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Abstract- The predominant data modality employed 

for the documentation of dynamic system 

measurements is time series, which emanates 

prolifically from physical sensors and online 

processes (virtual sensors). The imperative role of 

time series analytics in extracting the inherent 

wealth of information from available data is 

underscored by recent advancements in graph 

neural networks (GNNs). These networks have 

witnessed a notable surge in their application for 

time series analysis, owing to their capacity to 

explicitly model inter-temporal and inter-variable 

relationships—attributes that traditional and other 

deep neural network-based methodologies find 

challenging. This review endeavors to 

comprehensively review graph neural networks for 

time series analysis (GNN4TS), encompassing four 

fundamental dimensions: forecasting, classification, 

anomaly detection, and imputation. The 

overarching objective is to serve as a guiding 

resource for designers and practitioners, facilitating 

an enhanced understanding, application 

development, and progression of research within the 

domain of GNN4TS.Linear Architectures are also 

discussed in this very research. Neural Architecture 

Search (NAS) has exhibited notable advancements 

in optimizing Graph Neural Networks (GNNs), 

denoted as NAS-GNNs, outperforming manually 

designed GNN architectures. Nevertheless, 

challenges inherited from conventional NAS 

methods, including elevated computational costs 

and optimization complexities, persist. Notably, 

prior NAS approaches have tended to overlook the 

inherent characteristics of GNNs, which inherently 

possess expressive power without the necessity for 

training. Notably, NAC achieves up to a 200× 

acceleration in computational efficiency and a 

19.9% enhancement in accuracy compared to 

robust baseline methods. 

 

Indexed Terms- Graph neural networks, Linear 

architecture search, Time series Applications. 

 

I. INTRODUCTION 

 

In recent years, the application of graph neural 

networks (GNNs) has emerged as a potent 

methodology for acquiring non-Euclidean data 

representations [1], facilitating the modeling of real-

world time series data. This approach proves 

instrumental in capturing intricate and diverse 

relationships, encompassing both inter-variable 

connections within multivariate series and inter-

temporal dependencies across different temporal 

points. Recognizing the inherent spatial-temporal 

complexities within real-world scenarios, a body of 

research has amalgamated GNNs with diverse 

temporal modeling frameworks to encapsulate both 

spatial and temporal dynamics, yielding promising 

outcomes [2]. 
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While initial investigations predominantly focused on 

various forecasting scenarios [3], recent strides in 

time series analysis leveraging GNNs have exhibited 

favorable results across other key tasks, including 

classification [4], anomaly detection [5], and 

imputation [6].The proliferation of advanced sensing 

technologies and data stream processing has 

engendered an unprecedented influx of time series 

data [7]. The analysis of time series data not only 

facilitates retrospective trend identification but also 

underpins a spectrum of tasks such as forecasting [8], 

classification [9], anomaly detection [10], and data 

imputation [11]. This substantiates the foundation for 

time series modeling paradigms that leverage 

historical data to comprehend present and future 

possibilities. Time series analytics has assumed 

heightened significance across diverse domains, 

spanning cloud computing, transportation, energy, 

finance, social networks, and the Internet-of-Things 

[12]. 

 

 
Fig. 1: Graph neural networks for time series analysis 

(GNN4TS) and neural linear architecture search. 

 

II. LITERATURE REVIEW 

 

Despite the burgeoning body of research dedicated to 

various time series analytic tasks employing Graph 

Neural Networks (GNNs), extant surveys often 

exhibit a proclivity for specific perspectives within 

delimited scopes. Notably, the survey conducted by 

Wang et al. [13] provides a comprehensive review of 

deep learning techniquesfor spatial-temporal data 

mining; however, its focus is not specifically directed 

towards GNN-based methodologies. Similarly, the 

survey conducted by Ye et al. [14] delves into graph-

based deep learning architectures within the traffic 

domain, with a primary emphasis on forecasting 

scenarios. A more recent survey by Jin et al. [15] 

furnishes an overview of GNNs applied to predictive 

learning in urban computing; however, it confines its 

coverage to this application domain and does not 

thoroughly address other tasks pertinent to time series 

analysis. To address the identified gap in the existing 

literature, the present survey endeavors to furnish a 

comprehensive and contemporaneous examination of 

graph neural networks applied to time series analysis. 

Encompassing a spectrum of tasks, including time 

series forecasting, classification, anomaly detection, 

and imputation, this survey adopts a systematic 

approach. The initial phase involves the presentation 

of two overarching perspectives for the classification 

and discussion of extant works, focusing on both task 

and methodology-oriented considerations.  

 

Subsequently, the survey delves into an exploration 

of six prominent application sectors within the 

domain of Graph Neural Networks for Time Series 

Analysis (GNN4TS). To further contribute to the 

scholarly discourse, the survey concludes by positing 

several potential future research directions. The key 

contributions of this survey are succinctly 

summarized as follows: 

 This survey stands as the inaugural 

comprehensive examination, systematically 

reviewing recent advancements in mainstream 

time-series analysis tasks employing graph neural 

networks. It spans a diverse array of recent 

research initiatives, presenting an extensive 

perspective on the evolution of Graph Neural 

Networks for Time Series Analysis (GNN4TS) 

without confining its scope to specific tasks or 

domains. 

 This study presents a unified framework for the 

structural categorization of existing works within 

the domain of Graph Neural Networks for Time 

Series Analysis (GNN4TS), employing a dual 

perspective based on tasks and methodologies. 

The first classification provides a comprehensive 

overview of tasks inherent in time series analysis, 

addressing diverse problem settings prevalent in 

GNN-based research. The second classification 

dissects GNN4TS with a focus on spatial 

andtemporal dependencies modeling, alongside 

an in-depth exploration of the overall model 

architecture. 

 A thorough review is conducted to illuminate the 

Linear Architecture implemented through GNN, 
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ensuring comprehensive coverage of the breadth 

of the field. This review extends beyond a 

superficial examination, incorporating fine-

grained classification and detailed discussions to 

provide readers with an updated comprehension 

of the current state-of-the-art in GNN4TS. 

 The study additionally explores the expanding 

applications of GNN4TS across various sectors, 

emphasizing its versatility and potential for future 

growth in diverse fields. Furthermore, the 

research sheds light on prospective directions for 

future research, offering insights and suggestions 

that may serve as guidance and inspiration for 

subsequent investigations within the field of 

GNN4TS. 

 

III. RELATED BACKGROUND 

 

Time series data encompasses a sequence of 

observations congregated or documented over a 

period. This data can beeither regularly or irregularly 

sampled, with the latter alsoreferred to as time series 

data with missing values. Withineach of these cases, 

the data can be further classified intotwo primary 

types: univariate and multivariatetime series. Inthe 

sequel, we employ bold uppercase letters (e.g., X), 

boldlowercase letters (e.g., x), and calligraphic letters 

(𝑒. 𝑔. , 𝒱)  todenote matrices, vectors, and sets, 

respectively.Most of the research grounded on GNNs 

concentrates onmodeling multivariate time series, as 

they can be naturally abstracted into spatial-temporal 

graphs. This abstractionallows for an accurate 

characterization of dynamic inter-temporal and inter-

variable dependencies. The former describes the 

relations between different time steps withineach 

time series (e.g., the temporal dynamics of red 

nodesbetween t1 and t3 in Fig. 2), while the latter 

capturesdependencies between time series (e.g., the 

spatial relationsbetween four nodes at each time step 

in Fig. 2), such as thegeographical information of the 

sensors generating the datafor each variable. To 

illustrate this, we first define attributedgraphs. 

 

 
Fig. 2: Illustrations of spatial-temporal graphs. 

 

Considering, a spatial-temporal graph can be 

described as a series of attributed graphs, which 

effectively represent (multivariate) time series data in 

conjunction with either evolving or fixed structural 

information over time.  

 

Graph neural networks (GNNs) are introduced as 

contemporary deep learning models designed for the 

processing of graph-structured data. The central 

operation within conventional GNNs, commonly 

denoted as graph convolution, entails the exchange of 

information among neighboring nodes. In the realm 

of time series analysis, this operation facilitates the 

explicit consideration of inter-variable dependencies 

as delineated by the graph edges. Cognizant of the 

varied intricacies, GNNs are characterized within the 

spatial domain, entailing the transformation of the 

input signal through learnable functions along the N-

dimensional dimension. 

 

GNN Definition: - Given an attributed graph G = (A, 

X), we define xi = X[i,:] ∈ℝDas the D-dimensional 

feature vector of node vi. A GNN learns node 

representations through two primary functions: 

AGGREGATE (·) and COMBINE (·).  

 

The AGGREGATE (·) function computes and 

aggregates messages from neighboring nodes, while 

the COMBINE (·) function merges the aggregated 

and previous states to transform node embeddings. 

Formally, the k-th layer in a GNN is defined by the 

extended 

 

ai
(k)= AGGREGATE(k) ({𝑕_𝑗^((𝑘 − 1) ): 𝑣_𝑗 ∈

𝒩(𝑣_𝑖 )}),  

hi
(k) = COMBINE(k)〖(𝑕〗_𝑖^((𝑘 − 1) ),  ai

(k)), (1) 
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or, more generally, aggregating messages computed 

from both sending and receiving nodes vj and vi, 

respectively. Here,ai
(k)and hi

(k)represent the 

aggregated message from neighbors and the 

transformed node embedding of node vi in the k-th 

layer, respectively. The input and output of a GNN 

are hi
 (0): = xi and hi

(K): =hi. 

 

IV. METHODOLOGY 

 

Time-Series Applications using Graph Neural 

Networks: 

 

Time series analysis using Graph Neural Networks 

(GNNs) has garnered considerable attention due to its 

capacity to model complex relationships and 

dependencies within temporal data. The application 

of GNNs in this context extends across various 

domains, showcasing their versatility and efficacy. 

Here, we explore a few key applications of GNNs in 

time series analysis: 

 

1. Time Series Forecasting: GNNs excel in capturing 

intricate temporal dependencies, making them well-

suited for time series forecasting. By leveraging the 

inherent graph structure of time series data, GNNs 

can discern patterns and trends, enhancing the 

accuracy of predictions. This application is 

particularly valuable in domains such as finance, 

weather prediction, and energy consumption 

forecasting. 

2. Anomaly Detection: Identifying anomalies in time 

series data is crucial for various industries, including 

cyber security, healthcare, and manufacturing. GNNs 

can effectively detect unusual patterns by learning the 

normal behavior of the time series data. Anomalies, 

represented as deviations from the learned patterns, 

can be flagged for further investigation. 

 

3. Classification in Time Series Data: GNNs offer a 

powerful approach to classifying time series data into 

different categories. This is valuable in scenarios 

where the temporal dynamics of the data play a 

significant role in determining its class. Applications 

include activity recognition in motion sensor data, 

event detection in social networks, and disease 

classification in healthcare. 

 

 
Fig 3: Wide-ranging pipeline for time series analysis 

using Gnn‟s 

 

4. Imputation of Missing Data: Time series data often 

suffer from missing values, which can hinder the 

analysis. GNNs can be employed to impute missing 

data points by leveraging information from 

neighboring time points. This is beneficial in 

domains like finance, where incomplete historical 

stock prices or economic indicators may impede 

accurate analysis. 

 

5. Dynamic Graphs for Evolving Time Series: Many 

real-world systems exhibit dynamic changes over 

time, leading to variations in the underlying 

relationships within the time series data. GNNs with 

dynamic graph structures can adapt to these changes, 

making them suitable for applications in dynamic 

social networks, evolving financial markets, and 

changing environmental conditions. 

 

 Time Series Forecasting: - 

This task is centered around predicting future values 

of the time series based on historical observations, as 

depicted in Fig. 4a. Depending on application needs, 

we categorize this task into two types: single-step-

ahead forecasting and multi-step-ahead forecasting. 

The former is meant to predict single future 

observations of the time series once at a time, i.e., the 

target at time t isY: = Xt+Hfor some H∈ℕ steps ahead, 

while the latter makes predictions for a time interval, 

e.g., Y := Xt+1:t+H. Parameterized solutions to both 

predictive cases can be derived by optimizing, 

 

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐹 (𝑝𝜑(𝑓_𝜃  (X_(𝑡 −

𝑇: 𝑡), A_(𝑡 − 𝑇: 𝑡)  )), Y), (2) 

where f𝜃(·) and p𝜑 (·)represent a spatial-temporal 

GNN and the predictor, respectively. In the sequel, 

we denote by 𝑋_(𝑡 − 𝑇: 𝑡)and 𝐴_(𝑡 − 𝑇: 𝑡)a spatial-

temporal graph with length. 
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 Time Series Imputation: - 

This task is centered around estimating and filling in 

missing or incomplete data points within a time 

series. Current research in this domain can be broadly 

classified into two main approaches: in-sample 

imputation and out-of-sample imputation. In-sample 

imputation involves filling missing values in a given 

time series, while out-of-sample imputation pertains 

to inferring missing data not present in the training 

dataset. We formulate the learning objective as 

follows: 

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐼 (𝑝𝜑(𝑓_𝜃  (X ̃_(𝑡 −

𝑇: 𝑡), 𝐴_(𝑡 − 𝑇: 𝑡)  )), X_(𝑡 − 𝑇: 𝑡) ),                                  

(3) 

where f𝜃(·) and p𝜑 (·)denote the spatial-temporal 

GNN and imputation module to be learned, 

respectively. The imputation module can e.g., be a 

multi-layer perceptron. In this task, 𝑋 ̃_(𝑡 −

𝑇: 𝑡)represents input time series data with missing 

values (reference time series), while 𝑋_(𝑡 −

𝑇: 𝑡)denotes the same time series without missing 

values. 

 

 Time Series Classification: - 

This task aims to assign a categorical label to a given 

time series based on its underlying patterns or 

characteristics. Rather than capturing patterns within 

a time series data sample, the essence of time series 

classification resides in discerning differentiating 

patterns that help separate samples based on their 

class labels. The optimization problem can be 

expressed as: 

𝜃^ ∗, 𝜑^ ∗ = arg min ℒ_𝐶 (𝑝𝜑(𝑓_𝜃  (X, A )), Y),                                         

(4) 

where f𝜃(·) and p𝜑 (·)denote, e.g., a GNN and a 

classifier to be learned, respectively. Using univariate 

time series classification as an example, the task can 

be formulated as either a graph or node classification 

task. In the case of graph classification (Series-As-

Graph)[16], each series is transformed into a graph, 

and the graph will be the input of a GNN to generate 

a classification output. This can be achieved by 

dividing a series into multiple subsequence‟s with a 

window size, W, serving as graph nodes, X∈ℝN×W, 

and an adjacency matrix, A, describing the 

relationships between subsequence‟s. 

 

 

 Time Series Anomaly Detection: - 

 This task is centered on the identification of 

irregularities and unexpected events in time series 

data. The process of anomaly detection entails 

both determining when anomalous events 

occurred and gaining insights into the underlying 

factors contributing to the anomalies. Given the 

inherent challenges associated with acquiring 

labeled anomaly events, contemporary research 

predominantly treats anomaly detection as an 

unsupervised problem. This involves designing a 

model that characterizes normal, non-anomalous 

data. Subsequently, the trained model is deployed 

to detect anomalies by generating elevated scores 

when anomalous events manifest. 

 The model learning process aligns with the 

optimization for forecasting, as denoted by Eq. 2, 

wherein fθ(·) and pϕ(·) represent the spatial-

temporal Graph Neural Network (GNN) and the 

predictor, respectively. Typically, both the 

spatial-temporal GNN and the predictor are 

trained on normal, non-anomalous data, 

employing forecasting [17] or reconstruction [18] 

optimization methodologies. The objective is to 

minimize the discrepancy between the normal 

input and the forecasted (or reconstructed) series. 

However, when these models are tasked with 

anomaly detection, their failure to conform to 

expected low-discrepancy behavior during 

anomaly periods creates discernible differences, 

facilitating anomaly detection. 

 The determination of the threshold demarcating 

normal and anomalous data represents a crucial 

hyperparameter, necessitating consideration of the 

rarity of anomalies and alignment with a specified 

false alarm rate [19]. Finally, for diagnosing the 

causes of anomalies, a prevalent strategy involves 

computing discrepancies for each channel node 

and consolidating these into a singular anomaly 

score [20]. This approach enables the 

identification of channel variables responsible for 

anomaly events by assessing their respective 

contributions to the final anomaly score. 

 

The Spatial Module of Spatio-Temporal Graph 

Neural Networks (STGNNs) is designed to model 

dependencies between time series over time, drawing 

inspiration from the principles of Graph Neural 
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Networks (GNNs) applied to static graphs. This 

module encompasses three distinct types: spectral 

GNNs, spatial GNNs, and a hybrid combination of 

both. Spectral GNNs leverage spectral graph theory 

and utilize graph shift operators, such as the graph 

Laplacian, to capture node relationships in the graph 

frequency domain[21]. In contrast, spatial GNNs 

simplify spectral GNNs by directly designing filters 

localized to each node's neighborhood. Hybrid 

approaches amalgamate both spectral and spatial 

methodologies to harness the strengths of each 

method[22]. 

 

The Temporal Module is introduced in STGNNs to 

account for temporal dependencies within time series 

data.Temporal dependencies can be represented in 

either the time or frequency domains. In the first 

category, methods include recurrence-based 

approaches (e.g., RNNs), convolution-based methods 

(e.g., Temporal Convolutional Networks - TCNs), 

attention-based techniques (e.g., Transformers), and 

hybrid combinations of these. The second category 

employs analogous techniques, incorporating 

orthogonal space projections like the Fourier 

transform[23]. 

 

Concerning Model Architecture, existing STGNNs 

can be classified as either discrete or continuous in 

terms of their overall neural architectures. These 

types further categorize into factorized and coupled 

subcategories[24]. Factorized STGNN model 

architectures entail temporal processing either before 

or after spatial processing, either discretely (e.g., 

Spatio-Temporal Graph Convolutional Network - 

STGCN) or continuously (e.g., Spatio-Temporal 

Graph Ordinary Differential Equation - STGODE). 

Conversely, coupled model architectures refer to 

instances where spatial and temporal modules are 

interleaved, exemplified by models such as Discrete 

ChebNet Recurrent Neural Network (DCRNN) and 

Continuous MTGODE. Alternative nomenclature 

designates these categories as time-then-space and 

time-and-space architectures [25]. 

 

 Linear Architecture Search: 

 

 
Fig 4: The proposed NAC architecture in one layer. 

 

With a fixed dictionary, NAC learns the architecture 

immediately. NAC-updating refreshes the dictionary 

in training, with a dashed line indicating the 

additional step. 

 

Algorithm:The NAC algorithm  

Require: The search space 𝒜; 

Ensure: The architecture 𝛼 

          Randomly initializingW l, for 𝑙 = 1, . . . , L; set 

α = 1; 

1: while t=1,..,T do 

2:      Performing the feature aggregation at each 

layer aso-l  (x)= ol 𝛼 l =  
𝛼𝑙𝑘

 𝛼 2
𝑜𝑙𝑘 𝑥 ;𝐾

𝑘=1  

3:      Computing𝑕𝑣
𝑙 =  ∅ 𝑊 𝑙 ⋅ 0−𝑙 ⋅   𝑕𝑢     ,

𝑙−1  ∀𝓊 ∈

 𝒩 𝓋    ; 

4:      Optimizingαbased on the objective function;  

5:      UpdatingW0based on the objective function; 

6:  end while 

7:  Obtain the final architecture {α*} from the 

trainedα via an argmax operation at each layer; 

 

In this work, we propose two realizations of NAC, 

namely NAC and NAC-updating. The computation of 

NAC has two major parts: the forward pass and the 

backward pass. Given the search space, the 

computation of the forward is then fixed, regarding as 

a constant. Therefore, the computational complexity 

mainly focuses on the backward pass in the NAC 

algorithms. 

 

The main version of our work has no need to update 

weights, but only to update architectural parameter α 

during the training process. Therefore, the 

algorithmic complexity is as O (T ∗∥α∥), which is a 

linear function w.r.t α. The dimension of α is often 
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small, which makes the model easy to scale to large 

datasets and high search space. It is called„NAC‟.  

 

When updating weights, like DARTS, the complexity 

is estimated as O (T ∗ (∥α∥ + ∥w∥)). The dimension 

of w is often much larger than α, therefore, the 

complexity is dominated by updating w, where the 

complexity is O (T ∗∥w∥). Since the dimension of α is 

much smaller than w, the complexity of NAC is 

much less than this version. 

 

Searching configuration is presented as: 

1. Architecture optimizer: Adam is used for training 

the architecture parameters α. The learning rate is 

set as 0.0004 and the weight decayas 0.001. Also, 

the β1 and β2 are fixed as 0.6 and 0.999, 

respectively. All runs a constant schedule for 

training, such as 100 epochs.  

2. Weight optimizer: SGD is used to update models‟ 

parameters, i.e., w. The learning rate and SGD 

momentum are given as 0.027 and 0, respectively, 

where the learning rate has a cosine decay 

schedule for 100 epochs. The weight decay value 

is fixed as, i.e., set ρ1 = 0.0006.  

3. Batch size: For transudative tasks, in-memory 

datasets are utilized, and the batch size is fixed as 

the size of the dataset themselves. 

 

V. DISCUSSION & ANALYSIS 

 

Time series classification task seeks to assign a 

categorical label to a given time series based on its 

underlying patterns or characteristics. By 

transforming time series data into graph 

representations, one can leverage the powerful 

capabilities of GNNs to capture both local and global 

patterns. Furthermore, GNNs are capable of mapping 

the intricate relationships among different time series 

data samples within a particular dataset. 

 

Table 1: GNNs for Time Series Classification 

Appr

oach  

Task  Spa

tial 

Mo

dul

e  

Temp

oral 

Modu

le  

Conv

ersion 

Grap

h 

Heur

istics 

LB-

Sim

Univariate+

Multivariate 

Spa

tial 

Time 

Doma

Series

-As-

Pair

wise 

TSC 

[42] 

2023 

Time series 

classificatio

n 

GN

N 

in-

Conv

olutio

n 

Node Simi

larity 

Sim

TSC 

[43] 

2022 

 

Univariate+

Multivariate 

Time series 

classificatio

n 

Spa

tial 

GN

N 

Time 

Doma

in-

Conv

olutio

n 

Series

-As-

Node 

Pair

wise 

Simi

larity 

 

The advent of deep learning has sparked significant 

advancements, drawing lessons from earlier methods. 

Early research in this area proposed recurrent models 

with reconstruction, and forecasting [26] strategies 

respectively to improve anomaly detection in 

multivariate time series data. The forecasting and 

reconstruction strategies rely on forecast and 

reconstruction errors as discrepancy measures 

between anticipated and real signals. These strategies 

rely on the fact that, if a model trained on normal 

data fails to forecast or reconstruct some data, then it 

is more likely that such data is associated with an 

anomaly. However, recurrent models [27] are found 

to lack explicit modeling of pairwise interdependence 

among variable pairs, limiting their effectiveness in 

detecting complex anomalies [28]. Recently, GNNs 

have shown promising potential to address this gap 

by effectively capturing temporal and spatial 

dependencies among variable pairs [29]. 

 

Table 2: GNNs for Time Series Anomaly Detection 

Appro

ach  

Architecture  Spa

tial 

Mo

dul

e  

Temp

oral 

Modu

le  

Lear

ned 

Rela

tion

s 

Grap

h 

Heur

istics 

DyGr

aphA

D 

[44] 

2023 

Forecast+Rel

ational 

Discrepancie

s 

Spa

tial 

GN

N 

Time 

Doma

in-

Conv

olutio

n 

NA Pair

wise 

Simi

larit

y 

CST-

GL 

[45] 

2023 

Forecast Spa

tial 

GN

N 

Time 

Doma

in-

Conv

olutio

Stati

c 

NA 
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n 

Grele

n [46] 

2022 

Reconstructi

on+Relationa

l 

Discrepancie

s 

Spa

tial 

GN

N 

Time 

Doma

in-

Hybri

d 

Dyn

ami

c 

NA 

 

Time series imputation, a crucial task in numerous 

real-world applications, involves estimating missing 

values within one or more data point sequences. 

Traditional time series imputation approaches have 

relied on statistical methodologies, such as mean 

imputation, spline interpolation [30], and regression 

models [31]. However, these methods often struggle 

to capture complex temporal dependencies and non-

linear relationships within the data. While some deep 

neural network-based works, such as [32],have 

mitigated these limitations, they have not explicitly 

considered inter-variable dependencies. The recent 

emergence of graph neural networks has introduced 

new possibilities for time series imputation. From a 

task perspective, GNN-based time series imputation 

can be broadly categorized into two types: in-sample 

imputation and out-of-sample imputation. The former 

involves filling in missing values within the given 

time series data, while the latter predicts missing 

values in disjoint sequences. 

 

Table 3: GNNs for Time Series Imputation 

Appr

oach  

Tas

k  

Spat

ial 

Mod

ule  

Tempo

ral 

Modul

e  

Type Graph 

Heuristi

cs 

GAR

NN 

[47]2

023 

In-

sam

ple 

Spat

ial 

GN

N 

Time 
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Time series forecasting aims to predict future time 

series values based on historical observations. In 

recent years, deep learning-based approaches have 

demonstrated considerable success in forecasting 

time series by capturing non-linear temporal and 

spatial patterns more effectively than the linear 

counterpart [33]. Techniques such as recurrent neural 

networks (RNNs), convolutional neural networks 

(CNNs), and attention-based neural networks have 

been employed. However, many of these approaches, 

such as LSTNet [34] and TPA-LSTM [35], overlook 

and implicitly model the rich underlying dynamic 

spatial correlations between time series. Recently, 

graph neural network (GNN)- based methods have 

shown great potential in explicitly and effectively 

modeling spatial and temporal dependencies in 

multivariate time series data, leading to enhanced 

forecasting performance. 

 

Table 4: GNNs for Time Series Forecasting 
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The effect of training on the final linear layer: 

Proposed theorems prove that a GNN with randomly 

initialized weights can make the final output as good 

as a well-trained network when initializing networks 

with orthogonal weights and updating the total 

network using gradient descent. In practice, we find it 
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difficult to determine at what training epoch the 

optimal weight parameters can be obtained through 

training linear layer. We noticed that most of the 

time, the untrained weights in the initial state can 

often already exceed the accuracy that can be 

obtained from the weights after multiple epochs of 

training the final linear layer, as shown 

 

 
Figure 6: The effects of random seeds of NAC on the 

accuracy, where x-axis denotes the random seeds and 

y-axis denotes the sparsity. NAC performs stably 

with random seeds. 

 

Therefore, we further omit the training of the final 

linear layer. It is important to note that this 

approximation is based on our proposed theorems in 

which most of the intermediate layers do not require 

training. 

 

 
Figure 7: The effects of training final linear layer of 

NAC on the accuracy, 

 

where x-axis denotes the training epochs of the final 

linear layer and y-axis denotes the averaged 

accuracy of acquired architecture α using the 

corresponding weights. 

 

 

VI. FUTURE SCOPE & DIRECTIONS 

 

Time series data, inherently characterized by 

unpredictable noise and uncertainty in the data-

generating process, necessitates robust models 

capable of quantifying uncertainty for enhanced 

reliability and utility [36]. The incorporation of 

uncertainty quantification offers a probabilistic 

measure, contributing to the model's ability to 

express confidence in predictions and system state 

estimates. Uncertainty quantification provides a 

probabilistic measure of the confidence to the 

predictions made by the model and to the system 

state estimatesaiding in the understanding of the 

range and likelihood of potential outcomes [37]. This 

holds particular significance when Graph Neural 

Networks (GNNs) are employed in decision-making 

processes within high-stakes domains, such as 

financial forecasting, healthcare monitoring [38], or 

traffic prediction in smart cities [39]. Despite 

advancements, a gap persists in existing GNN 

models, predominantly providing point estimates 

[40], [41], thereby inadequately addressing potential 

uncertainties. This underscores a critical research 

direction: the development of sophisticated 

uncertainty quantification methods for GNNs to 

navigate the complexities inherent in time series 

data.Strategies such as pretraining, transfer learning, 

and the utilization of large models are emerging as 

potent approaches to enhance GNN performance in 

time series analysis, particularly in scenarios 

involving sparse or diverse data. These techniques 

rely on leveraging learned representations from one 

or more domains to improve performance in related 

domains. Noteworthy examples include 

Panagopoulos et al.'s model-agnostic meta-learning 

schema for predicting the spread of COVID-19 in 

data-limited cities and Shao et al.'s pre-training 

enhanced framework for spatial-temporal GNNs. The 

exploration of pre-training strategies and GNN 

transferability for time series tasks constitutes a 

burgeoning research area, particularly in the 

contemporary era of generative AI and large models, 

showcasing the potential for a unified, multimodal 

model to address diverse tasks. 
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CONCLUSION 

 

This comprehensive survey addresses the knowledge 

gap in the realm of graph neural networks for time 

series analysis (GNN4TS) through an exhaustive 

review of recent advancements and the establishment 

of a unified taxonomy for categorizing existing works 

from both task- and methodology-oriented 

perspectives. Pioneering in its approach, the survey 

encompasses a diverse array of tasks, including 

forecasting, classification, anomaly detection, and 

imputation, providing an intricate understanding of 

the current state of the art in GNN4TS. The survey 

meticulously explores the complexities of spatial and 

temporal dependencies modeling and overall model 

architecture, offering a nuanced classification of 

individual studies. By emphasizing the expanding 

applications of GNN4TS across various sectors, the 

survey underscores its versatility and potential for 

future growth. This compilation serves as a valuable 

resource for machine learning practitioners and 

domain experts seeking insights into the latest 

advancements in this field. Lastly, the survey 

proposes potential future research directions, 

presenting insights aimed at guiding and inspiring 

subsequent work in GNN4TS.Additionally, the 

survey introduces the first linear complexity Neural 

Architecture Search (NAS) algorithm for Graph 

Neural Networks (GNNs), termed Neural 

Architecture Coding (NAC). NAC, solved through 

sparse coding, features a no-update scheme for model 

weights in GNNs, capitalizing on the inherent 

linearity and orthogonality of model weights within 

GNNs. Extensive experiments affirm that NAC 

achieves superior accuracy (up to 19.9%) and 

significantly faster convergence (up to 200×) 

compared to state-of-the-art NAS-GNN baselines. 

Several promising directions for future exploration 

are identified, including the investigation of deep 

neural networks adhering to the mild conditions of 

NAC for expanded applicability. Further exploration 

into the efficiency of different sub gradient methods 

for solving the sparse coding objective is 

recommended. Additionally, a proposed avenue for 

investigation involves jointly learning the search 

space and architectural representation to enhance the 

expressive ability of searched architectures. 
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