
© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 71

Unified Insights into Graph Neural Networks: From

Connectivity to Linear Architectures, and Time Series

Applications

PRATHAM TANEJA1, SANSKAR SAXENA2, DIVYANSH SINGH3, ADITYA CHAUHAN4,

BHAUMIK TYAGI5, GARV KALIA6

1 Graduate Student,(Electronics and Communication Engineering), ADGITM, Delhi, India
2 Undergraduate Student,(Computer Science Engineering), Moradabad Institute of Technology, Uttar

Pradesh, India
3 Undergraduate Student,(Information Technology), ADGITM, Delhi, India

4 Undergraduate Student,(Computer Science Engineering), Moradabad Institute of Technology, Uttar

Pradesh, India
5 Jr. Research Scientist,(Computer Science Engineering), Delhi, India

6 Undergraduate Student,(Information Technology), ADGITM, Delhi, India

Abstract- The predominant data modality employed

for the documentation of dynamic system

measurements is time series, which emanates

prolifically from physical sensors and online

processes (virtual sensors). The imperative role of

time series analytics in extracting the inherent

wealth of information from available data is

underscored by recent advancements in graph

neural networks (GNNs). These networks have

witnessed a notable surge in their application for

time series analysis, owing to their capacity to

explicitly model inter-temporal and inter-variable

relationships—attributes that traditional and other

deep neural network-based methodologies find

challenging. This review endeavors to

comprehensively review graph neural networks for

time series analysis (GNN4TS), encompassing four

fundamental dimensions: forecasting, classification,

anomaly detection, and imputation. The

overarching objective is to serve as a guiding

resource for designers and practitioners, facilitating

an enhanced understanding, application

development, and progression of research within the

domain of GNN4TS.Linear Architectures are also

discussed in this very research. Neural Architecture

Search (NAS) has exhibited notable advancements

in optimizing Graph Neural Networks (GNNs),

denoted as NAS-GNNs, outperforming manually

designed GNN architectures. Nevertheless,

challenges inherited from conventional NAS

methods, including elevated computational costs

and optimization complexities, persist. Notably,

prior NAS approaches have tended to overlook the

inherent characteristics of GNNs, which inherently

possess expressive power without the necessity for

training. Notably, NAC achieves up to a 200×

acceleration in computational efficiency and a

19.9% enhancement in accuracy compared to

robust baseline methods.

Indexed Terms- Graph neural networks, Linear

architecture search, Time series Applications.

I. INTRODUCTION

In recent years, the application of graph neural

networks (GNNs) has emerged as a potent

methodology for acquiring non-Euclidean data

representations [1], facilitating the modeling of real-

world time series data. This approach proves

instrumental in capturing intricate and diverse

relationships, encompassing both inter-variable

connections within multivariate series and inter-

temporal dependencies across different temporal

points. Recognizing the inherent spatial-temporal

complexities within real-world scenarios, a body of

research has amalgamated GNNs with diverse

temporal modeling frameworks to encapsulate both

spatial and temporal dynamics, yielding promising

outcomes [2].

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 72

While initial investigations predominantly focused on

various forecasting scenarios [3], recent strides in

time series analysis leveraging GNNs have exhibited

favorable results across other key tasks, including

classification [4], anomaly detection [5], and

imputation [6].The proliferation of advanced sensing

technologies and data stream processing has

engendered an unprecedented influx of time series

data [7]. The analysis of time series data not only

facilitates retrospective trend identification but also

underpins a spectrum of tasks such as forecasting [8],

classification [9], anomaly detection [10], and data

imputation [11]. This substantiates the foundation for

time series modeling paradigms that leverage

historical data to comprehend present and future

possibilities. Time series analytics has assumed

heightened significance across diverse domains,

spanning cloud computing, transportation, energy,

finance, social networks, and the Internet-of-Things

[12].

Fig. 1: Graph neural networks for time series analysis

(GNN4TS) and neural linear architecture search.

II. LITERATURE REVIEW

Despite the burgeoning body of research dedicated to

various time series analytic tasks employing Graph

Neural Networks (GNNs), extant surveys often

exhibit a proclivity for specific perspectives within

delimited scopes. Notably, the survey conducted by

Wang et al. [13] provides a comprehensive review of

deep learning techniquesfor spatial-temporal data

mining; however, its focus is not specifically directed

towards GNN-based methodologies. Similarly, the

survey conducted by Ye et al. [14] delves into graph-

based deep learning architectures within the traffic

domain, with a primary emphasis on forecasting

scenarios. A more recent survey by Jin et al. [15]

furnishes an overview of GNNs applied to predictive

learning in urban computing; however, it confines its

coverage to this application domain and does not

thoroughly address other tasks pertinent to time series

analysis. To address the identified gap in the existing

literature, the present survey endeavors to furnish a

comprehensive and contemporaneous examination of

graph neural networks applied to time series analysis.

Encompassing a spectrum of tasks, including time

series forecasting, classification, anomaly detection,

and imputation, this survey adopts a systematic

approach. The initial phase involves the presentation

of two overarching perspectives for the classification

and discussion of extant works, focusing on both task

and methodology-oriented considerations.

Subsequently, the survey delves into an exploration

of six prominent application sectors within the

domain of Graph Neural Networks for Time Series

Analysis (GNN4TS). To further contribute to the

scholarly discourse, the survey concludes by positing

several potential future research directions. The key

contributions of this survey are succinctly

summarized as follows:

 This survey stands as the inaugural

comprehensive examination, systematically

reviewing recent advancements in mainstream

time-series analysis tasks employing graph neural

networks. It spans a diverse array of recent

research initiatives, presenting an extensive

perspective on the evolution of Graph Neural

Networks for Time Series Analysis (GNN4TS)

without confining its scope to specific tasks or

domains.

 This study presents a unified framework for the

structural categorization of existing works within

the domain of Graph Neural Networks for Time

Series Analysis (GNN4TS), employing a dual

perspective based on tasks and methodologies.

The first classification provides a comprehensive

overview of tasks inherent in time series analysis,

addressing diverse problem settings prevalent in

GNN-based research. The second classification

dissects GNN4TS with a focus on spatial

andtemporal dependencies modeling, alongside

an in-depth exploration of the overall model

architecture.

 A thorough review is conducted to illuminate the

Linear Architecture implemented through GNN,

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 73

ensuring comprehensive coverage of the breadth

of the field. This review extends beyond a

superficial examination, incorporating fine-

grained classification and detailed discussions to

provide readers with an updated comprehension

of the current state-of-the-art in GNN4TS.

 The study additionally explores the expanding

applications of GNN4TS across various sectors,

emphasizing its versatility and potential for future

growth in diverse fields. Furthermore, the

research sheds light on prospective directions for

future research, offering insights and suggestions

that may serve as guidance and inspiration for

subsequent investigations within the field of

GNN4TS.

III. RELATED BACKGROUND

Time series data encompasses a sequence of

observations congregated or documented over a

period. This data can beeither regularly or irregularly

sampled, with the latter alsoreferred to as time series

data with missing values. Withineach of these cases,

the data can be further classified intotwo primary

types: univariate and multivariatetime series. Inthe

sequel, we employ bold uppercase letters (e.g., X),

boldlowercase letters (e.g., x), and calligraphic letters

(𝑒. 𝑔. , 𝒱) todenote matrices, vectors, and sets,

respectively.Most of the research grounded on GNNs

concentrates onmodeling multivariate time series, as

they can be naturally abstracted into spatial-temporal

graphs. This abstractionallows for an accurate

characterization of dynamic inter-temporal and inter-

variable dependencies. The former describes the

relations between different time steps withineach

time series (e.g., the temporal dynamics of red

nodesbetween t1 and t3 in Fig. 2), while the latter

capturesdependencies between time series (e.g., the

spatial relationsbetween four nodes at each time step

in Fig. 2), such as thegeographical information of the

sensors generating the datafor each variable. To

illustrate this, we first define attributedgraphs.

Fig. 2: Illustrations of spatial-temporal graphs.

Considering, a spatial-temporal graph can be

described as a series of attributed graphs, which

effectively represent (multivariate) time series data in

conjunction with either evolving or fixed structural

information over time.

Graph neural networks (GNNs) are introduced as

contemporary deep learning models designed for the

processing of graph-structured data. The central

operation within conventional GNNs, commonly

denoted as graph convolution, entails the exchange of

information among neighboring nodes. In the realm

of time series analysis, this operation facilitates the

explicit consideration of inter-variable dependencies

as delineated by the graph edges. Cognizant of the

varied intricacies, GNNs are characterized within the

spatial domain, entailing the transformation of the

input signal through learnable functions along the N-

dimensional dimension.

GNN Definition: - Given an attributed graph G = (A,

X), we define xi = X[i,:] ∈ℝDas the D-dimensional

feature vector of node vi. A GNN learns node

representations through two primary functions:

AGGREGATE (·) and COMBINE (·).

The AGGREGATE (·) function computes and

aggregates messages from neighboring nodes, while

the COMBINE (·) function merges the aggregated

and previous states to transform node embeddings.

Formally, the k-th layer in a GNN is defined by the

extended

ai
(k)= AGGREGATE(k) ({𝑕_𝑗^((𝑘 − 1)): 𝑣_𝑗 ∈

𝒩(𝑣_𝑖)}),

hi
(k) = COMBINE(k)〖(𝑕〗_𝑖^((𝑘 − 1)), ai

(k)), (1)

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 74

or, more generally, aggregating messages computed

from both sending and receiving nodes vj and vi,

respectively. Here,ai
(k)and hi

(k)represent the

aggregated message from neighbors and the

transformed node embedding of node vi in the k-th

layer, respectively. The input and output of a GNN

are hi
 (0): = xi and hi

(K): =hi.

IV. METHODOLOGY

Time-Series Applications using Graph Neural

Networks:

Time series analysis using Graph Neural Networks

(GNNs) has garnered considerable attention due to its

capacity to model complex relationships and

dependencies within temporal data. The application

of GNNs in this context extends across various

domains, showcasing their versatility and efficacy.

Here, we explore a few key applications of GNNs in

time series analysis:

1. Time Series Forecasting: GNNs excel in capturing

intricate temporal dependencies, making them well-

suited for time series forecasting. By leveraging the

inherent graph structure of time series data, GNNs

can discern patterns and trends, enhancing the

accuracy of predictions. This application is

particularly valuable in domains such as finance,

weather prediction, and energy consumption

forecasting.

2. Anomaly Detection: Identifying anomalies in time

series data is crucial for various industries, including

cyber security, healthcare, and manufacturing. GNNs

can effectively detect unusual patterns by learning the

normal behavior of the time series data. Anomalies,

represented as deviations from the learned patterns,

can be flagged for further investigation.

3. Classification in Time Series Data: GNNs offer a

powerful approach to classifying time series data into

different categories. This is valuable in scenarios

where the temporal dynamics of the data play a

significant role in determining its class. Applications

include activity recognition in motion sensor data,

event detection in social networks, and disease

classification in healthcare.

Fig 3: Wide-ranging pipeline for time series analysis

using Gnn‟s

4. Imputation of Missing Data: Time series data often

suffer from missing values, which can hinder the

analysis. GNNs can be employed to impute missing

data points by leveraging information from

neighboring time points. This is beneficial in

domains like finance, where incomplete historical

stock prices or economic indicators may impede

accurate analysis.

5. Dynamic Graphs for Evolving Time Series: Many

real-world systems exhibit dynamic changes over

time, leading to variations in the underlying

relationships within the time series data. GNNs with

dynamic graph structures can adapt to these changes,

making them suitable for applications in dynamic

social networks, evolving financial markets, and

changing environmental conditions.

 Time Series Forecasting: -

This task is centered around predicting future values

of the time series based on historical observations, as

depicted in Fig. 4a. Depending on application needs,

we categorize this task into two types: single-step-

ahead forecasting and multi-step-ahead forecasting.

The former is meant to predict single future

observations of the time series once at a time, i.e., the

target at time t isY: = Xt+Hfor some H∈ℕ steps ahead,

while the latter makes predictions for a time interval,

e.g., Y := Xt+1:t+H. Parameterized solutions to both

predictive cases can be derived by optimizing,

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐹 (𝑝𝜑(𝑓_𝜃 (X_(𝑡 −

𝑇: 𝑡), A_(𝑡 − 𝑇: 𝑡))), Y), (2)

where f𝜃(·) and p𝜑 (·)represent a spatial-temporal

GNN and the predictor, respectively. In the sequel,

we denote by 𝑋_(𝑡 − 𝑇: 𝑡)and 𝐴_(𝑡 − 𝑇: 𝑡)a spatial-

temporal graph with length.

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 75

 Time Series Imputation: -

This task is centered around estimating and filling in

missing or incomplete data points within a time

series. Current research in this domain can be broadly

classified into two main approaches: in-sample

imputation and out-of-sample imputation. In-sample

imputation involves filling missing values in a given

time series, while out-of-sample imputation pertains

to inferring missing data not present in the training

dataset. We formulate the learning objective as

follows:

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐼 (𝑝𝜑(𝑓_𝜃 (X ̃_(𝑡 −

𝑇: 𝑡), 𝐴_(𝑡 − 𝑇: 𝑡))), X_(𝑡 − 𝑇: 𝑡)),

(3)

where f𝜃(·) and p𝜑 (·)denote the spatial-temporal

GNN and imputation module to be learned,

respectively. The imputation module can e.g., be a

multi-layer perceptron. In this task, 𝑋 ̃_(𝑡 −

𝑇: 𝑡)represents input time series data with missing

values (reference time series), while 𝑋_(𝑡 −

𝑇: 𝑡)denotes the same time series without missing

values.

 Time Series Classification: -

This task aims to assign a categorical label to a given

time series based on its underlying patterns or

characteristics. Rather than capturing patterns within

a time series data sample, the essence of time series

classification resides in discerning differentiating

patterns that help separate samples based on their

class labels. The optimization problem can be

expressed as:

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐶 (𝑝𝜑(𝑓_𝜃 (X, A)), Y),

(4)

where f𝜃(·) and p𝜑 (·)denote, e.g., a GNN and a

classifier to be learned, respectively. Using univariate

time series classification as an example, the task can

be formulated as either a graph or node classification

task. In the case of graph classification (Series-As-

Graph)[16], each series is transformed into a graph,

and the graph will be the input of a GNN to generate

a classification output. This can be achieved by

dividing a series into multiple subsequence‟s with a

window size, W, serving as graph nodes, X∈ℝN×W,

and an adjacency matrix, A, describing the

relationships between subsequence‟s.

 Time Series Anomaly Detection: -

 This task is centered on the identification of

irregularities and unexpected events in time series

data. The process of anomaly detection entails

both determining when anomalous events

occurred and gaining insights into the underlying

factors contributing to the anomalies. Given the

inherent challenges associated with acquiring

labeled anomaly events, contemporary research

predominantly treats anomaly detection as an

unsupervised problem. This involves designing a

model that characterizes normal, non-anomalous

data. Subsequently, the trained model is deployed

to detect anomalies by generating elevated scores

when anomalous events manifest.

 The model learning process aligns with the

optimization for forecasting, as denoted by Eq. 2,

wherein fθ(·) and pϕ(·) represent the spatial-

temporal Graph Neural Network (GNN) and the

predictor, respectively. Typically, both the

spatial-temporal GNN and the predictor are

trained on normal, non-anomalous data,

employing forecasting [17] or reconstruction [18]

optimization methodologies. The objective is to

minimize the discrepancy between the normal

input and the forecasted (or reconstructed) series.

However, when these models are tasked with

anomaly detection, their failure to conform to

expected low-discrepancy behavior during

anomaly periods creates discernible differences,

facilitating anomaly detection.

 The determination of the threshold demarcating

normal and anomalous data represents a crucial

hyperparameter, necessitating consideration of the

rarity of anomalies and alignment with a specified

false alarm rate [19]. Finally, for diagnosing the

causes of anomalies, a prevalent strategy involves

computing discrepancies for each channel node

and consolidating these into a singular anomaly

score [20]. This approach enables the

identification of channel variables responsible for

anomaly events by assessing their respective

contributions to the final anomaly score.

The Spatial Module of Spatio-Temporal Graph

Neural Networks (STGNNs) is designed to model

dependencies between time series over time, drawing

inspiration from the principles of Graph Neural

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 76

Networks (GNNs) applied to static graphs. This

module encompasses three distinct types: spectral

GNNs, spatial GNNs, and a hybrid combination of

both. Spectral GNNs leverage spectral graph theory

and utilize graph shift operators, such as the graph

Laplacian, to capture node relationships in the graph

frequency domain[21]. In contrast, spatial GNNs

simplify spectral GNNs by directly designing filters

localized to each node's neighborhood. Hybrid

approaches amalgamate both spectral and spatial

methodologies to harness the strengths of each

method[22].

The Temporal Module is introduced in STGNNs to

account for temporal dependencies within time series

data.Temporal dependencies can be represented in

either the time or frequency domains. In the first

category, methods include recurrence-based

approaches (e.g., RNNs), convolution-based methods

(e.g., Temporal Convolutional Networks - TCNs),

attention-based techniques (e.g., Transformers), and

hybrid combinations of these. The second category

employs analogous techniques, incorporating

orthogonal space projections like the Fourier

transform[23].

Concerning Model Architecture, existing STGNNs

can be classified as either discrete or continuous in

terms of their overall neural architectures. These

types further categorize into factorized and coupled

subcategories[24]. Factorized STGNN model

architectures entail temporal processing either before

or after spatial processing, either discretely (e.g.,

Spatio-Temporal Graph Convolutional Network -

STGCN) or continuously (e.g., Spatio-Temporal

Graph Ordinary Differential Equation - STGODE).

Conversely, coupled model architectures refer to

instances where spatial and temporal modules are

interleaved, exemplified by models such as Discrete

ChebNet Recurrent Neural Network (DCRNN) and

Continuous MTGODE. Alternative nomenclature

designates these categories as time-then-space and

time-and-space architectures [25].

 Linear Architecture Search:

Fig 4: The proposed NAC architecture in one layer.

With a fixed dictionary, NAC learns the architecture

immediately. NAC-updating refreshes the dictionary

in training, with a dashed line indicating the

additional step.

Algorithm:The NAC algorithm

Require: The search space 𝒜;

Ensure: The architecture 𝛼

 Randomly initializingW l, for 𝑙 = 1, . . . , L; set

α = 1;

1: while t=1,..,T do

2: Performing the feature aggregation at each

layer aso-l (x)= ol 𝛼 l =
𝛼𝑙𝑘

 𝛼 2
𝑜𝑙𝑘 𝑥 ;𝐾

𝑘=1

3: Computing𝑕𝑣
𝑙 = ∅ 𝑊 𝑙 ⋅ 0−𝑙 ⋅ 𝑕𝑢 ,

𝑙−1 ∀𝓊 ∈

 𝒩 𝓋 ;

4: Optimizingαbased on the objective function;

5: UpdatingW0based on the objective function;

6: end while

7: Obtain the final architecture {α*} from the

trainedα via an argmax operation at each layer;

In this work, we propose two realizations of NAC,

namely NAC and NAC-updating. The computation of

NAC has two major parts: the forward pass and the

backward pass. Given the search space, the

computation of the forward is then fixed, regarding as

a constant. Therefore, the computational complexity

mainly focuses on the backward pass in the NAC

algorithms.

The main version of our work has no need to update

weights, but only to update architectural parameter α

during the training process. Therefore, the

algorithmic complexity is as O (T ∗∥α∥), which is a

linear function w.r.t α. The dimension of α is often

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 77

small, which makes the model easy to scale to large

datasets and high search space. It is called„NAC‟.

When updating weights, like DARTS, the complexity

is estimated as O (T ∗ (∥α∥ + ∥w∥)). The dimension

of w is often much larger than α, therefore, the

complexity is dominated by updating w, where the

complexity is O (T ∗∥w∥). Since the dimension of α is

much smaller than w, the complexity of NAC is

much less than this version.

Searching configuration is presented as:

1. Architecture optimizer: Adam is used for training

the architecture parameters α. The learning rate is

set as 0.0004 and the weight decayas 0.001. Also,

the β1 and β2 are fixed as 0.6 and 0.999,

respectively. All runs a constant schedule for

training, such as 100 epochs.

2. Weight optimizer: SGD is used to update models‟

parameters, i.e., w. The learning rate and SGD

momentum are given as 0.027 and 0, respectively,

where the learning rate has a cosine decay

schedule for 100 epochs. The weight decay value

is fixed as, i.e., set ρ1 = 0.0006.

3. Batch size: For transudative tasks, in-memory

datasets are utilized, and the batch size is fixed as

the size of the dataset themselves.

V. DISCUSSION & ANALYSIS

Time series classification task seeks to assign a

categorical label to a given time series based on its

underlying patterns or characteristics. By

transforming time series data into graph

representations, one can leverage the powerful

capabilities of GNNs to capture both local and global

patterns. Furthermore, GNNs are capable of mapping

the intricate relationships among different time series

data samples within a particular dataset.

Table 1: GNNs for Time Series Classification

Appr

oach

Task Spa

tial

Mo

dul

e

Temp

oral

Modu

le

Conv

ersion

Grap

h

Heur

istics

LB-

Sim

Univariate+

Multivariate

Spa

tial

Time

Doma

Series

-As-

Pair

wise

TSC

[42]

2023

Time series

classificatio

n

GN

N

in-

Conv

olutio

n

Node Simi

larity

Sim

TSC

[43]

2022

Univariate+

Multivariate

Time series

classificatio

n

Spa

tial

GN

N

Time

Doma

in-

Conv

olutio

n

Series

-As-

Node

Pair

wise

Simi

larity

The advent of deep learning has sparked significant

advancements, drawing lessons from earlier methods.

Early research in this area proposed recurrent models

with reconstruction, and forecasting [26] strategies

respectively to improve anomaly detection in

multivariate time series data. The forecasting and

reconstruction strategies rely on forecast and

reconstruction errors as discrepancy measures

between anticipated and real signals. These strategies

rely on the fact that, if a model trained on normal

data fails to forecast or reconstruct some data, then it

is more likely that such data is associated with an

anomaly. However, recurrent models [27] are found

to lack explicit modeling of pairwise interdependence

among variable pairs, limiting their effectiveness in

detecting complex anomalies [28]. Recently, GNNs

have shown promising potential to address this gap

by effectively capturing temporal and spatial

dependencies among variable pairs [29].

Table 2: GNNs for Time Series Anomaly Detection

Appro

ach

Architecture Spa

tial

Mo

dul

e

Temp

oral

Modu

le

Lear

ned

Rela

tion

s

Grap

h

Heur

istics

DyGr

aphA

D

[44]

2023

Forecast+Rel

ational

Discrepancie

s

Spa

tial

GN

N

Time

Doma

in-

Conv

olutio

n

NA Pair

wise

Simi

larit

y

CST-

GL

[45]

2023

Forecast Spa

tial

GN

N

Time

Doma

in-

Conv

olutio

Stati

c

NA

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 78

n

Grele

n [46]

2022

Reconstructi

on+Relationa

l

Discrepancie

s

Spa

tial

GN

N

Time

Doma

in-

Hybri

d

Dyn

ami

c

NA

Time series imputation, a crucial task in numerous

real-world applications, involves estimating missing

values within one or more data point sequences.

Traditional time series imputation approaches have

relied on statistical methodologies, such as mean

imputation, spline interpolation [30], and regression

models [31]. However, these methods often struggle

to capture complex temporal dependencies and non-

linear relationships within the data. While some deep

neural network-based works, such as [32],have

mitigated these limitations, they have not explicitly

considered inter-variable dependencies. The recent

emergence of graph neural networks has introduced

new possibilities for time series imputation. From a

task perspective, GNN-based time series imputation

can be broadly categorized into two types: in-sample

imputation and out-of-sample imputation. The former

involves filling in missing values within the given

time series data, while the latter predicts missing

values in disjoint sequences.

Table 3: GNNs for Time Series Imputation

Appr

oach

Tas

k

Spat

ial

Mod

ule

Tempo

ral

Modul

e

Type Graph

Heuristi

cs

GAR

NN

[47]2

023

In-

sam

ple

Spat

ial

GN

N

Time

Domai

n-

Recurr

ence

Determi

nistic

Pairwis

e

Connect

ivity

DGC

RIN

[48]

2023

In-

sam

ple

Spat

ial

GN

N

Time

Domai

n-

Recurr

ence

Determi

nistic

Pairwis

e

Similari

ty

Time series forecasting aims to predict future time

series values based on historical observations. In

recent years, deep learning-based approaches have

demonstrated considerable success in forecasting

time series by capturing non-linear temporal and

spatial patterns more effectively than the linear

counterpart [33]. Techniques such as recurrent neural

networks (RNNs), convolutional neural networks

(CNNs), and attention-based neural networks have

been employed. However, many of these approaches,

such as LSTNet [34] and TPA-LSTM [35], overlook

and implicitly model the rich underlying dynamic

spatial correlations between time series. Recently,

graph neural network (GNN)- based methods have

shown great potential in explicitly and effectively

modeling spatial and temporal dependencies in

multivariate time series data, leading to enhanced

forecasting performance.

Table 4: GNNs for Time Series Forecasting

Appr

oach

Archite

cture

Spati

al

Mod

ule

Tempo

ral

Modul

e

Learn

ed

Relat

ions

Graph

Heuristi

cs

Jin et

al.

[49]

2023

Discret

e-

Factori

zed

Spec

tral

GN

N

Freque

ncy

domai

n-

Hybrid

Static NA

SGP

[50]

2023

Discret

e-

Factori

zed

Spati

al

GN

N

Time

Domai

n-

Recurr

ence

NA Spatial

Proximi

ty,

Pairwis

e

Similari

ty

RGS

L

[51]

2022

Discret

e-

Contin

uous

Spec

tral

GN

N

Time

Domai

n-

Recurr

ence

Static Spatial

Proximi

ty,

Pairwis

e

Connec

tivity

The effect of training on the final linear layer:

Proposed theorems prove that a GNN with randomly

initialized weights can make the final output as good

as a well-trained network when initializing networks

with orthogonal weights and updating the total

network using gradient descent. In practice, we find it

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 79

difficult to determine at what training epoch the

optimal weight parameters can be obtained through

training linear layer. We noticed that most of the

time, the untrained weights in the initial state can

often already exceed the accuracy that can be

obtained from the weights after multiple epochs of

training the final linear layer, as shown

Figure 6: The effects of random seeds of NAC on the

accuracy, where x-axis denotes the random seeds and

y-axis denotes the sparsity. NAC performs stably

with random seeds.

Therefore, we further omit the training of the final

linear layer. It is important to note that this

approximation is based on our proposed theorems in

which most of the intermediate layers do not require

training.

Figure 7: The effects of training final linear layer of

NAC on the accuracy,

where x-axis denotes the training epochs of the final

linear layer and y-axis denotes the averaged

accuracy of acquired architecture α using the

corresponding weights.

VI. FUTURE SCOPE & DIRECTIONS

Time series data, inherently characterized by

unpredictable noise and uncertainty in the data-

generating process, necessitates robust models

capable of quantifying uncertainty for enhanced

reliability and utility [36]. The incorporation of

uncertainty quantification offers a probabilistic

measure, contributing to the model's ability to

express confidence in predictions and system state

estimates. Uncertainty quantification provides a

probabilistic measure of the confidence to the

predictions made by the model and to the system

state estimatesaiding in the understanding of the

range and likelihood of potential outcomes [37]. This

holds particular significance when Graph Neural

Networks (GNNs) are employed in decision-making

processes within high-stakes domains, such as

financial forecasting, healthcare monitoring [38], or

traffic prediction in smart cities [39]. Despite

advancements, a gap persists in existing GNN

models, predominantly providing point estimates

[40], [41], thereby inadequately addressing potential

uncertainties. This underscores a critical research

direction: the development of sophisticated

uncertainty quantification methods for GNNs to

navigate the complexities inherent in time series

data.Strategies such as pretraining, transfer learning,

and the utilization of large models are emerging as

potent approaches to enhance GNN performance in

time series analysis, particularly in scenarios

involving sparse or diverse data. These techniques

rely on leveraging learned representations from one

or more domains to improve performance in related

domains. Noteworthy examples include

Panagopoulos et al.'s model-agnostic meta-learning

schema for predicting the spread of COVID-19 in

data-limited cities and Shao et al.'s pre-training

enhanced framework for spatial-temporal GNNs. The

exploration of pre-training strategies and GNN

transferability for time series tasks constitutes a

burgeoning research area, particularly in the

contemporary era of generative AI and large models,

showcasing the potential for a unified, multimodal

model to address diverse tasks.

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 80

CONCLUSION

This comprehensive survey addresses the knowledge

gap in the realm of graph neural networks for time

series analysis (GNN4TS) through an exhaustive

review of recent advancements and the establishment

of a unified taxonomy for categorizing existing works

from both task- and methodology-oriented

perspectives. Pioneering in its approach, the survey

encompasses a diverse array of tasks, including

forecasting, classification, anomaly detection, and

imputation, providing an intricate understanding of

the current state of the art in GNN4TS. The survey

meticulously explores the complexities of spatial and

temporal dependencies modeling and overall model

architecture, offering a nuanced classification of

individual studies. By emphasizing the expanding

applications of GNN4TS across various sectors, the

survey underscores its versatility and potential for

future growth. This compilation serves as a valuable

resource for machine learning practitioners and

domain experts seeking insights into the latest

advancements in this field. Lastly, the survey

proposes potential future research directions,

presenting insights aimed at guiding and inspiring

subsequent work in GNN4TS.Additionally, the

survey introduces the first linear complexity Neural

Architecture Search (NAS) algorithm for Graph

Neural Networks (GNNs), termed Neural

Architecture Coding (NAC). NAC, solved through

sparse coding, features a no-update scheme for model

weights in GNNs, capitalizing on the inherent

linearity and orthogonality of model weights within

GNNs. Extensive experiments affirm that NAC

achieves superior accuracy (up to 19.9%) and

significantly faster convergence (up to 200×)

compared to state-of-the-art NAS-GNN baselines.

Several promising directions for future exploration

are identified, including the investigation of deep

neural networks adhering to the mild conditions of

NAC for expanded applicability. Further exploration

into the efficiency of different sub gradient methods

for solving the sparse coding objective is

recommended. Additionally, a proposed avenue for

investigation involves jointly learning the search

space and architectural representation to enhance the

expressive ability of searched architectures.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and

S. Y. Philip, “A comprehensive survey on graph

neural networks,” IEEE TNNLS, vol. 32, no. 1,

pp. 4–24, 2020.

[2] Z. A. Sahili and M. Awad, “Spatio-temporal

graph neural networks: A survey,” arXiv

preprint, vol. abs/2301.10569, 2023.

[3] W. Jiang and J. Luo, “Graph neural network for

traffic forecasting: A survey,” Expert Syst.

Appl., p. 117921, 2022.

[4] X. Zhang, M. Zeman, T. Tsiligkaridis, and M.

Zitnik, “Graph-guided network for irregularly

sampled multivariate time series,” in ICLR,

2022.

[5] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao,

Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang,

“Multivariate time-series anomaly detection via

graph attention network,” in ICDM, 2020, pp.

841– 850.

[6] A. Cini, I. Marisca, and C. Alippi, “Filling the g

ap s: Multivariate time series imputation by

graph neural networks,” in ICLR, 2022.

[7] Q. Wen, L. Yang, T. Zhou, and L. Sun, “Robust

time series analysis and applications: An

industrial perspective,” in KDD, 2022, pp.

4836–4837.

[8] B. Lim and S. Zohren, “Time-series forecasting

with deep learning: a survey,” Philos. Trans.

Royal Soc. A PHILOS T R SOC A, vol. 379,

no. 2194, p. 20200209, 2021.

[9] H. Ismail Fawaz, G. Forestier, J. Weber, L.

Idoumghar, and P.-A. Muller, “Deep learning

for time series classification: a review,” DMKD,

vol. 33, no. 4, pp. 917–963, 2019.

[10] A. Blazquez-Garc ´ ´ıa, A. Conde, U. Mori, and

J. A. Lozano, “A review on outlier/anomaly

detection in time series data,” ACM Computing

Surveys, vol. 54, no. 3, pp. 1–33, 2021.

[11] C. Fang and C. Wang, “Time series data

imputation: A survey on deep learning

approaches,” arXiv preprint, vol.

abs/2011.11347, 2020.

[12] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly

detection for iot time-series data: A survey,”

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 81

IEEE IoT Journal, vol. 7, no. 7, pp. 6481–6494,

2019.

[13] S. Wang, J. Cao, and S. Y. Philip, “Deep

learning for spatiotemporal data mining: A

survey,” IEEE TKDE, vol. 34, no. 8, pp. 3681–

3700, 2020.

[14] J. Ye, J. Zhao, K. Ye, and C. Xu, “How to build

a graph-based deep learning architecture in

traffic domain: A survey,” IEEE TITS, vol. 23,

no. 5, pp. 3904–3924, 2020.

[15] G. Jin, Y. Liang, Y. Fang, J. Huang, J. Zhang,

and Y. Zheng, “Spatio-temporal graph neural

networks for predictive learning in urban

computing: A survey,” arXiv preprint, vol.

abs/2303.14483, 2023.

[16] S. Rahmani, A. Baghbani, N. Bouguila, and Z.

Patterson, “Graph neural networks for

intelligent transportation systems: A survey,”

IEEE TITS, 2023.

[17] K. Hundman, V. Constantinou, C. Laporte, I.

Colwell, and T. Soderstr ¨ om, “Detecting

spacecraft anomalies using lstms and ¨

nonparametric dynamic thresholding,” in KDD,

2018, pp. 387– 395.

[18] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D.

Pei, “Robust anomaly detection for multivariate

time series through stochastic recurrent neural

network,” in KDD, 2019, pp. 2828–2837.

[19] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly

transformer: Time series anomaly detection with

association discrepancy,” in ICLR, 2022.

[20] Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X.

Cheng, “Learning graph structures with

transformer for multivariate time-series

anomaly detection in iot,” IEEE IoT Journal,

vol. 9, no. 12, pp. 9179–9189, 2021.

[21] S. Moritz and T. Bartz-Beielstein, “imputets:

time series missing value imputation in r.” R J.,

vol. 9, no. 1, p. 207, 2017.

[22] M. Saad, M. Chaudhary, F. Karray, and V.

Gaudet, “Machine learning based approaches

for imputation in time series data and their

impact on forecasting,” in SMC, 2020, pp.

2621–2627.

[23] Z. Che, S. Purushotham, K. Cho, D. Sontag, and

Y. Liu, “Recurrent neural networks for

multivariate time series with missing values,”

Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[24] M. Jin, Y. Zheng, Y.-F. Li, S. Chen, B. Yang,

and S. Pan, “Multivariate time series forecasting

with dynamic graph neural odes,” IEEE TKDE,

2022.

[25] G. Lai, W. Chang, Y. Yang, and H. Liu,

“Modeling long- and shortterm temporal

patterns with deep neural networks,” in SIGIR,

2018, pp. 95–104.

[26] S.-Y. Shih, F.-K. Sun, and H.-y. Lee, “Temporal

pattern attention for multivariate time series

forecasting,” Machine Learning, vol. 108, pp.

1421–1441, 2019

[27] A. D. Richardson, M. Aubinet, A. G. Barr, D.

Y. Hollinger, A. Ibrom, G. Lasslop, and M.

Reichstein, “Uncertainty quantification,” Eddy

covariance: A practical guide to measurement

and data analysis, pp. 173–209, 2012.

[28] M. Abdar, F. Pourpanah, S. Hussain, D.

Rezazadegan, L. Liu, M. Ghavamzadeh, P.

Fieguth, X. Cao, A. Khosravi, U. R. Acharya et

al., “A review of uncertainty quantification in

deep learning: Techniques, applications and

challenges,” Information Fusion, vol. 76, pp.

243–297, 2021.

[29] Y. Li, B. Qian, X. Zhang, and H. Liu,

“Knowledge guided diagnosis prediction via

graph spatial-temporal network,” in SDM, 2020,

pp. 19–27.

[30] H. Wen, Y. Lin, X. Mao, F. Wu, Y. Zhao, H.

Wang, J. Zheng, L. Wu, H. Hu, and H. Wan,

“Graph2route: A dynamic spatial-temporal

graph neural network for pick-up and delivery

route prediction,” in KDD, 2022, pp. 4143–

4152.

[31] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan,

“Attention based spatial-temporal graph

convolutional networks for traffic flow

forecasting,” in AAAI, 2019, pp. 922–929.

[32] D. Huang, J. Bartel, and J. Palowitch,

“Recurrent graph neural networks for rumor

detection in online forums,” arXiv preprint, vol.

abs/2108.03548, 2021.

[33] L. Wu, P. Cui, J. Pei, L. Zhao, and L. Song,

Graph neural networks. Springer, 2022.

© NOV 2023 | IRE Journals | Volume 7 Issue 5 | ISSN: 2456-8880

IRE 1705196 ICONIC RESEARCH AND ENGINEERING JOURNALS 82

[34] W. L. Hamilton, Z. Ying, and J. Leskovec,

“Inductive representation learning on large

graphs,” in NeurIPS, 2017, pp. 1024–1034.

[35] J. Chen, J. Zhu, and L. Song, “Stochastic

training of graph convolutional networks with

variance reduction,” in ICML, vol. 80, 2018, pp.

941–949.

[36] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast

learning with graph convolutional networks via

importance sampling,” in ICLR, 2018.

[37] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and

C. Hsieh, “Clustergcn: An efficient algorithm

for training deep and large graph convolutional

networks,” in KDD, 2019, pp. 257–266.

[38] X. Wang, D. Wang, L. Chen, and Y. Lin,

“Building transportation foundation model via

generative graph transformer,” arXiv preprint,

vol. abs/2305.14826, 2023.

[39] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and

X. Wu, “Unifying large language models and

knowledge graphs: A roadmap,” arXiv preprint,

vol. abs/2306.08302, 2023.

[40] G. Panagopoulos, G. Nikolentzos, and M.

Vazirgiannis, “Transfer graph neural networks

for pandemic forecasting,” in AAAI, 2021, pp.

4838–4845.

[41] X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei,

Y. Wang, Y. Tian, and W. Gao, “Large-scale

multi-modal pre-trained models: A

comprehensive survey,” arXiv preprint, vol.

abs/2302.10035, 2023.

[42] W. Xi, A. Jain, L. Zhang, and J. Lin, “Lb-

simtsc: An efficient similarity-aware graph

neural network for semi-supervised time series

classification,” arXiv preprint, vol.

abs/2301.04838, 2023.

[43] D. Zha, K.-H. Lai, K. Zhou, and X. Hu,

“Towards similarity-aware time-series

classification,” in SDM, 2022, pp. 199–207.

[44] K. Chen, M. Feng, and T. S. Wirjanto,

“Multivariate time series anomaly detection via

dynamic graph forecasting,” arXiv preprint, vol.

abs/2302.02051, 2023.

[45] Y. Zheng, H. Y. Koh, M. Jin, L. Chi, K. T.

Phan, S. Pan, Y.-P. P. Chen, and W. Xiang,

“Correlation-aware spatial-temporal graph

learning for multivariate time-series anomaly

detection,” arXiv preprint, vol. abs/2307.08390,

2023.

[46] W. Zhang, C. Zhang, and F. Tsung, “Grelen:

Multivariate time series anomaly detection from

the perspective of graph relational learning,” in

IJCAI, 2022, pp. 2390–2397.

[47] G. Shen, W. Zhou, W. Zhang, N. Liu, Z. Liu,

and X. Kong, “Bidirectional spatial-temporal

traffic data imputation via graph attention

recurrent neural network,” Neurocomputing,

vol. 531, pp. 151–162, 2023.

[48] X. Kong, W. Zhou, G. Shen, W. Zhang, N. Liu,

and Y. Yang, “Dynamic graph convolutional

recurrent imputation network for spatiotemporal

traffic missing data,” KBS, vol. 261, p. 110188,

2023.

[49] M. Jin, G. Shi, Y.-F. Li, Q. Wen, B. Xiong, T.

Zhou, and S. Pan, “How expressive are spectral-

temporal graph neural networks for time series

forecasting?” arXiv preprint, vol.

abs/2305.06587, 2023.

[50] A. Cini*, I. Marisca*, F. Bianchi, and C. Alippi,

“Scalable spatiotemporal graph neural

networks,” in AAAI, 2023.

[51] H. Yu, T. Li, W. Yu, J. Li, Y. Huang, L. Wang,

and A. Liu, “Regularized graph structure

learning with semantic knowledge for multi-

variates time-series forecasting,” in IJCAI,

2022, pp. 2362–2368.

