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Abstract- As efforts to increase oil reserves through 

enhanced oil recovery projects increase globally, 

interfacial tension in crude oil - brine systems is 

becoming increasingly significant. In porous media, 

displacement processes and multi-phase flow are 

directly impacted by interfacial tension. It has an 

impact on oil field emulsions' behavior as well. The 

majority of documented two-phase flow and 

displacement procedures executed under varying 

interfacial tensions have been executed for either 

water-gas, oil-water or oil-gas two-phase systems. 

One significant factor influencing the 

displacements of water/oil and water/oil/gas is the 

interfacial tension between crude oil and brine. 

Adhesion tension, capillary pressure, capillary 

number, and the dimensionless time for imbibition 

are all influenced by interfacial tension. A crucial 

physical characteristic that influences several 

processes in the oil and gas sector, including 

enhanced oil recovery, multi-phase flow, and 

emulsion stability, is interfacial tension (IFT). 

Increasing the efficiency and optimizing these 

processes depend on accurate IFT prediction. This 

article reviews the various techniques that have 

been applied to make interfacial tension  (IFT) 

predictions in liquid-liquid and liquid-vapour 

systems, exploring advanced  machine learning 

(ML) techniques  in terms of the variables used for 

modelling, variable relevance,  internal parameters 

tuning, performance analysis and future prospects 

of the most advanced algorithms. The Gradient 

Boosting (GB), Elastic Net Regression (EN), 

AdaBoost, SVR, CatBoost, and XGBoost algorithms 

are explored and results of their application from 

different studies compared. 

 

Indexed Terms- Interfacial Tension, Machine 

Learning, Algorithm, Boosting 

I. INTRODUCTION 

 

In petrochemical and reservoir engineering, different 

machine learning technologies, such as particle 

swarm optimization (PSO), genetic programming 

(GP), artificial neural networks (ANN), imperialist 

competitive algorithms (ICA), and generalized 

regression neural networks (GRN), have been 

presented in the literature for IFT estimation. 

(Hosseinzadeh et al., 2016;  Li and Misra, 2017; 

Ameli et al., 2018; Hemmati-Sarapardeh et al., 2018; 

Amar et al., 2018).Lab techniques are the most 

effective means of determining the IFT between a 

hydrocarbon and a surfactant. The weight of drop 

method, pendant drop, spinning drop, etc. are 

laboratory techniques used to measure IFT. Others 

include the molecular-level theories, like the Gibbs 

adsorption equation and the Young-Laplace equation, 

which connect IFT to interfacial curvature and the 

distribution of molecules at the interface (Tadros et 

al, 2013;Periera et al, 2017; kim et al, 2022;), and 

computational techniques, like density functional 

theory (DFT) and Monte Carlo methods, which shed 

light on the behavior of molecules at the interface 

(Zhao, 2018; Singh, 2023) are included in theoretical 

approaches. Experimental methods include the 

capillary rise method, the spinning drop method, the 

Wilhelmy plate and Du Noüy ring methods, the 

pendant and sessile drop techniques, and others that 

measure the force needed to deform or separate a 

fluid interface. Other methods involve examining the 

form and behavior of fuid droplets, such as drop 

shape analysis and interfacial rheology.(Clegg, C, 

2013). One of the drawbacks and difficulties of 

laboratory techniques is their time-consuming nature. 

This method is expensive when taking into account 

the cost of the tests and the chemicals required to 

perform the IFT test. Thus, it can be very appealing 
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and useful to develop a model for predicting the IFT 

between surfactants and hydrocarbons. Studies in the 

past have discussed how surfactants affect the surface 

equation of state at the interfacial boundary between 

two fluids. 

 

A measurement of the force per unit length acting on 

the boundary between two immiscible fluids is called 

interfacial tension, or IFT. Normally, dynes/cm (Bui, 

T. et al. 2021) are used to measure it. IFT is 

influenced by the fluids' characteristics and 

compositions as well as the ambient temperature and 

pressure. For the purpose of precisely forecasting 

interfacial behavior and streamlining procedures in a 

variety of applications, it is essential to comprehend 

how these factors affect IFT. IFT finds widespread 

application in the oil and gas sector, where it has a 

major impact on various aspects including enhanced 

oil recovery, pipeline transportation, gas injection, 

emulsion stability, acidizing, and carbon capture and 

storage. In many of these procedures, the IFT 

between the gas-water and oil-water systems is a 

crucial factor that impacts the effectiveness, 

performance, and security of the activities. Lowering 

the IFT between injected fluids and crude oil, for 

instance, improves displacement efficiency in 

enhanced oil recovery and raises oil production 

(Kalam, S.2023). In pipeline transportation, effective 

hydrocarbon transportation depends on controlling 

IFT to avoid problems like emulsions and corrosion. 

IFT also affects the stability of the emulsion during 

processing, which influences the effectiveness of 

separation.(Garmsiri, H. et al.2023; Shafei, M. et al 

2021; Kalatehno, J. 2021). 

 

II. MODELLING FRAMEWORKS 

 

Developing machine learning models to predict crude 

oil brine IFT can be achieved via several approaches 

in terms of the data used in training and testing the 

model, the type of algorithm implemented as well as 

the evaluation techniques employed to ensure 

accuracy. This is so because crude oil/brine IFT is 

affected by several parameters depending on how 

they a varied for different reservoirs. As evident in 

literature, crude oil, brine and surfactant properties 

can be used to develop ML models to predict IFT in 

addition to several other parameters depending on the 

developers aim and objectives of research. 

Amar et al, 2019 utilized interfacial tension data of 

oil/brine systems, pressure (P), total acid number 

(TAN), temperature (T), the brine solution pH, oil 

specific gravity (SG), and equivalent salinity of NaCl 

(Seq) - The equivalent salinity of collected data in 

different oil samples ranged from 0 to 300000 ppm in 

various pressures and temperatures. for the 

modelling. This prediction model is based entirely on 

the crude oil and brine properties without 

consideration of the reservoir rock properties which 

from studies have a critical effect IFT as it interacts 

with the fluids (Samira et al, 2021). They 

implemented the GBDT and the AdaBoost 

algorithms by developing two models for my varying 

the input parameters. the SVR technique was applied 

during the modelling to optimize the loss function. 

The developed models were evaluated using the 

AARD (Average Absolute Relative Deviation), R
2 

(Coefficient of Determination), RMSE (Root Mean 

Square Error) and SD (Standard Deviation) statistical 

metrics to determine the best performing model. 

 

The combination of machine learning techniques 

together with molecular dynamics (MD) simulation 

was explored by Kirch et al, 2020 to model brine-oil 

interfacial tension. MD simulations were performed 

for mono- and multicomponent (toluene, heptane, 

Heptol, light, and medium) oil systems interfaced 

with sulfate and chloride brines with varying cations 

(Na+ , K+ , Ca2+, and Mg2+) and salinity 

concentration. The molecular model was made up of 

36 constituents, a bulk density of 0.84 g/cm
3
, and up 

to 20 carbon atoms per molecule. The organic 

molecules in the oil model are separated into three 

distinct fractions based on the PNA approach. The 

paraffinic (alkyl and branched alkanes) P, the 

naphthenic (cycloalkanes) N, and the aromatic (A) 

are the three types.As shown in Figure 1a, the 

aqueous and oil phases were assembled into 80 × 80 

× 160 (Å3) simulation boxes to create the oil/brine 

interface model. Using the PACKMOL package, all 

molecules and ions were added at random 

orientations and positions by adhering to bulk density 

values (Figure 1b). 37 The systems contained 

between 95,000 and 110,000 atoms in total. (Kirch et 

al, 2020) 
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Figure 1: (a) Molecular representation of the oil/brine 

interface and 

(b) the corresponding density profiles for seawater 

(red) and the 

medium-weight oil (black line) models, highlighting 

the interfaces. 

(Kirch et al, 2020) 

 

The Molecular dynamics simulations were performed 

with the Large Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) software (plimpton et al, 

1995) with accelerator packages for Graphics 

Processing Unit (GPU). (Brown et al, 2012; Brown et 

al, 2013). for the machine learning aspect, 130 entries 

were fed into the ML data set by the obtained IFTs. 

The feature space is comprised of the oil fraction (P, 

N, and A), density, brine salinity, and ionic 

composition (Na+, Ca2+, Mg2+, Cl−, K+, and SO4 

2−). Five estimators were taken into consideration 

when the Scikit-Learn package was applied 

(Pedregosa et al, 2011): (I) Linear Regression (LR), 

(II) Random Forest (RF), (III) Extra Trees (ET), (IV) 

Gradient Boosted (GB), and (V) Elastic Net 

Regression (EN). 

 

Ali et al. (2023) used reliable tree-based machine 

learning algorithms to model the interfacial tension of 

surfactant-hydrocarbon systems. This is an additional 

intriguing framework that uses data on surfactant 

(Table 2.0) characteristics to power its modeling. 

Here, Ali employed the following independent 

variables for the models: phase inversion temperature 

(PIT), hydrophilic-lipophilic balance (HLB), 

surfactant concentration, temperature, and normal 

alkane molecular weight. This is an enhanced oil 

recovery (EOR) approach which is quite different 

from what Amar et al (2019) implemented with 

regards to IFT prediction. Ali et al, implemented the 

decision tree (DT), Extra Tree (ET) and the Gradient 

Boosted Regression Tree (GBRT) algorithms to 

predict the dependent variable (I.e IFT). similar to 

Amar (2019), the models accuracy were evaluated 

with the AARD and R
2
 parameters and variable 

ranking done to ascertain the input variable which 

has the greatest effect on the model using matplotlib. 

 

 

Table 2.0: Types and Characteristics of Surfactants used

  

Surfactant  Chemical formula dPIT/dx HLB 

Decyl trimethyl ammonium 

bromide 

C10TAB C10H21N(CH3)3Br 338 21 

 

Dodecyl trimethyl ammonium 

bromide 

C12TAB C12H25N(CH3)3Br 486 

 

19 

 

Myristyl trimethyl ammonium 

bromide 

C14TAB C14H29N(CH3)3Br 453 

 

18 

 

Hexadecyl trimethyl 

ammonium bromide 

C16TAB C16H33N(CH3)3Br 426 

 

17 

Sodium dodecyl sulfate  SDS C12H25NaSO4 499 40 

 

 

Seddon et al, (2022) implemented a machine learning 

hybrid approach to predict surface tension of 

hydrocarbon surfactants in acqeous solution. The 

Szyszkowski equation is fitted to a dataset of SFT for 

154 model hydrocarbon surfactants at 20–30C to 

extract three characteristic parameters (Cmax, KL, 
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and critical micelle concentration, or CMC), which 

are correlated to a number of 2D and 3D molecular 

descriptors (Table 2.1). By eliminating co-correlation 

and using a gradient-boosted regressor model to rank 

feature importance and perform recursive feature 

elimination (RFE), key descriptors were chosen. 

Using a randomised cross-validated grid search, the 

hyper-parameters of each target-variable model were 

adjusted to decrease overfitting and increase 

predictive power. The Szyszkowski equation was 

fitted using a Python code, yielding values for the 

three target variables—Cmax, KL, and CMC—that 

describe the entire SFT-log(c) profile as well as their 

fitted confidence intervals. The ML algorithm 

implemented for all the datasets is the XGBoost 

Regressor from the scikit-learn library. 

 

Table 2.1:Molecular descriptor libraries (22 in total), 

in both 2D (9) and 3D (13) used for the study 

 

2D 3D 

GSFragments (1138) AlvaDesc (5666) 

ISIDA Fragments (45) CDK (256) 

JPlogP (9) Chemaxon (499) 

MAP 4 (1024) Dragon (S270) 

Mold2 (777) Inductive (S4) 

MNA (22) Kraken x (124) 

QNPR (37) MERA (S29) 

SIRMS (161) MERSY (42) 

Structural Alerts (3256) MOPAC2016 (35) 

 MORDRED (1826) 

 Pydescriptor (16251) 

 RDKit (3317) 

 Spectrophores (144) 

 

The various descriptor packages are divided into 2D 

and 3D dimensions according to the calculated 

descriptors. Generally speaking, 3D descriptor 

libraries were better at predicting Cmax than 2D 

libraries. The 2D and 3D descriptor libraries both 

made good predictions for log(KL) and log(CMC). 

 

A comparative study on the use of machine learning 

methods for fast estimation of CO2-brine IFT was 

done by Zang et al (2020). IFT data used for this 

study were obtained from pendant drop analysis 

consisting of both pure and impure CO2. other input 

features used were selected based on their non-

negligible effect on CO2-brine IFT, they include 

pressure, temperature,  nonovalent cation (Na
+
 and 

K
+
 ) and bivalent cation (Ca

2+
 and Mg

2+
) molalities in 

the liquid phase, and methane and nitrogen fractions 

in CO2. 9 machine learning techniques were 

implemented (GPR, SVM, KRR, MLP, CART, RF, 

AdaBoost, GBDT, and XGBOOST) to carryout this 

estimation. The table 2.2 below details the optimal 

settings of the hyperparameters for some of the 

algorithms. 

 

Table 2.2: Optimal Settings of Hyperparameters 

 

METHOD HYPERPARAMETER OPTIMUM 

RF Min. no. of samples to 

split a node 

2 

Min no. of samples at a 

leaf node 

1 

AdaBoost Max. tree depth 10 

Learning rate 0.2 

GBDT Max. tree depth 3 

Learning rate 0.2 

XGBoost Max. tree depth 5 

Learning rate 0.1 

 

Three statistical indicators—the mean absolute error 

(MAE), mean relative error (MRE), root mean square 

error (RMSE), and coefficient of determination 

(R
2
)—were used to assess and compare the 

performance and accuracy of the estimation models. 

 

Okon et al (2024) developed Four models to predict 

crude oil brine IFT (two for each algorithm - GBDT 

and ADABOOST) based on varying number of 

dependent variables and base learners. The models 

were fitted with surfactants and crude oil-brine IFT 

data, after which they were trained, tested and 

evaluated to determine the best model. In the first 

stages of simulation, the impact and effects of 

training the models with varying data sizes, 

functional forms and decision-making processes to 

predict are examined. The models were then 

evaluated using the root mean squared error (RMSE), 

coefficient of determination (R
2
), standard deviation 

(SD) and the average absolute relative deviation 

(AARD) statistical metrics as is the best practice for 

predictive ML models. The dependent variables used 
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for this study include surfactant critical micelle 

concentration, hydrophilic-lipophilic balance, 

molecular packing parameter, solubility ratio, density 

and molecular weight as well as the IFT yields for the 

surfactants used. 

 

III. DESCRIPTION OF VARIABLES 

 

As summarized in the preceding heading several 

frameworks have been deployed in predicting 

interfacial tension depending on the goals of the 

research. In this section insight will be provided on 

the choice of variables selected for each of the 

previously stated works with regards to their 

importance and effect on the target variables for the 

various scenarios. Generally variables for ML inputs 

are selected based on the level of impact they have on 

the target variable and their availability from 

experimental data (I.e. how easily they can be gotten 

through experimentation). 

 

3.1.0 Effect of Crude Oil Total Acid Number (TAN) 

on Crude oil/brine IFT 

Crude oil's Total Acid Number (TAN) indicates how 

acidic the oil is—more precisely, how many acidic 

compounds are there in the oil. The interfacial 

tension (IFT) between crude oil and brine can be 

impacted by the TAN of crude oil (Amar et al, 2019). 

In general, the IFT between the crude oil and brine 

rises in tandem with the TAN of the crude oil. (Amar 

et al, 2019) The reason for this is that the crude oil's 

acidic compounds may interact with the brine's ions, 

increasing the surface tension where the two fluids 

meet. Increased IFT between crude oil and brine may 

affect techniques used in enhanced oil recovery 

(EOR), among other oil recovery processes. (Sharma 

et al, 2000) The efficiency of the oil recovery process 

can be decreased by higher IFT, which can make it 

harder for the oil to pass through the reservoir rock 

and be replaced by injected fluids.Therefore, when 

developing and putting into practice oil recovery 

processes, it is crucial for oil producers to take the 

TAN of crude oil and its possible impact on IFT into 

account. Surfactants and other chemicals that lower 

surface tension and increase oil recovery efficiency 

can be used as strategies to lessen the impact of high 

TAN on IFT. 

 

3.1.1 Effect of brine solution pH on crude oil/brine 

IFT 

An important factor influencing the interfacial 

tension (IFT) between brine and crude oil is the pH 

of the brine solution. A solution's pH is a gauge of its 

acidity or alkalinity; higher pH values denote higher 

alkalinity and lower pH values higher acidity. As the 

pH of the brine solution rises, the IFT between crude 

oil and brine generally tends to decrease. (Farhadi et 

al, 2020) This is due to the fact that the pH of the 

solution affects the surface charge of the oil-water 

interface. Higher pH levels make the brine solution 

more alkaline, which causes negatively charged 

hydroxide ions to form at the interface. The crude 

oil's acidic constituents may interact with these ions, 

lowering the IFT between the two fluids.On the other 

hand, the brine solution becomes more acidic at 

lower pH levels, which may cause positively charged 

hydrogen ions to form at the interface. (Daaou et al, 

2011) The crude oil's acidic constituents may interact 

with these ions, raising the IFT between the two 

fluids. Thus, managing the brine solution's pH can 

play a significant role in maximizing oil recovery 

procedures, including enhanced oil recovery (EOR) 

methods. Optimizing the pH of the brine solution to 

reduce the interfacial tension (IFT) between brine and 

crude oil can enhance the effectiveness of oil 

extraction and recovery from reservoirs. To improve 

oil recovery operations and optimize the IFT, 

additives or chemicals that adjust pH can also be 

used. 

 

3.1.2 Effect of phase inversion temperature on crude 

oil/brine IFT 

The Phase Inversion Temperature (PIT) is the 

temperature at which a change in the relative 

concentrations of surfactant, oil, and water phases 

can occur in a system. (Friberg et al, 2011) The PIT 

can have a significant impact on the interfacial 

tension (IFT) between crude oil and brine when 

surfactants are present in the system.(Friberg et al, 

2011) When the system is above the PIT, the 

surfactant molecules tend to adsorb more at the oil-

water interface, leading to a lower IFT between the 

crude oil and brine. This is because the surfactant 

molecules can reduce the surface tension at the 

interface, allowing for better mixing and interaction 

between the oil and water phases.The surfactant 

molecules may not adsorb at the interface as well 
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when the system is below the PIT, which would raise 

the IFT between the crude oil and brine. In 

procedures like enhanced oil recovery (EOR), where 

lowering the IFT is crucial for enhancing oil 

displacement and recovery, (Zhang et al, 2020) this 

could result in decreased efficiency. Thus, to 

maximize the efficiency of surfactant-based 

processes in the oil industry, it is imperative to 

comprehend how the phase inversion temperature 

affects the IFT between crude oil and brine. 

Operators can manipulate the IFT to optimize oil 

recovery operations and boost overall efficiency by 

varying the system temperature in relation to the PIT 

and the surfactant concentrations accordingly. 

 

3.1.3 Effect of Surfactant HLB on crude oil/brine IFT 

A surfactant's hydrophilic (attracting water) and 

lipophilic (attracting oil) properties are balanced out 

by something called the hydrophilic-lipophilic 

balance (HLB). An important factor influencing the 

interfacial tension (IFT) between crude oil and brine 

is a surfactant's HLB value. Higher HLB surfactants 

are generally more hydrophilic and have a tendency 

to be more successful in reducing the IFT between 

crude oil and brine. (Massaweh et al, 2020) This is 

because the surface tension between the oil and water 

phases is lowered by hydrophilic surfactants' 

enhanced ability to interact with water molecules at 

the interface.Lower HLB surfactants, on the other 

hand, are more lipophilic and might not be as useful 

in lowering the IFT between brine and crude oil. It is 

possible that these surfactants are more suited to the 

oil phase and less effective at encouraging mixing 

and interaction between the water and oil phases. For 

the purpose of maximizing the effectiveness of 

surfactant-based procedures used in the oil industry, 

such as enhanced oil recovery (EOR), it is crucial to 

choose surfactants with the right HLB value.  

(Massaweh et al, 2020) The IFT between crude oil 

and brine can be effectively lowered by operators by 

selecting surfactants with the ideal balance of 

hydrophilic and lipophilic properties. This increases 

the effectiveness of oil displacement and recovery 

operations. 

 

 

 

 

 

3.1.4 Effect of surfactant CMC on crude oil/brine IFT 

A surfactant's Critical Micelle Concentration (CMC) 

is the concentration at which its molecules group 

together to form micelles in a solution. In systems 

where surfactants are present, the interfacial tension 

(IFT) between crude oil and brine can be 

significantly influenced by the CMC. Surfactant 

molecules exist in the solution as individual 

monomers below the CMC, and their ability to 

reduce the IFT between crude oil and brine may be 

lessened. Surfactant molecules, however, begin to 

aggregate to form micelles as the concentration of the 

surfactant rises and approaches the CMC. (Massaweh 

et al, 2020) The surface tension and IFT between the 

two phases can then be lowered by these micelles 

adsorbing at the oil-water interface.As a result, the 

IFT between crude oil and brine may be significantly 

reduced in the presence of surfactants above the 

CMC. (Massaweh et al, 2020) For procedures like 

enhanced oil recovery (EOR), where reducing the 

IFT is crucial to increasing oil displacement and 

recovery efficiency, this may be advantageous. In the 

oil industry, surfactant-based process design must 

take the CMC of surfactants into account. Operators 

can effectively lower the IFT between crude oil and 

brine by optimizing the surfactant concentration 

above the CMC, which will improve oil recovery and 

operational performance. 

 

3.1.5 Effect of temperature and pressure on CO2-

brine IFT 

The interfacial tension (IFT) between carbon dioxide 

(CO2) and brine is influenced by temperature and 

pressure in a CO2-brine system. (Cheng et al, 2023) 

Both temperature and pressure play crucial roles in 

determining the IFT between CO2 and brine in 

various applications, such as carbon capture and 

storage (CCS) and enhanced oil recovery (EOR). The 

IFT between CO2 and brine typically decreases as 

temperature rises. (Cheng et al, 2023) The reason for 

this is that elevated temperatures have the potential to 

improve the solubility and mobility of CO2 in the 

brine, resulting in an enhanced interphase interaction. 

However, depending on the particular makeup of the 

CO2-brine system and the experimental setup, the 

relationship between temperature and IFT can be 

complicated and change.Pressure has an impact on 

the IFT between brine and CO2. Generally speaking, 

the IFT between CO2 and brine can drop as pressure 
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rises. (Xing et al, 2013) Increased pressures may 

encourage CO2 to dissolve in the brine, which would 

improve two-phase mixing and lower the IFT. At 

higher pressures, the impact of pressure on the IFT 

between CO2 and brine is usually more noticeable. 

(Xing et al, 2013) This effect can be influenced by 

various elements, including the composition of CO2 

and brine as well as the presence of surfactants or 

additives.IFT between the two phases can be greatly 

influenced by the interaction of temperature and 

pressure in a CO2-brine system. With CO2-related 

processes like CCS and EOR, where controlling the 

IFT between CO2 and brine is crucial for effective 

operation and successful results, it is crucial to 

comprehend and optimize these factors during the 

design and implementation phases.(Xing et al, 2013) 

 

3.1.6 Effect of nonovalent cations on CO2/brine IFT 

Nonovalent cations, such as calcium (Ca
2+

) and 

magnesium (Mg
2+

), can have a significant impact on 

the interfacial tension (IFT) between carbon dioxide 

(CO2) and brine in CO2-brine systems. The presence 

of nonovalent cations can influence the properties of 

the brine and affect the interactions between CO2 and 

the aqueous phase, leading to changes in the IFT 

(Gary et al, 2022). Understanding the effects of 

monovalent cations on CO2/brine IFT is crucial for 

enhancing carbon capture and storage (CCS) and 

enhanced oil recovery (EOR). Monovalent cations 

influence the total salinity of the brine, which in turn 

affects the IFT between the brine and CO2. The 

presence of nonovalent cations at the CO2-brine 

interface can modify the ion distribution, resulting in 

changes in the surface tension and IFT. Additionally, 

monovalent cations such as Ca
2+

 and Mg
2+

 can 

adsorb at the CO2-brine interface and alter its surface 

characteristics, potentially affecting the interactions 

between the brine and CO2. (Mutallep et al, 2018) 

The interactions between nonovalent cations and 

surfactants in the CO2-brine system can also play a 

role in the interfacial behavior of the system and 

impact the surfactants' ability to lower the IFT 

between brine and CO2. Therefore, it is important to 

consider the various ways in which nonovalent 

cations affect the IFT between brine and CO2 for 

successful CCS and EOR processes. 

 

 

 

3.1.7 Effect of Bivalent cations of CO2/ brine IFT 

Interfacial tension (IFT) between CO2 and brine can 

be significantly impacted by bivalent cations, such as 

calcium (Ca
2+

) and magnesium (Mg
2+

). The system's 

surface tension may change as a result of these 

cations' interactions with the water molecules at the 

CO2 and brine interface. Bivalent cations can 

generally reduce the interfacial tension between CO2 

and brine by interacting with the water molecules at 

the interface to form complexes.(Chan et al, 2024) 

This may result in a lower IFT due to a more stable 

interface and less energy needed to keep it that way. 

Furthermore, bivalent cations may have an impact on 

the interface's wettability, which may have an 

additional effect on the IFT between brine and CO2. 

For instance, calcium ions can make the interface 

more wettable, which lowers the IFT. In general, 

lower IFT values in CO2/brine systems may result 

from the presence of bivalent cations, which may 

have an impact on several processes including 

geologic carbon storage, enhanced oil recovery, and 

CO2 sequestration. (Chan et al, 2024) Optimizing 

these processes and increasing their efficiency 

requires an understanding of the function of bivalent 

cations in these systems. 

 

3.1.8 Effect of Langmuir Constant in IFT Reduction 

The efficacy of a surfactant in decreasing surface 

tension in an aqueous solution is largely dependent 

on the Langmuir constant. (Czajka et al, 2015) The 

affinity of surfactant molecules for the interface 

between the aqueous solution and air is measured by 

the Langmuir constant, also referred to as the 

equilibrium constant. A greater affinity of the 

surfactant molecules for the interface is indicated by 

a higher Langmuir constant,(Y. Nakama, 2017) 

which results in a more efficient reduction of surface 

tension. This indicates that there is a greater chance 

for the surfactant molecules to adsorb to the interface 

and create a stable monolayer, which lowers the 

aqueous solution's surface tension. the effectiveness 

of a surfactant in reducing surface tension in water is 

determined by its Langmuir constant. (Czajka, 2015) 

A higher Langmuir constant means that the surfactant 

molecules are more strongly attracted to the water's 

surface, resulting in a greater reduction of surface 

tension. Conversely, a lower Langmuir constant 

indicates weaker attraction, resulting in a less 

successful reduction of surface tension and 
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potentially leading to a less stable monolayer. 

Generally, a higher Langmuir constant leads to a 

more effective reduction of surface tension, while a 

lower Langmuir constant results in a less significant 

decrease. It is important to note that the surfactant's 

ability to adsorb to the interface plays a crucial role 

in reducing surface tension in an aqueous solution. 

 

IV. ALGORITHMS 

 

4.1.0 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is an established 

and sophisticated machine learning methodology that 

endeavors to approximate the relationship between 

input variables and a continuous target variable while 

minimizing prediction errors. (Zarandi et al, 2020; 

Ghahfarokhi, 2022) Unlike Support Vector Machines 

(SVMs), which are predominantly utilized for 

classification tasks, SVR is primarily concerned with 

identifying a hyperplane that closely fits data points 

while allowing some deviation. (Danesh et al, 2022) 

SVR is widely acknowledged for its efficacy in 

handling non-linear relationships between 

independent and dependent variables, thanks to its 

use of kernel functions (such as linear, polynomial, 

radial basis function, sigmoid). Moreover, it is 

renowned for its robustness to outliers and 

underpinned by solid theoretical foundations. SVR 

relies on a subset of data points referred to as support 

vectors to forecast continuous outcomes such as IFT. 

Its utility for IFT prediction has been well-

documented across varying conditions, demonstrating 

its versatility and practicality in this field. 

 

4.1.1 Gradient Boosting Decision Tree (GBDT) 

Gradient Boosting Decision Trees (GBDT) is a 

powerful ensemble machine learning algorithm that 

combines the principles of gradient boosting and 

decision trees. (Liu et al, 2022) In the gradient 

boosting step, the algorithm determines the residuals 

from the base model, which are the differences 

between the actual target values and the predicted 

values. These residuals represent the errors produced 

by the base model. The algorithm begins by creating 

a single decision tree as the foundational model. This 

tree is constructed by recursively dividing the data 

according to the feature that yields the maximum 

information gain at each node. The tree's prediction is 

the average of the target variable across the leaf 

nodes. To fix the mistakes made by the base model, 

the algorithm creates more decision trees. Each new 

tree is trained using the residuals from the older trees 

to lower prediction errors.  (Liu et al, 2022)  The 

learning rate parameter manages the contribution of 

each tree to the final prediction. It helps to avoid 

overfitting and enhance the model's performance. 

(Wu et al, 2021) A lower learning rate produces a 

more conservative model that performs better when 

applied to new data. The final prediction produced by 

the GBDT algorithm is the total of the predictions 

made by each individual tree, weighted by the 

learning rate. The algorithm iteratively creates new 

trees and updates the predictions until a 

predetermined number of trees are reached or a 

stopping criterion is satisfied (Rashidi-Khaniabadi et 

al, 2023). 

 

4.1.2 Extreme Gradient Boosting (XGBoost) 

XGBoost (Extreme Gradient Boosting) is an 

optimized and efficient implementation of the 

gradient boosting algorithm that has gained 

popularity in the machine learning community for its 

performance and scalability. (Zhang et al, 2018) With 

XGBoost, errors from earlier models are corrected by 

building a sequential ensemble of weak learners, or 

decision trees, in accordance with the gradient 

boosting principles. Through the addition of new 

trees that forecast the residuals of the older trees, the 

algorithm minimizes a loss function. To avoid 

overfitting, XGBoost includes L1 and L2 

regularization terms in the objective function. By 

imposing a penalty on large coefficients, these 

regularization terms penalize the model's complexity 

and enhance the model's generalizability. XGBoost 

finds the best splits for every tree node using an 

effective algorithm. It employs an approach known as 

the approximate greedy algorithm to find the best 

split points based on the information gain at each 

node, as opposed to thoroughly searching every 

possible split. When a tree reaches maturity, 

XGBoost uses pruning to eliminate nodes that don't 

make a big difference in the model's performance. 

(Chen et al, 2016) Pruning keeps trees from 

overfitting and helps to make them less complex. 

During the tree-building process, XGBoost learns the 

optimal imputation strategy to handle missing values 

in the dataset. When a missing value occurs in a 

feature, it automatically determines which way to go 
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and assigns it to the left or right child node depending 

on the learned direction. XGBoost leverages 

distributed computing and parallel processing to train 

models more quickly on big datasets. It is engineered 

for efficiency and scalability. For even quicker 

training times, GPU acceleration is also 

supported.Cross-validation functionality is integrated 

into XGBoost to assess model performance and 

adjust hyperparameters. By doing so, overfitting is 

avoided and the ideal set of hyperparameters for the 

model is chosen. (Pedregosa et al, 2011; zhang et al, 

2018) 

 

4.1.3 Categorical Boosting (CATBoost) 

CatBoost is a gradient boosting algorithm specifically 

made to function well with data that contains 

categorical features. One-hot encoding or label 

encoding are examples of pre-processing that is not 

necessary when using CatBoost to handle categorical 

features in the data. By directly handling categorical 

variables, it reduces overfitting and enhances model 

performance through an effective technique known as 

"ordered boosting." CatBoost employs gradient 

boosting, which builds an ensemble of weak learners 

(decision trees) in a stepwise manner to fix the 

mistakes made by the earlier models. (He et al, 2014) 

By incorporating fresh trees that forecast the 

residuals of the old trees, the algorithm reduces a loss 

function. The feature importance scores that 

CatBoost offers show how much each feature 

contributes to the model's predictions. Making 

educated decisions regarding feature selection and 

model interpretation can be facilitated by having a 

clear understanding of the relative importance of the 

various features in the dataset. L2 regularization is a 

feature of CatBoost that helps to improve the model's 

generalization and prevent overfitting. By penalizing 

large coefficients in the model, regularization helps 

limit the likelihood of overfitting and regulate the 

complexity of the trees (Piero et al; 2023). Several 

strategies, including early stopping, learning rate 

scheduling, and feature importance-based pruning, 

are included in CatBoost to prevent overfitting. These 

methods aid in the development of a more reliable 

and broadly applicable model that functions well with 

unknown data. A large number of hyperparameters 

are available in CatBoost, which can be adjusted to 

maximize the model's performance. In order to tune 

hyperparameters, the algorithm offers grid search and 

random search in addition to integrated cross-

validation to assess model performance. CatBoost 

supports distributed computing and parallel 

processing and is built for scalability and efficiency. 

It is appropriate for a variety of machine learning 

tasks due to its ability to manage sizable datasets with 

millions of samples and thousands of features. 

(Huang et al, 2019; Dorogush et al, 2018) 

 

4.1.4 Adaptive Boosting (ADABOOST) 

A machine learning technique called AdaBoost 

(Adaptive Boosting) is used to combine weak 

classifiers into a strong classifier, hence improving 

their performance. Using the training data, the 

algorithm iteratively trains a series of weak 

classifiers, giving the misclassified instances greater 

weights with each iteration. (Debjani et al, 2020) A 

weighted majority vote is used to combine the 

predictions of all the weak classifiers to create the 

final prediction. same weight is given to each training 

instance at the beginning of the AdaBoost (Adaptive 

Boosting) process. The total weight is standardized to 

one. Every instance in the training set has an equal 

weight at first. The training process uses these 

weights to establish the relative importance of each 

instance. (Neha et al, 2020) Using the initial weights, 

the training data is used to train the first weak learner. 

A simple model, like a decision tree with a finite 

depth, is usually the weak learner. The algorithm 

determines the error rate—the sum of the weights of 

the incorrectly classified instances divided by the 

total weight of all instances—after training the weak 

learner. The instances that were incorrectly classified 

have heavier weights than the correctly classified 

instances, which have lower weights. (Sahoo et al, 

2020) In the following iteration, this highlights the 

instances that were incorrectly classified. The 

updated training data is used to train the subsequent 

weak learner, and the weights of the instances are 

modified in accordance with their classification from 

the previous iteration. until a stopping criterion is 

satisfied or for a predetermined number of iterations, 

the final two steps are repeated. A strong learner that 

does well on the training set is produced when each 

successive weak learner concentrates more on the 

cases that the earlier learners misclassified. 

Ultimately, by giving each weak learner a weight 

determined by their performance, the weak learners 

are combined to create a strong learner. All of the 
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weak learners' predictions are combined to create the 

final forecast, with the more accurate weak learners' 

predictions receiving more weight. (Vikram et al, 

2020) 

 

4.1.5 Elastic Net Regression (EN) 

The regularization method known as Elastic Net 

regression combines the penalties of Ridge (L2 norm) 

and Lasso (L1 norm) regression. It is especially 

helpful for high-dimensional datasets with 

multicollinearity and is used to address some of the 

shortcomings of these individual techniques. 

(Friedman et al, 2010) The Elastic Net regression 

model aims to minimize the following objective 

function: 

Loss function + α * L1 penalty + β * L2 penalty (1) 

 

Here, the loss function represents the error between 

the predicted values and the actual values, α and β are 

hyperparameters that control the strength of the L1 

and L2 penalties, respectively.The L1 penalty 

encourages sparsity by shrinking some coefficients to 

zero, effectively performing feature selection. This 

helps in reducing the model complexity and 

improving interpretability.The L2 penalty penalizes 

large coefficients and helps in reducing the impact of 

multicollinearity by shrinking the coefficients 

towards zero. The hyperparameters alpha (α) and beta 

(β) play a significant role in determining the balance 

between L1 and L2 penalties. Larger values of alpha 

promote sparsity or feature selection, while larger 

values of beta reduce the impact of multicollinearity. 

Elastic Net regression model is trained by minimizing 

the objective function using optimization methods 

like gradient descent. During training, the model 

adjusts the coefficients of the features to find the best 

fit while also penalizing large coefficients to prevent 

overfitting. Elastic Net regression combines the 

advantages of Lasso and Ridge regression by 

conducting feature selection and handling 

multicollinearity simultaneously. It selects valuable 

features by reducing less important ones to zero (L1 

penalty) and minimizing the effect of correlated 

features (L2 penalty). After the model is trained, it 

can be used to make predictions on new data. (Hastie, 

2009)The coefficients learned during training are 

used to calculate the predicted values based on the 

input features. 

 

V. RESULTS AND CONCLUSION 

 

Zhang et al evaluated the accuracy of the estimation 

models using the mean absolute error (MAE), mean 

relative error (MRE)  the root mean square error 

matrices (RMSE) and the coefficient of 

determination (R
2
). The assessment matrices for the 

ML techniques with reference to the testing set are 

compiled in Table 5.0 Given its relatively high 

MAE/MRE/RMSE and R
2
 of less than 0.9, the GPR 

method has the lowest accuracy of all the methods 

examined. A high number of data points deviate from 

the true values, as previously observed, which is 

consistent with the low accuracy GPR and further 

suggests that the overfitting problem is linked to the 

GPR. 

 

Table 5.0: Evaluation matrices for ML methods in the 

testing stage 

 

Regression models' robustness and generalization 

ability are widely acknowledged as the first important 

criteria to consider when evaluating their quality. It is 

not advisable to pursue further applications with a 

model (such as the GPR in this study) that can 

replicate the training set but is unable to predict the 

testing sets with acceptable accuracy. Based on this, 

the Xgboost outperforms the other ML models. 

 

In the study conducted by Ali et al, the ML models 

developed were evaluated based on the coefficient of 

determination, average percent relative error (APRE, 

%), root mean square error (RMSE), standard 

deviation (SD), and average absolute percent relative 

error (AAPRE, %) statistical parameters. The GBRT 

performed better than the DT and ET algorithms as 

evident in the crossplots shown in figure 5.1 below: 

METHOD MAE 

(mN/m) 

MRE 

(%) 

RMSE 

(mN/m) 

R
2
 

GPR 3.05 7.87 4.26 0.881 

MLP 1.62 4.48 2.22 0.967 

SVM 1.60 4.16 2.24 0.967 

KRR 1.67 4.41 2.38 0.963 

DT 1.83 4.77 2.73 0.951 

RF 1.60 4.17 2.26 0.967 

ADABOOST 1.69 4.43 2.28 0.966 

GBDT 1.07 2.61 1.40 0.987 

XGBOOST 0.90 2.37 1.28 0.989 
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Figure 5.1: Cross plots of the developed models; (a) 

GBRT, (b) ET, (c) DT. (Ali et al, 2023) 

 

The findings of Kirche's work demonstrated that all 

of the ML techniques used had comparable error 

rates. In addition to having larger errors, the linear 

regression (LR) approach is comparable to the 

machine learning techniques. Although the gain is 

not very great when compared to the far more 

practical LR model, it is clear that the ML algorithms 

could be used to describe the IFT database. 

 

 

Figure 5.2: (a) Mean absolute error (MAE) and (b) 

root mean square error (RMSE) obtained for each 

estimator when applied to the test data set. These 

values are lower than the Naive baseline. (Kirch et al, 

2020) 

 

For the molecular dynamics simulation, Testing the 

simplified feature space (P, N, A, and DensityOil) 

using the Remesal et al. and Kakati and Sangwai data 

sets revealed that the average error for the former was 

2% and the average error for the latter was 9%, with 

the larger errors for the toluene. Figure 5.3 displays a 

comparison of the model with data from the 

literature. With the exception of the toluene IFTs, 

which are located on the lower left of the graph, the 

model's transferability is evident. 

 

 
Figure 5.3: The trained model's predicted IFT values 

are compared to those reported by Kakati and 

Sangwai and Remesal et al. Experimental data from 

Kakati and Sangwai are represented by blue squares, 

and data from Remesal et al. molecular dynamics are 

shown in red circles. For x = y, use the dashed line. 

The gradient boosted method's feature importance 

rank showed that the density and oil fractions were 

the key factors affecting the oil/brine IFT. It's 

interesting to note that the oil features obscured the 

influence of the ionic composition by predominating 

the IFT changes. The only other significant factor 

was the overall salinity of the brine, excluding the oil 

properties.In conclusion, one useful tool for 

addressing the issues facing the oil industry is the 

creation of consistent IFT databases from molecular 

simulations. Several models can be applied with 

well-organized available data to further predict 

nonsimulated scenarios with high transferability. 
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Expanding those databases to take into account the 

thermal conditions of the reservoir, a greater variety 

of brine compositions, and more intricate interfaces 

could be possible. 

 

The results from Amar et al (2019) is summarized in 

the table 5.1 below. He evaluated the performance 

accuracy of the developed models using the RMSE, 

AARD, R
2
 and SD statistical metrics. 

 

Table 5.1: Statistical indexes of the established 

models 

 

TESTING RESULT 

 RMSE AARD R
2
 SD 

Model 1 - 

Gradient 

Boosting 

Trees 

1.2548 1.7933 0.9946 0.0647 

Model 1 - 

AdaBoost 

Support 

vector 

Regression 

1.0584 2.0829 0.9966 0.0434 

Model 2 - 

Gradient 

Boosting 

Trees 

2.0587 2.4825 0.9875 0.1067 

Model 2 - 

AdaBoost 

Support 

vector 

Regression 

2.0185 2.6990 0.9875 0.0817 

 

Also from the results of the study conducted by Okon 

et al, the GBDT model-2 gave the best performance 

with an R
2
 value of 99.70%, RMSE of 0.103, AARD 

of 1.32% and SD value of 0.0327. the table 5.2 shows 

the comparison of prediction of the GBDT model-2 

with actual experimental values. 

 

Table 5.2: Comparison of Prediction of the GBDT 

Model-2 with Actual Experimental Values 

 

Experimental 

Values 

GBDT Model-2 

Predictions 

Deviations 

0.0070 0.00300 0.0011 

0.0031 0.00280 0.0003 

0.0026 0.00260 0.0000 

0.3520 0.28000 0.0720 

0.0082 0.00820 0.0000 

0.0026 0.00258 0.0002 

0.0350 0.03380 0.0012 

1.3000 1.30000 0.0000 

4.4000 4.40000 0.0000 

 

From Table 5.2 the total deviations in the sample data 

is about 7.5% of the total predictions which 

invariablyshows an accuracy of 93% which is in line 

with the overall accuracy of the entire dataset 

prediction as shown in the R
2
 result of 99.7%. figure 

5.2 provides graphical insight on the prediction 

accuracy of the GBDT model-2 with only one 

significant deviation as shown. 

 

 
Figure 5.4: Comparison of Predicted and Actual IFT 

Values of the GBDT Model-2 

 

The results obtained from the various reviewed 

publication shows that the boosting technique is 

much more effective in carrying out these predictions 

with higher accuracies than empirical and regular ML 

techniques. Figure 5.5 shows the R
2
 values of some 

of the algorithm results discussed. 

 



© MAR 2024 | IRE Journals | Volume 7 Issue 9 | ISSN: 2456-8880 

IRE 1705605          ICONIC RESEARCH AND ENGINEERING JOURNALS 232 

 
Figure 5.5: Coefficient of determination (R

2
) result 

comparison of different authors 

 

Conclusively, different ML frameworks have been 

implemented over the years to carryout prediction of 

several crude reservoir properties, overcoming major 

system complexities. In this article, the GBDT, 

ADAboost, CATboost and XGboost algorithms are 

reviewed spotlighting the different modelling 

frameworks that have been applied in predicting 

various crude oil reservoir interfacial tension 

property, comparing their output with regular ML 

techniques (non-boosting) and empirical correlations. 
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