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Abstract- Limited bandwidth, unwanted signal 

interference in the atmosphere medium during 

transmission and low data rate transfer among 

others are the challenges bedeviling communication 

systems. Hence, the introduction of Trellis Coded 

Modulation (TCM) system to address these 

fundamental causes of inefficient and unreliable 

communication from the transmission point to the 

consumers has become paramount. The choice of 

this system, an efficient coding technique improves 

the coding gain at no extra cost in bandwidth with 

respect to expansion. Ensures reliable high data rate 

communication over channels with limited 

bandwidth at far higher speeds from previously 

envisaged. The performance of trellis codes on M-ary 

phase shift keying (MPSK) and M-ary Quadrature 

Amplitude Modulation (MQAM) shows tremendous 

coding gain. 

 

Indexed Terms- Bandwidth, Bedeviling, 

Communication, Modulation, Amplitude, Coding 

 

I. INTRODUCTION 

 

Basically, most commodities are ultimately in high 

demand but eventually become scarce. Most 

importantly, a few of them tend to operate with 

specified range and should be strictly maintained. 

Furthermore, performance of data transmission over 

many communication channels has traditionally been 

marred by unreliable and poor quality of information 

due to noise interference, low throughput and large 

bandwidth. The aforementioned challenges in 

communication led to the design and implementation 

of a Trellis Coded Modulation (TCM) system. This 

system improves the coding gain and bandwidth 

efficiency with respect to the Bit error rate (BER) and 

high data transfer in a communication system. This is 

rewarding to digital communication engineers in their 

various design options and trade-offs for the benefit of 

the last mile. This article finds its application in many 

fields such as satellite Communication, digital systems 

and networks as well as internet for faster transmission 

of data etc. without bandwidth expansion at a better 

coding gain. 

 

A. Error Control:  

Error control coding is the process of converting 

source bits into transmitted symbols so as to ensure 

reliable communication (transmission) even in the 

presence of noise. The redundancy in the coded 

sequence is made use of at the receiver to improve the 

toughness to noise. Coding is used to facilitate 

detection and correction of errors at the receiver. More 

importantly, its goal is to prevent errors before they 

occur by a combination of detection and decoding 

known as soft decoding. The ultimate aim of error-

control coding is to close the gap between the 

performance of uncoded modulation and the 

Shannon’s limit, allowing a practical system to 

communicate reliably at a rate close to the Shannon’s 

capacity. 

 

Binary codes and convolutional codes belong to the 

class of binary codes used for error control. A block 

code maps blocks of k source bits into blocks of n 

coded bits where n>k and a code rate of k/n (i.e. a 

fraction of the total bit rate devoted to information 

bits). A convolutional coder also produces coded bits 

at a higher rate (a very long stream of message bits) 

than the source bits and is not divided into blocks. The 

coded bits have redundant information about the 

source bits [1]. 

 

B. Coded Modulation Theory 

The purpose of channel coding is to address the effects 

of transmission impairments while aiding the receiver 

in decision-making process. Specifically, the 

expectation of the choice of coding and modulation 

design is to reduce the bit error rate while increasing 

the reliability of the transmission. The gain achieved 

due to coding as against the uncoded system is referred 
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to as coding gain. In designing the channel and 

modulation scheme a number of factors are critically 

considered. For instance, in a power limited scenario, 

the system’s bandwidth can be traded by 

accommodating low-rate code which invariably 

affects the expected throughput as a result of 

additional parity bits employed. Furthermore, for 

bandwidth-limited and power limited situations the 

application of higher coding gain is absolutely 

necessary. Also, the channel’s characteristics 

determines the type of coding and modulation scheme 

to be employed to achieve the desired result. In 

addition, coding gain could be achieved without 

increasing bandwidth by carefully operating the 

functions of coding and a type of modulation jointly.  

Ultimately, the choice of coding and modulation 

technique requires sacrificing some features to gain 

other features [2]. 

 

C. Coded Modulation Schemes 

There are several coded modulation schemes in use for 

error control measures to ensure efficient transmission 

of information taking into consideration the 

characteristics of the channel. Among them is the Bit-

Interleaved Coded Modulation (BICM). This scheme 

utilises bit-based channel interleaving in conjunction 

with Gray signal labelling. It combines convolutional 

codes with bit-interleave in order to achieve 

transmission over fading channels. Another form of 

coded modulation is Turbo coding that has low coding 

rate; hence requires some degree of bandwidth 

expansion. Nonetheless, it is having been standardised 

for use in third-generation (3G) mobile radio system. 

BICM Turbo coded modulation (TuCM) came into 

operation to address the deficiency of Turbo coding-

that is, to offer higher spectral (bandwidth) efficiency. 

Although it performs pretty well in interleaved 

narrowband Rayleigh fading channels, but worse than 

Trellis Coded Modulation (TCM) in Gaussian 

channels due to reduced Euclidean distance (ED) of 

bit-interleaved scheme. Furthermore, Turbo Trellis 

Coded Modulation (TTCM) is a new type of 

modulation scheme that employs TCM scheme as its 

component code and performs better than TCM and 

TuCM. Last but not the least is the BICM iteration 

joint decoding and demodulation (BICM-ID) which 

uses set partitioning signal labelling. This type was to 

increase the Euclidean distance of BICM. Also in the 

list of coded modulation schemes is the Trellis-Coded 

Modulation (TCM). This is a bandwidth efficient 

modulation scheme that employs symbol base channel 

interleaving as well as set partitioning (SP) assisted 

signal labelling as proposed by Ungerboeck’s to obtain 

a higher Euclidean distance between constellation 

points. It combines convolutional codes with multi-

dimensional signal sets (modulation scheme) for error 

control technique appropriate for mobile 

communications [2].  

 

II. TRELLIS-CODED MODULATION 

 

A. Trellis Coded Modulation (TCM) 

The performance of data transmission over many 

communication channels had been marred by 

unreliable and poor transmission quality due to noise 

interference. The application of error correcting codes 

in principle was addition of parity bits known as 

coding which allows the error pattern to be identified 

and corrected at the receiver. All error-correction 

codes when used in real time communication systems 

provide improvements in error performance at the cost 

of bandwidth expansion. Hence, one main problem of 

coding is the reduction in spectral efficiency. In the 

past, coding generally was not popular for band-

limited channels such as telephone channels, where 

signal bandwidth expansion is not practical [7]. It was 

observed that treating coding and modulation 

functions as a separate entity was an impediment in 

band-limited applications. Hence, the result of 

Ungerboeck’s research in combining the functions of 

error correction codes and modulation was envisaged 

and its implementation gave rise to Trellis-Coded 

Modulation (TCM) which revolutionised 

telecommunication industry. TCM allows the design 

of a modem-plus-codec that offers greater resilience to 

noise than uncoded systems with the same spectral 

efficiency. Coding gain can be realised with trellis 

codes because the availability of the Viterbi decoding 

algorithm makes trellis decoding simple and efficient 

[13].  TCM offers high coding gain without sacrificing 

data rate or without increasing either bandwidth or 

power. However, there is still a trade-off involved. 

Since TCM achieves coding gain at the expense of 

decoder complexity the information rate is reduced.  In 

the presence of AWGN, TCM schemes can yield a net 

coding gain of about 3dB relative to uncoded systems 

with relative ease, while gains of about 6-dB can be 

achieved with higher modulation schemes [3]. 
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B. Concept of Trellis Coded Modulation 

The idea of TCM emanates from the fact that “not all 

signal subsets (in a constellation) have equal distance 

properties”. That is, for a non-orthogonal signal set, 

such as MPSK, antipodal signals have the best 

distance properties for easily discriminating one signal 

from the other; while nearest neighbour signals have 

relatively poor distance properties. The TCM system 

assigns waveforms to bits with respect to the criterion 

of better or worse distance properties. Fig 2 is the 

block diagram of TCM and figure 3 represents the 

encoder/modulator block. 

 

 
Figure 1: TCM transmitter and receiver block diagram 

 

 
Figure 2: Convolutional encoder with modulator 

combined (TCM) 

 

 
Figure 3: A general form of Trellis-Coded 

Modulation 

 

 
Figure 4: Constellation doubling in TCM, a QPSK 

signal transmitted using an 8PSK constellation 

 

Figure 4 is a general form of TCM while figure 5 

depicts signal mapping. In figure 3, the input, k = 2, n 

= 3, then R = 2/3 that takes a QPSK signal (M=4) and 

gives an output 8-PSK signal (M=8). So instead of 

expanding the bandwidth as the signal goes from 

QPSK to 8-PSK, it instead doubles the constellation 

points as shown in figure 5. 

 

C. Features and Principle of TCM 

TCM is made up of forward error correction block 

known as convolutional encoder and a signal mapper 

(that is a modulator) as shown in the figure 3. The 

convolutional code is defined by three parameters (n, 

k, K): the input bits k (ai
0, ai

1), the output codeword n 

(bi
0, bi

1, bi
2), and the constraint length K =k(m-1). The 

essence of convolutional encoder is that it handles a 

continuous stream of transmitted data. Unlike the 

block codes, the convolutional coder, a finite state 

machine has memory that is influenced by the number 

of shift registers (constraint factor K). As such the 

current n-bit output of an (n, k, K) code depends not 

only on the value of the current k input bits but also on 

the previous input bit in the shift registers. Hence, the 

current output of n bits is a function of the last K x k 

input bits with respect to the modulo-2 adder. The 

output codeword n is determined by the nature of the 

connections of the adders. The code rate k/n is the 

measure of the effectiveness the encoder. The function 

of a signal mapper is to map the three bits output from 

the encoder into one of the eight symbols of an 8-PSK 

signal set of three bits/symbol as against two 

information bits/symbols of QPSK. The term trellis-

coded modulation takes its origin from the fact that the 

encoded sequences consists of modulated symbols 

rather than binary digits [3]. 

 

The effect of this type of coding is that the Euclidean 

distance (ED) between the signal elements are closer 

in 8-PSK constellation than in 4-PSK and it is the task 

of the decoder to select the best sequence that is closest 

in Euclidean distance. This criterion for signal 

selection is called the Maximum Likelihood (ML) 

criterion.  In the decoding process, errors that have the 

lowest Euclidean distance dmin to the correct trellis 

path can arise which affect the values of the signal-to-

noise ratio. So mapping of the binary output of the 

convolutional encoder onto the constellation points of 
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the modulator plays a crucial role in the overall 

performance of the trellis code. Hence, mapping rules 

as given by Ungerboeck are stated below: 

a) Parallel signals should be characterised by the 

highest Euclidean distance between signals. 

b) Diverging path signals emerging from a given state 

be characterised by the second highest Euclidean 

distance between signals [3]. 

Set partitioning is used to assign signals in the 

constellation. 

 

Euclidean distance is the shortest (minimum) distance 

defined in the I-Q plane between two signals. The 

distances given in figure 6 are squared and are called 

squared Euclidean distance (SED) and the smallest of 

these distances is called minimum squared ED 

(MSED).  

 
Figure 5: 8 PSK constellation with SED between 

symbols[18] 

 

Messages are in long sequences and the receiver 

makes decision based on sequences and not on 

symbol-by-symbol basis. So the probability of error 

between sequences is given by:  

           Pe ~ e-d2min/2σ2   

where, dmin is the sequence ED between sequences and 
σ2 is the noise power 

 

D. Signal Redundancy Enlargement  

In TCM, with k as the input bits and n output bits is 

increased by a redundant bit p, n=k+p. Note that 

coding increases the signal set size from 2k to 2k+p. So, 

coding gain is obtained by expanding the uncoded 

signal set by a factor of 2. Where p=1, the encoder has 

a rate of k/(k+1) code and subsequently mapping 

groups of k+1 bits into the set of 2k+1 waveforms 

thereby increasing the signalling set alphabet from 

M=2k to M’=2k+1. The increase in alphabet size does 

not affect the bandwidth; however, it results in a 

reduced distance between adjacent symbol points (for 

signal sets with a constant average power) which 

degrades error performance in uncoded system. The 

free distance determines the error performance. The 

proximity of signals do not affect performance as long 

as partitioning rules are followed. The code sequence 

and distance properties are best determined in the 

trellis diagram. The main objective of TCM is to 

assign waveforms to trellis transitions so as to increase 

the free distance between the waveforms that are the 

most likely to be confused which ultimately enhances 

the coding gain [3].  

 

E. BANDWIDTH 

The maximum possible symbol rate is determined 

from bandwidth, B. hence symbol rate, Rs <=2B. We 

can now determine the size of the alphabet, M to 

deliver the needed signal BER at the given available 

power. If we want to transmit a QPSK signal, uncoded 

with a BER of 10-5. This will require 9.6dB of energy 

per the ideal Eb/No vs BER relationship. If that much 

power is not available because the transmitter is small, 

then an option is to add a code of rate 2/3 to reduce the 

BER which will give this BER at a smaller Eb/No. So, 

addition of coding increases the bandwidth by 3/2(i.e. 

1/R). If we cannot allow the bandwidth to change, then 

information rate will have to decrease by the same 

proportion [8]. 

 
Figure 6: Determination of bandwidth [18] 

 

The figure 7a shows an uncoded signal at bit rate, Rb 

= 2, output Rb still at 2 bits/s i.e k=1, therefore, going 

by Rb = kRs, Rs = 1. Then for figure 7b at rate ½ code 

there is 3 bits/sec at the o/p at k = 2bits/symb, hence 

Rs = 1.5. While for figure 7c at rate 2/3 code there is 

3bits/sec at the o/p at k = 3 bits/symb, hence Rs = 1. 

As long as the symbol rate is the same, MPSK 

modulations have the same bandwidth irrespective of 

the alphabet size.                                                                                                                                                                                                                                                                                                                                        
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III. TCM ENCODER 

 

A. Convolutional coder (codes) 

This is a finite state machine in which the added 

redundant bits are generated by modulo-2 

convolutions. Convolutional codes are widely used as 

channel codes in practical communication systems for 

error correction. The encoded bits depend on the 

current k input bits and a few past input bits. The main 

decoding strategy for convolutional codes is based on 

the widely used Viterbi algorithm.  

 

Convolutional code can be marked by (n, k, K), which 

means for every k bits, there is an output of n bits and 

K is called constraint length. Basically, convolutional 

code is generated by passing the information 

sequentially through a series of shift registers. Because 

of the shift registers, convolutional coder has memory, 

the current n-bit output depends not only on the value 

of the current block of k input bits but also on the 

previous K-1 blocks of k input bits. So, the current 

output of n bits is a function of the last K×k bits.   

 

B. Set Partitioning 

Ungerboeck’s set-partitioning, a type of signal 

mapping is devised to improve coding. The basic idea 

is to map 2k information bits to 2k+1 constellation 

points such that we can limit the transitions to occur 

only along the largest SED. The partitioning of the 

subsets further increases the ED between the signals in 

that set. The 8-PSK are successively partitioned into 

disjoint cosets such that the SEDs increases at each 

level as Δ0 < Δ1 < Δ2 … between the elements of the 

subsets. Assuming the signal power (i.e. the square of 

amplitude) is taken to be unity, by calculation the 

distance Δ0 (known as Euclidean distance) will be 2 x 

rsin(π/8) = 0.765. There are two levels of subsets with 

each level having a different ED such as subsets B0 

and B1, C0 to C3 with EDs of Δ1 =1.414 and Δ2 =2 

respectively. In TCM, the trellis transitions are 

labelled with waveform numbers unlike in 

convolutional coding where is is labelled with code 

bits. Because of the good distance property of the 

4PSK the decoder can make arbitrary decision for each 

signal received as against the distance property of 

uncoded 8PSK signal set.  Each subset is called a coset 

and by the lattice terminology the set partitioning of a 

coded 8-PSK from uncoded QPSK that shows the ever 

increasing ED subsets is shown below[3]. See figure 9 

and 10. 

 

The number of symbols required in the alphabet can 

be determined from the bandwidth and bit rate 

considerations. Consider the uncoded system having 

2m and coded 2m+1 number of symbols respectively. It 

is of great importance to know that the choice of 

mapping to a large extent affects the performance of 

the code. From figure 8, it is indicated that the uncoded 

bits select a signal from the subset and the coded bits 

select the subset. Hence, there must be 2n+1 subsets. A 

general technique extended to make use of alphabets 

larger than four [4]. 

 
Figure 7: General technique for signal 

mapping[10] 

Mapping has the property that parallel transitions 

correspond to symbols that are far apart as possible. A 

systematic way to design such mappings in general is 

known as set partitioning proposed by Ungerboeck. 

Not all the gain is due to the redundancy introduced by 

the convolutional coder; some of it is due to the 

constellation chosen for the comparison. 

 

The general rule for mapping by set partitioning are: 

• First, maximise the distance between parallel 

transitions 

• Next, maximise the distance between transitions 

originating or ending in the same state. 
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Figure 8: Uncoded 4-PSK and its one-state trellis[3] 

With QPSK, k=2 

- When coded n,= k+1 = 3 

- Code rate r =k/n= 2/3 

- No of signal constellations=     2k+1 = 23 =8 

-  1st level subset= B0, B1  

-  2nd level subset= C0,C1,C2,C3=4 state trellis  

 

 
Figure 9:Ungerboeck’s 8 – PSK signal set 

partitioning [3] 

 

B. Waveforms Mapping to Trellis Transitions  

The purpose of trellis transition branches to 

waveforms is to ensure coding gain is achieved. 

Hence, assigning of waveforms to transitions are 

guided by rules as devised by Ungerboeck.  

 

The rules ensure that codes have a regular structure 

and that the ED exceeds the minimum distance of the 

uncoded reference modulation [3].   

 
Figure 10: Four-state trellis structure[3] 

 

The four-state trellis figure 11 satisfies the rules stated 

earlier. With the waveform number assigned to the 

trellis transitions, the waveform signals can now be 

assigned in an arbitrary format without the fear of 

lower ED which could cause misinterpretation of 

signals leading to error. The trellis structure above will 

be used in a TCM decoder for detection and decoding 

of received signals to ensure the ultimate goal – good 

coding gain is achieved. 

 

IV. TCM DECODER 

 

A decoder is a device used to recover a coded signal 

transmitted to its original state at the receiver. The two 

approaches used for decoding convolutional codes are 

sequential decoding – using Fano algorithm and 

Maximum Likelihood decoding that uses Viterbi 

algorithm. The latter is the principle of Viterbi 

algorithm with soft-decision.  

 

The most important error correction algorithm 

developed for convolutional codes is the Viterbi 

decoding algorithm. The algorithm technique 

compares the received sequence with all possible 

transmitted sequences and chooses a path through the 

trellis whose coded sequence differs from the received 

sequence in a few places. With a valid path 

established, the decoder can recover the input data bits 

from the output code bits. Convolutional codes 

performs excellently well in noisy channels where the 

possibility of high bit errors is imminent and have been 

found useful in wireless communication applications 

[3].     
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A. DECODING USING THE VITERBI 

ALGORITHM 

In Viterbi algorithm, the principle used to reduce the 

choices is that errors seldom occur and are distributed 

randomly. Viterbi algorithm uses a metric and tracks 

this metric for several trellis paths at once. All paths 

are followed until two paths converge in one node then 

the path with larger metric is discarded. This helps to 

reduce the complexity and gives the Viterbi decoding 

an advantage over sequential decoding. This form of 

decoding makes it useful for Trellis Coded Modulation 

(TCM) as it uses long stream of sequences. In hard-

decision Viterbi decoding, this is done using the 

Hamming distance as a metric. In TCM, the decoding 

is done with soft decision algorithm and Euclidean 

distance is used as the metric. The objective is to track 

“n” possible sequences, keep track of cumulative 

MSEDs. When paths merge at a state, it follows only 

the one with the smallest metric [4]. 

 

B. TRELLIS CODES 

Significant coding gains can be achieved with lower 

complexity by the use of FSM in the transmitter in 

conjunction with a multidimensional signal 

constellation. The lower complexity sterns from the 

simplicity of the transmitter FSM and the use of 

Viterbi algorithm for Maximum Likelihood detection 

at the receiver.  

 

The basic advantage of signal space (trellis) coding is 

that by going to a higher dimensionality space we can 

increase the minimum distance in relation to the 

transmit signal energy. The sequence of data symbols 

are dependent on one another and this dependence is 

the essence of achieving coding and shaping gain. The 

FSM introduces dependence of the successive 

symbols by its symbol-to-symbol state memory. The 

coding gain due to the FSM can augment the coding 

and shaping gain due to constellation design. A signal-

space coder based on an FSM is often called a trellis 

coder. 

 

A penalty is paid in an increase in the number of points 

per multidimensional symbol, which either reduce the 

minimum distance or increase the transmitted energy. 

However, the advantage of working in a 

multidimensional space more than makes up for this 

penalty [4]. 

Furthermore, uncoded input(s) together with coded 

input are mapped by the signal mapper. However 

leaving some bits uncoded may affect performance. 

The extra uncoded bit can be represented in the trellis 

using parallel branches. A trellis with m-n (m = total 

no of input bits to mapper and n = total no of input bits 

to convolutional coder) uncoded bits has 2m-n parallel 

transitions between every pair of states. The effect of 

parallel transitions is that a very short error event may 

occur where a mistake can arise in choosing one of 

these parallel transitions for the correct one. To 

minimise its probability, ensure that the ED between 

the symbols corresponding to the parallel transitions is 

maximised. To ensure that parallel transitions have 

symbols as far apart as possible, symbols for parallel 

transitions are selected from the same subset. The 

parallel transitions degrade the performance by about 

1 dB compared to the system without parallel 

transitions.                      The total gain that can be 

achieved with a trellis code depends on the number of 

states in the FSM. We can achieve coding gain of 3dB 

with 4 states, 4.5 dB with 16 states and about 6dB with 

128 states or more.  

 

V. TCM PERFORMANCE MEASURE 

 

The performance of TCM could be measured by the 

amount of coding gain obtained from a modulation 

scheme used in conjunction with the convolutional 

encoder as against the uncoded system as explained in 

this section. 

 

A. Coding Gain 

The asymptotic coding gain G, expressed in dB is the 

comparison with some uncoded system with same 

average signal power and noise variance is in trellis 

transition expressed as a ratio of distances squared as 

shown in the equation below.  

𝐶𝑜𝑑𝑖𝑛𝑔 𝑔𝑎𝑖𝑛, 𝐺𝑑𝐵 =
𝑑𝑓𝑟𝑒𝑒/𝑐𝑜𝑑𝑒𝑑

2

𝑑𝑚𝑖𝑛/𝑢𝑛𝑐𝑜𝑑𝑒𝑑
2   

The coding gain is referenced to the baseline signal. 

With a QPSK at BER of 10-5, requires 9.6 dB of Eb/No 

is taken from the baseline and for 8-PSK that requires 

a higher Eb/No at the same BER will be account for 

from the baseline of coding gain equation.  

 

Although dmin/coded is less than dmin/uncoded, if dfree/coded is 

increased by the summation of branch transitions to be 

greater than dmin/uncoded there will be a positive coding 
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gain. Free distance, dfree is obtained from distances 

between sequences rather than distances between 

signals. Hence, it is the Euclidean distance of a coded 

signal in terms of the smallest possible distance 

between allowed sequences and is measured from all-

zero sequence (000) as hamming distance. The 

Euclidean distance of a coded signal is the smallest 

between all-zero sequence and one that diverges from 

it and remerges. The equation above is the major aim 

of TCM which is to achieve free distance that exceeds 

the minimum distance of the uncoded modulation 

signal at the same information rate, bandwidth and 

power[3]. 

 

 
Figure 11: The diverging and remerging of alternate 

sequences 

 

Note: A sequence is a set of demodulated symbols. 

When two paths diverge it means there was an error 

and the decoder made a wrong decision and so further 

decision is to bring it back to the correct one. A small 

incorrectly allowed path is a measure of the error 

correcting capability of the code. This is the concept 

used by the receiver as it picks neighbouring signal 

points because they are most likely the correct signal. 

This is the concept behind Maximum Likelihood 

decoding (MLD). 

 

In figure 12, the trellis structure shows that if an error 

is made at time t=0 and the path diverges and then 

remerges to the correct sequence in only two 

segments, the sum of the squared ED for this path is 

called free distance, dfree of the code. The free distance 

is the sum of the squared Euclidean distance which is  

𝑑 𝑓𝑟𝑒𝑒

𝑐𝑜𝑑𝑒𝑑

2 =  𝑑𝑚𝑖𝑛
2 + 𝑑𝑚𝑖𝑛

2     

= (√2)2 + (√2)2 = 4    

 

B. CODING GAIN FOR 8-PSK WITH A 4-STATE 

TRELLIS 

Since the top two levels, the main constellation A and 

subset B in the set partitioning have smaller distances; 

errors are more likely to occur, hence the use of coded 

bits to traverse through this part. Considering the 4-

state trellis of figure 12, at the receiver, the decoder 

makes a decision about the coded bits and then the 

uncoded bit, sending it down one of the four paths at 

each state. Even if the decoded decision is correct, 

there would still be a possibility that the uncoded bit 

will be decoded incorrectly. 

 

Figure 12: a) Rate 2/3 convolutional encoder; 

 

 
b) Rate ½ convolutional coder 

 

 
Figure 13: a) 8-PSK symbol mapping; 

 

c) Natural mapping; c) Gray mapping [7] 

 

For instance, using a rate 2/3 non-systematic coder of 

figure 13a, 
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Figure 14: Trellis diagram for 2/3 encoder [3] 

 

From the trellis diagram of figure 15, which of the 

divergent paths will help return the path back to zero 

state in connection with each other considering the 

state transitions that give the minimum. The signals at 

each state are stated side by side to their EDs and the 

appropriate selections are depicted in figure 14. So the 

total MSED for this sequence is  

2 + 0.586 + 2 = 4.586 

 

𝐶𝑜𝑑𝑖𝑛𝑔 𝑔𝑎𝑖𝑛, 𝐺𝑑𝐵 =

𝑑 𝑓𝑟𝑒𝑒

𝑐𝑜𝑑𝑒𝑑

2

𝑑𝑚𝑖𝑛/𝑢𝑛𝑐𝑜𝑑𝑒𝑑
2  

= 10 log (
4.586

2
) = 3.6𝑑𝐵 

 

With natural mapping we have 3.6 dB coding gain. 

Alternatively, using Gray code and applying the trellis 

structure above the total MSED resulted to  

 

0.586 + 0.586 + 0.586 = 1.758 

 

Therefore, coding gain =   

10 log (
1.758

2
) = −0.56𝑑𝐵 (a loss). 

So mapping is an important consideration. So adding 

any code of rate 2/3 code in front of an 8-PSK 

modulator is not beneficial.  

 

 
Figure 15: Trellis of a rate 2/3 convolutional code[7] 

 

For instance, using a rate ½ systematic coder of figure 

13b, 010 bits represented by b1 b2 b3 would be mapped 

to symbol S2 using this mapping where 0(b1) is the 

most significant bit(MSB) with the largest distance. 

Ungerboeck’s approach leaves the MSB uncoded to 

take care of itself as it has a large ED. This turns out 

to be the key to larger coding gains of this approach. 

Only the bits that reside at the top levels of set 

partitioning with smaller SEDs are coded, thus 

reducing coding rates and increasing bit efficiency. 

 

TCM can therefore be implemented using lower 

coding rate leaving the MSB uncoded by the use of 

systematic convolutional encoder as depicted in figure 

13b. 

 

Instead of using a rate 2/3 code on both incoming bits, 

1 bit is left uncoded and rate ½ code and another bit 

which still gives 2/3 code rate. The use of ½ code rate 

has a better coding gain. 

 

TCM basis is to selectively code only some of the bits 

and take advantage of the increasing ED obtained by 

set partitioning, then leaving uncoded bits that are 

naturally protected by their large SED. Starting with a 

4-state encoder we have; 

 
Figure 16: Trellis of rate ½ code 
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The minimum length paths have the corresponding 

distances from all zero(00) bit symbol are 2.0, 2.0, 2.0. 

Therefore, 2+2+2=6; hence the MSED for this code is 

6 

 

Therefore, coding gain G(dB) = 10 log(6/2) = 4.77 dB 

This means that 4.77 dB of rate ½ code is better than 

3.6 dB from 2/3 code rate obtained earlier. This is just 

the coding gain of the rate ½ code with the uncoded bit 

yet to be considered. 

 

To account for the uncoded bit, consider figure 18, at 

each state we have two incoming coded bits and one 

uncoded bit, so each path doubles to account for the 

two choices for the uncoded bit. At state 00, if the 

output of the coded bit are 10, then we get 110 if 

uncoded bit is 1or 010 if it is 0.  The doubling of 

choices is called parallel transitions. (This is of 

consequence only in a 4-state code) 

 
Figure 17: a) rate ½ code trellis, b) rate ½ code trellis 

with uncoded bit, b1[7] 

 

From the figure above, we have a symbol of 3 bits in 

parenthesis. The first bit is uncoded while the last two 

bits are coded from the top trellis where the minimum 

distance is low and the chances of mistaking one 

symbol for another is high. Below is the complete 

trellis of the above 4-state trellis with the chosen 

MSED using the waveform numbers to calculate the 

minimum distance from the set partitioning. 

 
Figure 18: Trellis structure: a) Modified trellis for 

uncoded bit and replaced by a chosen symbol map(i.e. 

S0, S4, S2, S6), b)Establish their EDs, c) Choose the 

path with minimum ED, and d) Represent the path 

taken in the trellis diagram[18] 

 

Therefore, dfree of the code = 2+0.586+2 = 4.586 

It will be observed that the parallel pairs (e.g. 0 4 & 2 

6) has 180 deg phase shift apart and corresponds to a 

MSED of 4.0 and is smaller than the sequence 

staggered MSED (SMSED),(4.586) this error is more 

likely. In other words, it is more likely that the 

uncoded bits will be decoded incorrectly than the two 

coded, simply because they have a larger SMSED. 

This is called single stage error. When this happens we 

have: 

 

δ2
min = 4.0 (not dmin, but the SED at the bottom level of 

the partition which contains the uncoded bit). 

δ2
free = sum of the MSED (SMSED) 

so, the minimum distance of the two determine the 

overall performance. 

Therefore, dfree  = min(δ2
free, δ2

min) = min[4.586, 4.0] 

Coding gain = minimum of the two/ d2
min  

Note for QPSK, d2
min/uncoded = 2.0 

= 10 x log(4/2) = 3 dB 

This gain is low compared to 3.6 dB obtained from rate 

2/3 code. This is because of the following: 

1. The ACG is low because of the single stage errors 

2. The major contributor of the low ACG is the 

existence of parallel transitions – it limits ACG 

3. Finally the use of 4-state trellis structure is another 

limiting factor that encourages parallel transition; 

hence, the introduction of higher state trellis. 

 

C. Coding Gain for 8-Psk with 8-State Trellis  

We can increase the coding gain in TCM by 

eliminating the parallel transitions by assigning paths 

so that they do not have parallel transitions and this 
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can be achieved by increasing the number of states. 

Increase of states from 4 to 8-states is done by 

increasing the number of shift registers from 2 to 3.  

From the trellis diagram figure 20, which of the 

divergent paths will help return this path back to all-

zero reference in connection of the other at the end 

point using the waveforms instead of the binary 

numbers. So at state 1:0426 the smallest distances are 

2 and 6 looking at fig 14a while at state 2:1537 the 

smallest distances are 1 and 7. Also at state 3:2604 the 

smallest distances are 2 and 6 while at state 4:3715 the 

smallest distances are 1 and 7. Here we choose the best 

distance path that will diverge and remerge with links 

back to zero sequence. Such will be state 1=6 links 

state 3 at t1, i.e. dmin=2; state 2=1 links state 1 at t1 i.e. 

dmin=0.586; state 3=6 links state 2 at t1 i.e. dmin=2. So 

state 4 is not connected due to the choice of the 

minimum distances that will connect back to zero 

sequence. 

 

So the total minimum SED(MSED) for this sequence 

is  

d2
free/coded = 2 + 0.586 + 2 = 4.586 

therefore, coding gain = 10 log(4.586/2) = 3.6dB. 

Natural mapping thus gives a coding gain of 3.6dB 

 

 
Figure 19: Trellis of rate ½ code with 8 eight states[18] 

With more states the four paths are assigned to other 

states to avoid parallel transitions. From the figure 

above, S6, S7, S6 appear to have the minimum 

distances from each branch compared to all zero state. 

Therefore, the free distance, dfree = 2.0 + 0.586 + 2.0 = 

4.586 

 

Coding gain = 10 x log (4.586/2) = 3.6 dB 

There is an improvement of 0.6 dB as a result of the 

use of 8-state against 4-state trellis structure. This 

shows that the use of more states of 8-PSK improves 

coding gain as depicted in the table below.   

 

 
 

VI. TRELLIS CODING FOR QAM 

 

A. TCM for QAM 

In the same way that set-partitioning is applied to M-

ary PSK so it is applicable to M-ary QAM. Consider a 

coded 16-QAM having three information bits per 

modulation interval and making reference to an 

uncoded 8-PSK system. A 16-QAM will need three 

uncoded incoming bits of which two will be coded to 

give thee bit output i.e rate 2/3 encoder. See figure 21. 

 
Figure 20: Rate 2/3 convolutional coder for 16-QAM 
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Figure 21: set partitioning of 16-QAM constellation 

[3] 

 

The table 5 illustrates the coding gain of different 

states of 16-QAM signal set. 

 

Table 1: Number of states with its Coding gain 

 
 

B. The Pragmatic TCM 

This is a type of TCM, a 64 state standard rate ½ 

convolutional codes for communications as against 

different rate code for each version of TCM. This was 

suggested by Viterbi. Its advantage is that with slight 

modifications it can be used to decode both the coded 

and uncoded bit. Pragmatic approach is not as 

effective as the set-partitioning approach. 

 

VII. MULTIDIMENTIONAL TCM (SIGNAL 

CONSTELLATIONS) 

 

The shape of the signal constellation affects positively 

or negatively the constellation design. So circular 

constellation has a lower variance of the data symbols 

than the square constellation, hence a circular shape is 

appropriate. The resulting reduction in signal power is 

called shaping gain. 

 

A second approach to improving a constellation is the 

use of hexagonal constellation in which points fall on 

a grid of equilateral triangles, also reduces the variance 

for the same minimum distance or increase in 

minimum distance for the same power through 

changing the relative spacing of the points is called 

coding gain. 

 

Coding and shaping gain can be combined by 

changing the points in the circularly shaped 

constellation to a hexagonal grid while retaining the 

circular shaping. Neither shaping nor coding gain is 

feasible in one dimension, but both are available in two 

dimensions. In the context of trellis code, the benefit 

of using multidimensional constellation yields 

additional coding and shaping gain than with 2-

dimentional constellation. It is observed that doubling 

the symbol alphabet is sufficient to achieve almost the 

available coding gain determined by Shannon limit. 

However, doubling the constellation size for the same 

minimum distance will increase the signal energy. The 

coding gain overcomes this disadvantage. The 

continuous approximation predicted that doubling the 

size of the constellation increases the signal energy P, 

per two dimensions by 22/N for an N-dimensional 

constellation. Thus the dimension of the constellation 

increases, the power penalty decreases.  

 

E.g. P (dB) = 10 x log10 (22/N) 

Thus it deceases from 3 dB for a two-dimensional 

constellation to just 1 dB for a six-dimensional 

constellation. However, multidimensional 

constellations suffer from a complexity that increases 

exponentially with dimensionality. This could be 

checked (mitigated) by combining it with trellis codes. 

BPSK and PAM are one dimensional (1D) while 

QPSK is 2-BPSK, hence 2 dimensional modulation 

and is called 2LD-MPSK-TCM, where dimensionality 

factor L = 1. So “L” denotes “L” dimensions of 2D 

MPSK signals. Another way multi-dimensional is 

referred is by L x MPSK e.g. 2 x MPSK or n x MPSK 

i.e. n symbols. So 4 x MPSK = 8D-TCM.  

 

The main concept in multi-dimensionality is 

increasing the number of symbols created in one 

processing period (i.e. multi- processing) that allows 

or enhances better performance [4]. 

 

Advantages 
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1. Fractional information rates can be transmitted. 

Instead of rate 2/3 code in 1 x 8PSK, we have 5/6, 

8/9, 11/12. This reduces code overhead by 

affecting more than one symbol. 

2. Better bit efficiency is possible (i.e. ratio of 

number of input information bits to the no of 

symbols transmitted per processing period). 

3. Smaller peak to average ratio. 

4. No additional hardware complexity as multi-D 

TCM uses pragmatic version of TCM.  

 

 
Figure 22: 2x8-PSK, code rate 4/6[7] 

 

There are 4 input bits, 2-coded and uncoded bits 

respectively to produce 4 bits that produces 6 bits 

output of the constellation mapper. The constellation 

mapper uses an algorithm to reorder these bits to 

output 2 symbols as shown in figure 23. 

 

The 2 inputs through a rate ½ encoder generate 2 parity 

bits which mean that we have 4 information bits and 2 

symbols per processing period. 

 

Therefore, bit efficiency = 4/2 =2 bits/symbol. 

 
Figure 23: 2 x 8PSK, code rate 5/6 [11] 

 

Bit efficiency = b1 to b5/z1+z2 = 5/2 = 2.5 bits/symbol 

 

D. COSET Codes: 

Comparison of the performance of trellis coded 

systems against uncoded systems were made with the 

same transmit energy and spectral efficiency but the 

sources of improvement – performance were not 

properly accounted for. In particular, they mix coding 

gain due to constellation design with that due to the 

FSM. Furthermore, the methods do not scale well 

large constellations and to multidimentional 

constellations. Trellis codes based on coset partition 

are called coset codes by Forney. Coset codes allows 

us to separate coding gain due to the lattice, the 

shaping gain and the additional coding gain due to the 

FSM. See figure 25. 

 
Figure 24: A view of trellis coding that enables 

deeper understanding of the sources of performance 

gain. 

 

There are potentially three distinct sources of 

performance gain: 

• the lattice ᴧ may have coding gain 

• the signal point selector will use some shaping 

region S that may have shaping gain 

• the convolutional coder will allow only a particular 

sequence of cosets to be sent to the signal point 

selector, and thus introduces its own coding gain 

by increasing the minimum distance between 

sequences [4]. 

 

E. Coding Gain Due to Redundancy 

The convolutional coder allows only a subset of all 

possible sequences of cosets. Thus, there is 

redundancy in such sequences. This means that the 

minimum distance between any two allowable 

sequences will be larger than the minimum distance 

between pairs of points in the lattice. Let dmin(C) be the 

minimum distance between any two sequences of 

cosets allowed by the convolutional coder C where the 
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distance between two cosets is taken to be the 

minimum distance between any two point is one coset 

and any point in the other. The minimum distance will 

dominate the performance of the overall system. Let 

dmin (ᴧ) be the minimum distance between any two 

points in ᴧ. Then the convolutional coder has the 

minimum distance by a factor of dmin(C)/ dmin (ᴧ). 

 

There is a price paid for, however, for this increase in 

minimum distance. Since there is one more bit 

emerging from the convolutional coder than going into 

it, twice as many points in the lattice will be needed 

within the shaping region to transmit the coded signal. 

Thus the size of the shaping region will increase. This 

constellation expansion reduces the gain, since it 

increases the energy. 

 

Combining the positive and negative effects of the 

convolutional coder, we get the coding gain due to the 

convolutional coder which is simply the increase in 

minimum distance due to the convolutional coder 

divided by the increases in energy (per two 

dimensions) due to the constellation expansion [4]. 

Expressed as  

YC =
d2 min(C)

d2 min(
 (∧)x 2P(C)  
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