.95

200 5.65 6.76 5.81

300 7.35 9.32 7.36

400 9.63 10.45 8.75

500 10.23 10.87 9.21

© OCT 2023 | IRE Journals | Volume 7 Issue 4 | ISSN: 2456-8880

IRE 1705101 ICONIC RESEARCH AND ENGINEERING JOURNALS 134

The Transmission delay comparison table presents

the diverse values for existing methods (TEBACA,

PAOMR) and the proposed EECBFT method. Upon

comparing the values of the existing and proposed

methods, it is apparent that the values of the

proposed method are lower than those of the existing

method. The existing method values range from 4.12

to 10.23 and 5.05 to 10.87. In contrast, the proposed

EECBFT method values range from 3.95 to 9.21. It

can be concluded that the proposed EECBFT

method yields the best result.

Figure. 6 Comparison Chart of Transmission Delay

In Figure. 6, the comparison chart of transmission

delay illustrates the distinct values for the existing

and proposed methods. Upon comparing the values

of the existing and proposed methods, it is evident

that the values of the proposed method are lower

than those of the existing method. The X-axis

represents the number of nodes, while the Y-axis

represents the Transmission delay in sec. The

existing methods (TEBACA, PAOMR) exhibit

values ranging from 4.12 to 10.23 and 0.432 to

1.021. Conversely, the proposed EECBFT method

showcases values ranging from 3.95 to 9.21. It can

be concluded that the proposed EECBFT method

yields the best result.

VIII. CHAPTER SUMMARY

This phase has introduced the Energy-Efficient

clustering-based Byzantine Fault Tolerance

Algorithm for Clustering in Mobile Ad Hoc

Networks (EECBFT) as an innovative solution to

address Byzantine faults and enhance the clustering

process within MANETs. The primary objectives

were to improve network reliability and reduce

energy consumption, both of which are critical

challenges in MANETs. The experimental findings

have clearly demonstrated the effectiveness of the

EECBFT algorithm in achieving these goals.

Notably, it has resulted in a significant reduction in

energy consumption, primarily due to its energy-

efficient clustering approach and Byzantine fault

tolerance mechanisms. Furthermore, EECBFT has

showcased robust fault detection and recovery

capabilities, thereby enhancing network reliability,

even in the presence of malicious nodes or faulty

behavior. In comparative analyses against existing

clustering and fault tolerance methods, EECBFT has

exhibited competitive performance, especially in

terms of energy efficiency and fault tolerance. Its

adaptability to dynamic network conditions and

scalability across varying network sizes positions it

as a promising choice for real-world MANET

deployments.

In conclusion, EECBFT represents a substantial

contribution to MANET research, addressing critical

challenges associated with energy consumption and

network reliability. In summary, the EECBFT

algorithm significantly enhances the efficiency,

reliability, and fault tolerance of MANETs. This

advancement paves the way for applications where

dependable mobile communication is of utmost

importance, making MANETs more energy-efficient

and resilient. Additionally, the study integrates

critical performance metrics such as Node Mobility

Rate, Packet Delivery Ratio, Throughput, Average

Energy Consumption, and Transmission Delay,

enriching its contribution to the field.

