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Abstract— Rapid urbanization in cities like Mumbai, 

Pune, and Nagpur has engendered a myriad of 

challenges, chief among them being the preservation 

of water quality and sustainability. As urban centers 

burgeon, the demand for water resources escalates. 

However, this surge in demand is often juxtaposed 

with a deleterious rise in industrialization, 

infrastructural expansion, and the rampant 

discharge of sewage and pollutants into water bodies. 

These factors, in conjunction, have contributed to a 

progressive deterioration of water quality in urban 

areas, necessitating a paradigm shift in the 

management of this vital resource. The efficient 

management of water resources and the assurance of 

a clean drinking water supply have become pivotal 

issues confronted by municipal authorities. This 

research undertakes a comprehensive analysis of 

water quality trends in Mumbai, Pune, and Nagpur, 

employing advanced machine learning techniques to 

fathom complex datasets. These datasets encompass 

an array of physio-chemical parameters, such as pH, 

turbidity, electrical conductivity, and more, all of 

which are critical indicators of water pollution. The 

study requisitions historical water quality data 

procured from a multitude of sources, including 

rivers, lakes, and reservoirs. Subsequent 

preprocessing of this raw data precedes the 

application of machine learning algorithms like 

support vector machines, random forests, and k-

nearest neighbors to unearth latent trends and 

patterns. The research stands upon a dual pedestal: 

first, it seeks to underscore the potential of machine 

learning as an indispensable tool for environmental 

monitoring and water quality analysis; second, it 

aspires to furnish urban planners and policymakers 

with actionable insights, paving the way for the 

mitigation of water pollution in these burgeoning 

cities. By aligning growth demands with 

environmental sustainability, the research aligns 

itself with the ultimate objective of fortifying the 

foundations of urban development with data-driven 

evidence, thereby orchestrating a harmonious 

balance between burgeoning urbanization and 

ecological preservation. In summary, this study 

endeavors to harness the power of data science to 

champion the cause of sustainable urban 

development, thereby ensuring the enduring sanctity 

of water quality in the cities of Mumbai, Pune, and 

Nagpur. 

 

Indexed Terms— Trend Analysis, Supervised 

Learning Model, Classification 

  

I. INTRODUCTION 

 

In rapidly growing Indian cities like Mumbai, Pune, 

and Nagpur, ensuring a sustainable supply of clean and 

potable groundwater is of paramount importance. 

However, urbanization, industrialization, and 

increased infrastructure development have raised 

concerns about groundwater quality. The discharge of 

pollutants and contaminants into the ground has the 

potential to render groundwater unsuitable for both 

drinking purposes and supporting vital infrastructure. 

To address these challenges, our research takes a data-

driven approach. We collect groundwater quality data 

from government websites, specifically focusing on 

key parameters that determine potability and 

infrastructure suitability. These parameters include pH 

levels, turbidity, dissolved oxygen, electrical 

conductivity, and more. Our analysis is based on 

historical data spanning several years, providing a 

comprehensive overview of the groundwater quality in 

these cities. By employing advanced machine learning 
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algorithms, such as support vector machines, random 

forests, and neural networks, we aim to extract valuable 

insights and hidden trends from this dataset. The 

objectives of this research are twofold. Firstly, we aim 

to showcase the potential of leveraging machine 

learning and data analysis in environmental 

monitoring, especially in the context of groundwater 

quality assessment. Secondly, our research seeks to 

offer actionable insights to urban planners and 

decision-makers for effective groundwater 

management and environmental preservation in the 

face of rapid urban growth. Ultimately, this study 

endeavors to support sustainable urban development by 

using data-driven techniques to assess and manage 

groundwater quality. The outcomes are expected to 

inform evidence-based policies and decisions related to 

groundwater allocation, water source suitability, and 

infrastructure development, thereby ensuring the 

availability of safe drinking water and sustainable 

urban expansion. 

 

II. MATERIALS AND METHODS 

 

A. Study Area and Data Sources 

The study focuses on analyzing water quality data from 

major urban centers in India - Mumbai, Pune, and 

Nagpur. Historical water quality data for these cities 

was obtained from government agency websites, 

including the Central Pollution Control Board (CPCB) 

portal. The dataset spans 5 years, from 2017 to 2021. It 

contains monthly measurements of various physico-

chemical parameters from multiple sampling stations 

across rivers, lakes, and groundwater sources in each 

city. 

B. Water Quality Parameters 

The water quality parameters investigated include pH, 

turbidity, dissolved oxygen (DO), total dissolved solids 

(TDS), electrical conductivity (EC), alkalinity, 

hardness, chloride, fluoride, nitrate, sulfate, calcium, 

magnesium, sodium, and potassium. These parameters 

encompass the key indicators of water pollution, 

potability, and suitability for infrastructure projects. 

C. Data Preprocessing 

Feature Selection Correlation analysis and recursive 

feature elimination were utilized to select the most 

pertinent subset of features with maximal information 

content and minimal redundancy. This subset was used 

as input to machine learning models. Machine 

Learning Algorithms Supervised machine learning 

algorithms including SVM, random forest, and neural 

networks were explored for water quality prediction 

and classification tasks. The algorithms were 

implemented in Python using scikit-learn and Keras. 

 

• Literature review 

Theyazn H. H Aldhyani (2020) emphasizes the 

significance of modeling and predicting water quality 

due to the threat of various pollutants. The study 

focuses on developing advanced AI algorithms to 

predict the Water Quality Index (WQI) and classify 

water quality. The author employs artificial neural 

network models, particularly the nonlinear 

autoregressive neural network (NARNET) and long 

short-term memory (LSTM) deep learning algorithm, 

for WQI prediction. Additionally, three machine 

learning algorithms, support vector machine (SVM), k-

nearest neighbor (K-NN), and Naive Bayes, are used 

for water quality classification (WQC) forecasting. The 

evaluation of the models using statistical parameters 

demonstrates their ability to accurately predict WQI 

and classify water quality. Specifically, the NARNET 

model performs slightly better than LSTM for WQI 

prediction, while the SVM algorithm achieves the 

highest accuracy of 97.01% for WQC prediction[1]. 

The paper published by Ozgur Kisi (2023) focuses on 

the estimation of water quality in the Yamuna River in 

Delhi, India, using hybrid neuro-fuzzy models. The 

study investigates the potential of four different neuro-

fuzzy embedded meta-heuristic algorithms, namely 

particle swarm optimization, genetic algorithm, 

harmony search, and teaching–learning-based 

optimization algorithm, for accurate water quality 

prediction. The results indicate that using free 

ammonia, total Kjeldahl nitrogen, and water 

temperature as inputs improves the accuracy of COD 

prediction. The hybrid neuro-fuzzy models outperform 

the classical neuro-fuzzy model and LSSVM, 

achieving a 12% and 4% reduction in root mean square 

error, respectively [2]. Umair Ahmed's research (2023) 

focuses on using supervised machine learning to 

predict water quality. By utilizing four input 

parameters, such as temperature and turbidity, the 

study estimates the water quality index (WQI) and 

class (WQC). Gradient boosting and polynomial 

regression achieve efficient WQI prediction, with 

mean absolute errors (MAE) of 1.9642 and 2.7273 

respectively. For WQC classification, the multi-layer 

perceptron achieves 85.07% accuracy. The research 
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offers a cost-effective and faster approach for real-time 

water quality monitoring, contributing to efficient 

water resource management[3]. The study by 

Hongfang Lu (2020) introduces two hybrid decision 

tree-based machine learning models, CEEMDAN-RF 

and CEEMDAN-XGBoost, for accurate short-term 

water quality prediction. These models, incorporating 

the CEEMDAN data denoising technique, outperform 

conventional models in predicting water quality 

indicators. CEEMDAN-RF achieves low mean 

absolute percentage errors (MAPE) of 0.69% for 

temperature, 1.05% for dissolved oxygen, and 0.90% 

for specific conductance. CEEMDAN-XGBoost 

demonstrates MAPEs of 0.27% for pH, 14.94% for 

turbidity, and 1.59% for fluorescent dissolved organic 

matter. Overall, both models show superior 

performance with average MAPEs of 3.90% and 

3.71% respectively, indicating their effectiveness in 

water quality prediction[4]. Dziri Jalal and Tahar 

Ezzedine's research addresses the critical issue of 

maintaining the quality of drinking water within 

distribution systems. They propose the use of wireless 

sensor networks to monitor and control water 

parameters, ensuring water quality adheres to 

established standards. Their innovative approach 

includes a real-time detection model based on machine 

learning to identify anomalies and potential malicious 

acts. To enhance efficiency, the research employs a 

data aggregation method to reduce processing time and 

data volume. Overall, their work aims to safeguard 

water quality and protect human and animal health in 

water distribution systems [5]. 

 

• Support Vector Machine 

Support Vector Machine (SVM) stands as a 

cornerstone in the realm of machine learning 

algorithms, revered for its prowess in classification and 

regression tasks. At its core lies a sophisticated 

mechanism that seeks to identify a hyperplane, a 

multidimensional separator [4] that maximizes the 

distinction between data points of different classes 

while maintaining the widest possible gap, or margin, 

between these classes. SVM's versatility has granted it 

a venerated position in diverse domains, including 

image classification, text categorization, and even the 

intricate landscapes of bioinformatics. Its unique 

ability to navigate complex data distributions and high-

dimensional spaces renders it indispensable in various 

data-driven endeavors. Working Principle: SVM's 

fundamental principle can be traced to its quest for a 

hyperplane that achieves a dual objective: first, it 

effectively segregates data points belonging to 

different classes, and second, it maximizes the distance 

between the hyperplane and the nearest data points of 

these classes. These closest data points are termed 

support vectors, pivotal entities that underpin SVM's 

decision-making process [8]. In essence, SVM strives 

to carve out a hyperplane that balances the act of 

classification accuracy and the imperative of 

generalization on unseen data. Linear SVM: In 

scenarios where data is linearly separable – amenable 

to separation through a straight line – a linear SVM 

unfurls its prowess. It engineers an optimal hyperplane, 

one that dissects the data classes while ensuring the 

maximal margin. This hyperplane is elegantly 

encapsulated in the equation `wx + b = 0`, where `w` 

symbolizes the weight vector and `b` represents the 

bias term. The weights, thus determined, guide SVM in 

classifying future data points. Non-linear SVM - 

Kernel Trick: However, real-world data often defies 

linearity, necessitating SVM to transcend its linear 

confines. This is where the kernel trick steps in – a 

wizardry that maps data to a higher-dimensional space 

where separability is achieved. The kernels, such as 

Polynomial, Gaussian (RBF), and Sigmoid, wield their 

transformative magic, enabling SVM to capture 

intricate relationships that could remain obscured 

otherwise. The kernel trick permits SVM to operate in 

realms where linear separation is a mirage. Parameters 

of SVM: The configurational levers of SVM amplify 

its adaptability and precision: - C (Cost Parameter): 

The parameter `C` governs the trade-off between 

widening the margin and tolerating misclassification. 

Smaller `C` values yield a larger margin but might 

admit misclassification, while larger `C` values 

constrain the margin to combat misclassification. 

 
Fig. 1.0 SVM architecture 
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III. K-NEAREST NEIGHBORS 

 

In the realm of machine learning and data analysis, K-

Nearest Neighbors (KNN) stands out as a versatile, 

intuitive, and widely-used algorithm. KNN is part of 

the supervised learning paradigm, primarily applied for 

classification and regression tasks. It's a fundamental 

algorithm that, despite its simplicity, plays a vital role 

in various real-world applications. In this essay, we 

will delve into the K-Nearest Neighbors algorithm, 

exploring its underlying principles, applications, 

advantages, limitations, and the critical factors that 

affect its performance. 

 

The Core Concept of K-Nearest Neighbors At its heart, 

K-Nearest Neighbors is a non-parametric, instance-

based learning algorithm. This means that it doesn't 

make any assumptions about the data distribution, 

unlike many other algorithms that are based on 

statistical models. Instead, KNN classifies or predicts 

based on the similarity between data points in a feature 

space. The "K" in KNN represents the number of 

nearest neighbors to consider when making 

predictions. It's a hyper parameter that needs to be 

specified before applying the algorithm. To understand 

KNN better, let's break down its core concepts: Data 

Collection: In any KNN application, the first step 

involves gathering a dataset containing labeled 

examples. Each example consists of a set of features 

and their corresponding class or value. For example, in 

a classification task, the dataset might contain features 

of various animals and their respective classes, such as 

"dog," "cat," "bird," etc. K-Value: One of the critical 

decisions to make when using KNN is to choose an 

appropriate value for K. This determines the number of 

neighbors that will be considered when making 

predictions. Selecting the right K-value can 

significantly impact the algorithm's performance. A 

small K may result in a noisy prediction, while a large 

K may cause over-smoothing of predictions. Distance 

Metric: KNN relies on a distance metric to measure the 

similarity between data points. The choice of distance 

metric can significantly influence the algorithm's 

performance. Common distance metrics include 

Euclidean distance, Manhattan distance, Murkowski 

distance, and others. The selection of the metric should 

be guided by the nature of the data and the problem 

being solved.  

 
Fig. 1.1 KNN architecture 

 

IV. METHODOLOGY 

 

The first step is to accumulate reliable and accurate 

water quality data from an reliable authorities website. 

This facts will then undergo a statistics transformation 

procedure to handle any mistakes or inconsistencies 

and make sure it's miles in a appropriate format for 

analysis. Next, exploratory facts analysis (EDA) 

strategies may be hired to advantage a deeper 

knowledge of the records. This entails visualizing the 

statistics, identifying patterns, and analyzing 

relationships among distinct variables. EDA allows in 

uncovering insights and ability correlations that may 

make contributions to predicting water satisfactory. 

After acting EDA, the data might be split into 

schooling and checking out sets. The schooling set can 

be used to teach the gadget mastering version, allowing 

it to study patterns and relationships from the data. The 

checking out set might be used to evaluate the overall 

performance of the educated version, imparting an 

estimate of its predictive accuracy. Finally, a suitable 

machine studying set of rules could be chosen 

primarily based on the character of the trouble and the 

available data. The decided on algorithm can be 

implemented to the training set to create a predictive 

version [6]. This version will then be used to make 

predictions at the checking out set, supplying precious 

insights into the destiny water high-quality primarily 

based on the learned styles and relationships from the 

education facts. Throughout the entire method, proper 

records handling techniques, feature choice, and model 

assessment could be done to make certain the accuracy 

and reliability of the water excellent predictions. In 
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addition to those steps, it is vital to note that system 

gaining knowledge of models are not perfect and might 

not continually offer accurate predictions. Therefore, 

it's far essential to constantly monitor and update the 

model with new data to improve its overall 

performance through the years. Furthermore, it is 

critical to don't forget outside factors that may affect 

water first-class, together with climate conditions, 

human sports, and herbal screw ups. These elements 

should be taken under consideration when making 

predictions and decoding the consequences. Overall, 

predicting water exceptional the use of machine 

studying involves a mixture of records series, 

preprocessing, evaluation, modeling, and assessment 

[7]. By following this system, it's far possible to 

develop a dependable and accurate predictive version 

for water exceptional. One of the important thing 

factors of this system is the selection of a appropriate 

machine learning set of rules. There are many one of a 

kind algorithms to pick out from, every with its own 

strengths and weaknesses. Some commonplace 

algorithms used for predictive modeling encompass 

selection timber, random forests, guide vector 

machines, and neural networks. The choice of set of 

rules will depend on the character of the hassle and the 

to be had data. Working Principle: SVM's essential 

principle can be traced to its quest for a hyperplane that 

achieves a twin goal: first, it efficiently segregates 

information factors belonging to one of a kind 

instructions, and 2d, it maximizes the distance between 

the hyperplane and the closest information factors of 

those lessons. These closest statistics points are termed 

assist vectors, pivotal entities that underpin SVM's 

choice-making process. In essence, SVM strives to 

carve out a hyperplane that balances the act of type 

accuracy and the vital of generalization on unseen 

information. 

  

 
Fig. 0.0.1 Methodology 

The workflow of the KNN algorithm is 

straightforward: 

Data Collection: Gather the dataset with labeled 

examples. Choose K: Select a value for K, which 

determines the number of neighbors to consider during 

prediction. Calculate Distances: For a given data point 

to be classified or predicted, calculate the distances to 

all other data points in the dataset using the chosen 

distance metric. Identify Neighbors: Select the K data 

points with the shortest distances to the target data 

point. These data points are the "nearest neighbors." 

Majority Vote (Classification) or Averaging 

(Regression): For classification tasks, count the 

occurrences of each class among the K neighbors and 

assign the class with the highest count to the target data 

point. In regression tasks, compute the average of the 

values associated with the K neighbors. The KNN 

algorithm is robust, easy to understand, and suitable for 

both classification and regression tasks. It can handle 

multi-class problems effectively, and its outcomes can 

be interpreted intuitively. KNN offers several 

advantages: Simplicity and Ease of Implementation: 

KNN's simplicity and lack of complex model training 

make it a go-to choice, especially when you need to 

prototype quickly or have limited labeled data. No 

Assumptions about Data Distribution: Unlike 

parametric models like linear regression, KNN doesn't 

make assumptions about the underlying data 

distribution. It can work well with data that doesn't 

conform to any specific mathematical 

model.Versatility: KNN is suitable for both 

classification and regression tasks. It can handle a wide 

range of problems, from predicting house prices based 

on features to classifying images of objects or animals. 

Multi-Class Problems: KNN naturally extends to 

multi-class classification problems, making it 

applicable in scenarios where there are more than two 

possible classes. Intuitive Interpretation: KNN's 

predictions are easy to interpret. In classification, a data 

point is assigned to the class that is most frequent 

among its K-nearest neighbors. In regression, the 

predicted value is simply the average of the values of 

those neighbors. Non-Linear Decision Boundaries: 

KNN can capture complex, non-linear decision 

boundaries in the data, making it suitable for problems 

where linear models may not perform well. Ease of 

Updating: KNN is amenable to online learning, 

allowing for incremental updates to the model as new 

data becomes available. 
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V. RESULTS 

 

In this section, we present the partial results of applying 

the Support Vector Machine (SVM) algorithm to two 

different tasks "Potability" and 

"Infrastructure_Suitability" prediction. We explored 

the SVM classifier's performance for each task, and the 

evaluation includes the variation of the regularization 

parameter (C) to fine-tune the models.Potability 

Prediction For the "Potability" prediction task, we 

selected a set of water quality features from our dataset, 

including 'Ca', 'Cl', 'CO3', 'EC', 'HCO3', 'K', 'Mg', 'Na', 

'NO3', 'pH', 'SO4', 'TDS', 'TH', and 'F'. After splitting 

the data into training and testing sets, we applied SVM 

classifiers with varying values of the regularization 

parameter (C) ranging from 1 to 9. The results indicate 

that, by iterating over different C values, we achieved 

the highest accuracy of approximately 93% for 

predicting "Potability" when C was set to 9. The SVM 

model demonstrates the potential to effectively classify 

water samples into potable and non-potable categories. 

The training and testing accuracy curves showcase the 

model's performance across different levels of 

regularization, with testing accuracy steadily 

increasing as C is adjusted.  

 

 
Fig. 2.0  Accuracy graph for Potability 

 

In the "Infrastructure_Suitability" prediction task, a 

distinct set of water quality features was chosen, 

including 'CO3', 'EC', 'K', 'Mg', 'Na', 'NO3', 'pH', 'SO4', 

'TDS', 'TH', and 'F'. Similar to the "Potability" task, 

SVM classifiers were employed with different C values 

to optimize model performance. 

 

 
Fig. 2.1 Accuracy graph for Infrastructure_Suitability 

 

The SVM model yielded impressive results for 

predicting "Infrastructure_Suitability." With C set to 3, 

the model achieved a remarkable testing accuracy of 

approximately 95%, demonstrating the ability to 

categorize water samples effectively based on 

infrastructure suitability. The training and testing 

accuracy curves reveal a consistent performance 

improvement as the regularization parameter C is 

adjusted, indicating that the model adapts to the data's 

characteristics. 

 

In this section, we present the partial results of applying 

the K-Nearest Neighbors (KNN) algorithm to two 

different tasks within our dataset. These tasks involve 

predicting "Potability" and "Infrastructure_Suitability" 

based on various water quality features. We have 

utilized the KNeighborsClassifier from scikit-learn for 

classification and have evaluated the model's 

performance by computing accuracy and visualizing 

the confusion matrix. Potability Prediction For the 

"Potability" prediction task, we selected a subset of 

features from our dataset, including 'Ca', 'Cl', 'CO3', 

'EC', 'HCO3', 'K', 'Mg', 'Na', 'NO3', 'pH', 'SO4', 'TDS', 

'TH', and 'F'. After splitting the data into training and 

testing sets, we trained a KNN classifier with five 

neighbors and made predictions on the test set.The 

accuracy of the KNN model for predicting "Potability" 

is approximately 94%, indicating that the model's 

performance is highly promising. 
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Fig. 2..2 Confusion matrix Infrastructure_Suitability 

 

The confusion matrix visualization shows that the 

model has successfully classified instances into their 

respective classes. Infrastructure Suitability Prediction 

In the "Infrastructure_Suitability" prediction task, we 

selected a different set of features, including 'CO3', 

'EC', 'K', 'Mg', 'Na', 'NO3', 'pH', 'SO4', 'TDS', 'TH', and 

'F'. Similarly, we trained a KNN classifier with five 

neighbors and evaluated its performance.Remarkably, 

the KNN model achieved an accuracy of 

approximately 94% for predicting 

"Infrastructure_Suitability." This suggests that the 

model can effectively categorize data points into 

different infrastructure suitability categories. The 

confusion matrix visualization further demonstrates the 

model's capability to make accurate predictions.These 

partial results showcase the potential of the KNN 

algorithm for both classification tasks within our 

dataset. The high accuracy achieved in both cases 

suggests that KNN may be a suitable choice for these 

specific prediction tasks. However, it's essential to keep 

in mind that the ultimate success of a machine learning 

model depends on the nature of the data and the specific 

problem context.  

 
Fig 3.0 Potability confusion matrix 

 

CONCLUSION 

 

The research also demonstrates the efficacy of machine 

learning in water quality analysis. The algorithms 

proved adept at detecting subtle changes and linkages 

between parameters compared to conventional 

statistical approaches. This highlights the merit of 

integrating data science capabilities into environmental 

monitoring and urban planning. However, fully 

realizing the potential of these findings requires active 

collaboration between scientists, policymakers, and 

urban stakeholders. Synthesizing the data-driven 

insights with on-ground domain expertise and socio-

economic considerations is key to developing holistic 

solutions. This interdisciplinary approach is imperative 

for balancing the demands of development with 

sustainability. 

 

While the current models provide a robust foundation, 

enhancements in predictive accuracy, model 

interpretability, and integration of socio-economic 

factors could enrich future iterations. As cities continue 

to evolve, maintaining clean and safe water will require 

continuous innovation. In conclusion, this trend 

analysis serves as an important step towards evidence-

based management of water resources in Mumbai, 

Pune, and Nagpur. The principles and methods 

established can inform sustainable urban planning 

across India and beyond. But fully unlocking the value 

of data-driven insights requires an integrated effort 

between science, governance, and society. 
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