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Abstract—Large language models (LLMs) exhibit 

superior performance but demand substantial 

computational and memory resources. 

Quantization emerges as a viable strategy to 

alleviate memory requirements and expedite 

inference. Nonetheless, extant quantization 

methods encounter challenges in preserving 

accuracy and ensuring hardware efficiency. This 

research introduces SmoothQuant, an innovative, 

training-free, and accuracy-preserving post-

training (PTQ) approach, specifically designed to 

facilitate 8-bit weight and 8-bit activation (W8A8) 

quantization for LLMs. Leveraging the insight that 

weights are amenable to quantization while 

activations pose challenges, SmoothQuant 

addresses this imbalance by mitigating activation 

outliers. With the continuous evolution of artificial 

intelligence (AI) technologies, integrating 

innovative AI models into the field of nuclear 

medicine holds immense promise. This research 

paper explores the synergistic potential of 

combining Large Language Models (LLMs) and 

SmoothQuant, a state-of-the-art post-training 

quantization technique, to achieve advanced 

imaging precision in nuclear medicine. This is 

achieved through an offline migration of the 

quantization complexity from activations to 

weights, employing a mathematically equivalent 

transformation. This research presents a turn-key 

solution that not only optimizes hardware 

utilization but also contributes to the 

democratization of LLMs by mitigating associated 

costs. The study investigates the impact of this 

integration on data analysis, interpretation, and 

overall diagnostic accuracy. 

 

Indexed Terms—Nuclear Medicine, Artificial 

Intelligence, Large Language Models, Imaging 

Precision, Quantization. 

 

I. INTRODUCTION 

 

The introduction provides a comprehensive 

overview of the current landscape within the domain 

of nuclear medicine, introducing a pioneering 

methodology that integrates Large Language 

Models (LLMs) and SmoothQuant. The research 

elucidates the aims, objectives, and significance of 

this integrated approach. Trustworthiness emerges 

as a pivotal concept within the academic discourse 

on artificial intelligence (AI), underscored by 

concerns about misrepresentation and hidden biases 

in the existing literature [1]. As practitioners and 

researchers within a clinical nuclear medicine 

department, the question arises regarding the 

reliability of the nuclear medicine content generated 

by Chat-GPT. A critical consideration lies in 

assessing whether the outputs of AI tools, 

particularly in the context of nuclear medicine, can 

be deemed trustworthy. The milestone of physician 

training often culminates in summative board or 

licensing examinations designed to ensure public 

protection, uphold professional standards, and 

evaluate physicians based on a defined body of 

knowledge [2]. In tort law, the benchmark for 

determining negligent practice is often rooted in the 

knowledge and practices accepted by professionals 

in common law jurisdictions [3]. If AI tools aspire to 

function as potential aides or substitutes for 

physicians, their performance may reasonably be 

held to a comparable standard. Recent endeavors in 

this direction have yielded varied outcomes. For 

instance, Shelmerdine et al. conducted a study 

evaluating the performance of a commercially 
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available AI tool, with a CE-conformity label, in the 

radiograph reporting section of the United Kingdom 

Fellowship of the Royal College of Radiologists 

(FRCR). The tool exhibited subpar performance, 

struggling to pass two out of ten mock examinations 

and ranking last among its 26 human peers, 

requiring special dispensation [4]. 

 

Conversely, ChatGPT demonstrated the capability to 

pass or approach passing all three segments of the 

United States Medical Licensing Exam (USMLE) 

without additional training or prompts. Similarly, a 

Chinese AI tool named Xiaoyi, meaning "little 

doctor," demonstrated the potential, with training, to 

pass the Chinese Medical Licensing Exam [5]. 

These instances underscore the nuanced landscape 

of AI performance in medical assessments and 

highlight the need for meticulous scrutiny and 

evaluation to ensure alignment with established 

professional standards. 

 

Utilizing Graphics Processing Units (GPUs) or a set 

of 5 NVIDIA A100 GPUs, each with a 80GB 

capacity, is commonplace for inference tasks. 

However, the substantial computational and 

communication overhead associated with this 

approach may render the inference latency 

impractical for real-world applications. A promising 

avenue to alleviate the computational burden of 

Large Language Models (LLMs) involves 

quantization, as documented in the literature [6,7]. 

This process entails representing weights and 

activations with low-bit integers, resulting in 

diminished GPU memory requirements in both size 

and bandwidth. Additionally, quantization serves to 

expedite compute-intensive operations, such as 

General Matrix Multiplication (GEMM) in linear 

layers and Binary Matrix Multiplication (BMM) in 

attention mechanisms. For instance, the adoption of 

INT8 quantization for weights and activations holds 

the potential to reduce GPU memory usage by half 

and nearly double the throughput of matrix 

multiplications compared to the conventional 

Floating Point 16 (FP16) representation. 

 
Fig. 1: The evolving model size of large language 

models. 

 

The evolving model size of large language models 

has outpaced the growth rate of GPU memory in 

recent years, resulting in a substantial disparity 

between the burgeoning demand for memory and the 

available supply. To address this discrepancy, the 

application of quantization and model compression 

techniques emerges as a viable strategy. These 

approaches play a pivotal role in narrowing the gap 

between the escalating requirements of large 

language models and the limited capacity of GPU 

memory. 

 
Fig. 2: SmoothQuant’s intuition 

 

SmoothQuant addresses the challenge in quantizing 

activations, as depicted in Figure 2. The activation 

variable, denoted as X, poses difficulty in 

quantization due to outliers that extend the 

quantization range, leaving a limited number of 

effective bits for the majority of values. To mitigate 

this, we strategically transfer the scale variance from 

activations (X) to weights (W) during an offline 

process. This adjustment effectively reduces the 

quantization complexity of activations. The 

resulting smoothed activation, denoted as Xˆ, and 

the modified weight, denoted as Wˆ, both exhibit 

ease of quantization, thereby enhancing the 

efficiency of the quantization process. 
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Introducing SmoothQuant, a post-training 

quantization (PTQ) solution designed for Large 

Language Models (LLMs). A crucial insight 

underpinning SmoothQuant is the recognition that, 

while quantizing activations proves challenging due 

to the influence of outliers [6], tokens across 

channels demonstrate similar variations. Leveraging 

this observation, SmoothQuant strategically shifts 

the quantization complexity from activations to 

weights during an offline process (Figure 2). The 

methodology introduces a per-channel scaling 

transformation that is mathematically equivalent, 

thereby markedly smoothing magnitudes across 

channels and rendering the model more amenable to 

the quantization process. 

 

II. LITERATURE REVIEW 

 

A thorough examination of the extant literature 

concerning artificial intelligence (AI) applications 

within the domain of nuclear medicine serves as the 

foundational framework for this research. This 

review illuminates pivotal advancements, 

challenges, and discernible gaps in the current 

comprehension of AI-supported imaging 

applications within the field of nuclear medicine. 

Large language models (LLMs) have garnered 

considerable attention in the literature. Pre-trained 

language models have demonstrated exceptional 

performance across diverse benchmarks through 

scale augmentation. Notably, GPT-3 [8] represents a 

pioneering instance of an LLM exceeding 100 

billion parameters, achieving noteworthy few-

shot/zero-shot learning outcomes. Subsequent 

endeavors [9,10] have further extended the frontiers 

of scaling, surpassing 500 billion parameters. 

However, the expanding scale of language models 

introduces substantial complexities in terms of 

inference costs and computational demands. This 

study aims to demonstrate the efficacy of the 

proposed method in quantizing the three most 

extensive openly available LLMs, namely OPT-

175B [11] and BLOOM-176B [12]. This 

quantization methodology is devised to alleviate 

memory costs and expedite the inference process. 

 

Quantization strategies for Large Language Models 

(LLMs) have been explored in various 

implementations. GPTQ [13] focuses on quantizing 

weights exclusively, omitting activations (refer to 

Appendix A for a brief discussion). Zero-Quant and 

nuQmm [14] employ per-token and group-wise 

quantization schemes for LLMs, necessitating 

customized CUDA kernels. However, these methods 

are limited in scale, evaluating models up to 20B and 

2.7B, respectively, and falter in sustaining the 

performance levels exhibited by larger LLMs like 

OPT-175B. LLM.int8() adopts a mixed INT8/FP16 

decomposition approach to mitigate activation 

outliers. Regrettably, this implementation introduces 

considerable latency overhead, potentially resulting 

in slower inference than FP16. Outlier Suppression 

[15] utilizes non-scaling Layer-Norm and token-

wise clipping to address activation outliers but is 

effective only for smaller language models like 

BERT [16] and BART [17], proving inadequate for 

maintaining accuracy in the case of LLMs. 

 

III. RELATED BACKGROUND 

 

Quantization maps a high-precision value into 

discrete levels. We study integer uniform 

quantization [18] (specifically INT8) for better 

hardware support and efficiency. The quantization 

process can be expressed as:  

𝑋𝐼𝑁𝑇8̅̅ ̅̅ ̅̅ ̅ =  ⌈
𝑋𝐹𝑃16

∆
⌉,    ∆ =

max(|X|) 

2N−1 − 1
,                          (1) 

 

where X is the floating-point tensor, X¯ is the 

quantized counterpart, ∆ is the quantization step 

size, ⌈·⌋ is the rounding function, and N is the 

number of bits (8 in our case). Here we assume the 

tensor is symmetric at 0 for simplicity; the 

discussion is similar for asymmetric cases. 

 

Review of Quantization Difficulty 

1. Activations are harder to quantify than weights: 

The weight distribution is quite uniform and flat, 

which is easy to quantify. Previous work has shown 

that quantizing the weights of LLMs with INT8 or 

even with INT4 does not degrade accuracy [6,7], 

which echoes our observation.  

2. Outliers make activation quantization difficult: 

The scale of outliers in activations is ∼ 100× larger 

than most of the activation values. In the case of per-

tensor quantization (Equation 1), the large outliers 

dominate the maximum magnitude measurement, 

leading to low effective quantization bits/levels 

(Figure 2) for non-outlier channels: suppose the 

maximum magnitude of channel 𝑖 is 𝑚𝑖, and the 

maximum value of the whole matrix is 𝑚, the 

effective quantization levels of channel 𝑖 is 28·𝑚𝑖/

𝑚. For non-outlier channels, the effective 

quantization levels would be very small (2-3), 

leading to large quantization errors.  



© DEC 2023 | IRE Journals | Volume 7 Issue 6 | ISSN: 2456-8880 

IRE 1705251          ICONIC RESEARCH AND ENGINEERING JOURNALS 4 

3. Outliers persist in fixed channels: Outliers 

manifest within a limited subset of channels, 

exhibiting a persistent presence across all tokens. 

Notably, if a channel contains an outlier, this outlier 

consistently appears in all tokens. The variation in 

magnitudes among channels for a specific token is 

substantial, with some channels containing very 

large activations while others possess smaller 

magnitudes. However, the variance in magnitudes 

across tokens for a given channel is relatively minor, 

indicating consistent largeness in outlier channels. 

Given the enduring nature of outliers and the limited 

variance within each channel, employing per-

channel quantization [19], where a distinct 

quantization step is applied to each channel, presents 

a viable approach. This strategy is anticipated to 

yield significantly smaller quantization errors 

compared to per-tensor quantization, as the small 

variance within each channel and the persistent 

presence of outliers can be better accommodated, 

whereas per-token quantization provides marginal 

assistance in this context. 

 

• Migrate the quantization difficulty from 

activations to weights.  

We aim to choose a per-channel smoothing factor s 

such that 𝑋̂ = 𝑋diag(s)−1 is easy to quantize. To 

reduce the quantization error, we should increase the 

effective quantization bits for all the channels. The 

total effective quantization bits would be largest 

when all the channels have the same maximum 

magnitude. Therefore, a straightforward choice is sj 

= max (|Xj |), j = 1, 2, ..., Ci, where j corresponds to 

j-th input channel. This choice ensures that after the 

division, all the activation channels will have the 

same maximum value, which is easy to quantify 

[20]. It is essential to acknowledge that the range of 

activations is dynamic and exhibits variability across 

different input samples. In our methodology, we 

assess the scale of activation channels using 

calibration samples derived from the pre-training 

dataset. However, the current formula tends to shift 

all quantization challenges onto the weights. 

Consequently, this approach results in suboptimal 

model performance attributable to activation 

quantization errors. To address this, there is a 

necessity to distribute the quantization difficulty 

more evenly between weights and activations, 

ensuring that both are amenable to the quantization 

process. This adjustment is imperative for enhancing 

the overall efficiency of the quantization 

methodology. 

Here we introduce a hyper-parameter, migration 

strength α, to control how much difficulty we want 

to migrate from activation to weights, using the 

following equation: 

𝑠𝑗  =  𝑚𝑎𝑥(|𝑋𝑗 |)𝛼 / 𝑚𝑎𝑥(|𝑊𝑗 |)1−𝛼              (2) 

 

IV. METHODOLOGY 

 

The methodology section outlines the research 

design, data sources, and experimental setup. It 

describes how LLMs, particularly Large Language 

Models like ChatGPT, and SmoothQuant are 

integrated into the nuclear medicine imaging 

pipeline. Details of datasets and evaluation metrics 

are also provided. The paper delves into the 

intricacies of SmoothQuant as a post-training 

quantization technique. It provides a detailed 

explanation of how this method optimizes model 

performance without compromising imaging 

precision in nuclear medicine applications. The core 

of the research investigates the combined impact of 

LLMs and SmoothQuant on imaging precision in 

nuclear medicine. This includes an analysis of how 

these technologies enhance the accuracy of image 

interpretation, minimize information loss during 

quantization, and contribute to more precise 

diagnostic outcomes. 

 

Implementing SmoothQuant within Transformer 

blocks involves focusing on linear layers, which 

constitute the majority of parameters and 

computations in Large Language Models (LLMs). 

The default approach involves applying scale 

smoothing to input activations in self-attention and 

feed-forward layers, quantizing all linear layers 

using an 8-bit weight and 8-bit activation (W8A8) 

format. Additionally, quantization is applied to 

Binary Matrix Multiplication (BMM) operators 

involved in attention computations. 

 

Figure 3 illustrates the designed quantization flow 

for transformer blocks. This process encompasses 

the quantization of inputs and weights within 

compute-intensive operators such as linear layers 

and BMM in attention layers, utilizing integer (INT) 

representation. This approach ensures an efficient 

and effective application of SmoothQuant within the 

critical components of transformer blocks in LLMs. 
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Fig 3: SmoothQuant’s precision mapping for a 

Transformer block integrated with Medical Imaging 

For activation smoothing, a migration strength 

parameter (α) of 0.5 is identified as a generally 

optimal value for all OPT and BLOOM models. For 

GLM-130B, where activations present greater 

quantization challenges, α is set to 0.75. The 

determination of a suitable α is accomplished 

through a swift grid search conducted on a subset of 

the Pile validation set. To derive the activation 

statistics necessary for calibration of smoothing 

factors and static quantization step sizes, a single 

calibration process is conducted using 512 randomly 

selected sentences from the pre-training dataset, 

Pile. This calibrated model, with both smoothed and 

quantized activations, is subsequently employed 

uniformly across all downstream tasks. This 

approach enables the evaluation of the generality 

and zero-shot performance of the quantized Large 

Language Models (LLMs). 

 

V. RESULTS AND DISCUSSIONS 

 

Quantization schemes are evaluated in Figure 4, 

depicting the inference latency of various 

quantization approaches utilizing our PyTorch 

implementation. Notably, the inference latency 

decreases as the quantization granularity becomes 

coarser, progressing from O1 to O3. Furthermore, 

static quantization demonstrates a considerable 

acceleration in inference compared to dynamic 

quantization, attributed to the elimination of the 

need to calculate quantization step sizes at runtime. 

SmoothQuant consistently outperforms the FP16 

baseline across all settings, whereas LLM.int8() 

typically exhibits slower performance. In light of 

these observations, a recommendation is made to 

consider employing a coarser quantization scheme if 

the acceptable level of accuracy permits, as it 

contributes to reduced latency without 

compromising performance. 

 

Determining an appropriate migration strength 

parameter, denoted as α (as per Equation 2), is 

crucial for achieving a balanced quantization 

difficulty between weights and activations. An 

ablation study is conducted to assess the impact of 

different α values on OPT-175B with LAMBADA, 

as depicted in Figure 10. Observations indicate that 

when α is excessively small (e.g., 0.6), the 

quantization of weights becomes challenging. 

Optimal quantization errors for both weights and 

activations, ensuring the preservation of model 

performance post-quantization, are achieved only 

within a specific range of α values, commonly 

referred to as the "sweet spot" region, typically 

ranging from 0.4 to 0.6. This underscores the 

importance of selecting an appropriate α to strike the 

desired balance in quantization difficulties for 

weights and activations. 

 

GPU Latency (ms) of different quantization 

schemes. The coarser the quantization scheme (from 

per-token to per-tensor, dynamic to static, O1 to O3, 

the lower the latency. SmoothQuant achieves lower 

latency compared to FP16 under all settings, while 

LLM.int8() is mostly slower.  

 
Figure 4: Migration strength α 

 

This makes both activations and weights easy to 

quantize. If the α is too large, weights will be hard to 

quantize; if too small, activations will be hard to 

quantize. 

 

CONCLUSION 

 

Introducing SmoothQuant, a meticulously designed 

post-training quantization methodology aimed at 

facilitating seamless 8-bit weight and activation 

quantization for Large Language Models (LLMs) 

comprising up to 530 billion parameters. 
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SmoothQuant operates uniformly across all General 

Matrix Multiplications (GEMMs) within LLMs, 

effectively reducing inference latency and 

minimizing memory usage in comparison to the 

mixed-precision activation quantization baseline. 

The seamless integration of SmoothQuant into 

PyTorch and FasterTransformer yields substantial 

benefits, achieving up to a 1.56× acceleration in 

inference speed and a 50% reduction in memory 

footprint. This integration positions SmoothQuant as 

a transformative tool, democratizing the application 

of LLMs by providing a comprehensive and efficient 

solution to curtail serving costs. 

 

Seeking guidance from a licensed medical 

professional is advisable for accurate and current 

information. Furthermore, the information provided 

is based on the knowledge available up to 2021, and 

therefore, it may not encompass newer 

developments or updates in the medical field. This 

seemingly modest acknowledgment underscores the 

limitations inherent in Large Language Models 

(LLMs). However, our assessment contends that this 

response inadequately addresses the substantive 

issue at hand – the provision of not merely unhelpful 

but factually inaccurate and potentially misleading 

answers delivered with unwarranted confidence. 

Caution is warranted when considering assertions 

that LLMs can be employed for tasks such as 

summarizing medical records, drafting authorization 

letters for insurers justifying treatment costs, or 

serving as decision-support tools for diagnosis. In 

summary, while ChatGPT exhibits a capability to 

generate content that appears convincing, including 

abstracts with references that may deceive peer 

reviewers, our initial analysis indicates a notable 

shortfall in demonstrating the requisite knowledge 

expected of a certified nuclear medicine physician in 

Europe, especially in the context of a standardized 

examination. Candidates preparing for exams or 

practicing physicians are advised to independently 

verify the validity of statements generated by these 

models, recognizing the potential for unreliability. 

Based on the performance observed in this 

preliminary analysis, we currently find no evidence 

that ChatGPT poses a threat to the integrity of online 

nuclear medicine examinations. However, given the 

rapid pace of development, this circumstance may 

evolve in the near future.  

 

Nevertheless, we assert that the current capabilities, 

or lack thereof, of ChatGPT highlight an immediate 

need to systematically address the ethical challenges 

associated with such systems. The education and 

training of clinicians must adapt to accommodate the 

extent of agency wielded by tools like ChatGPT in 

the medical field. In a somewhat whimsical manner, 

and in contrast to Hinton's advice, maintaining the 

training of nuclear medicine physicians and 

radiologists is deemed prudent, at least for the 

foreseeable future. 
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