
© APR 2024 | IRE Journals | Volume 7 Issue 10 | ISSN: 2456-8880 

IRE 1705719          ICONIC RESEARCH AND ENGINEERING JOURNALS 204 

Deep Learning for Eye Disease Detection with 

Confidence Estimation and Explainable AI 
 

ADEYINKA MAYOWA-MAJARO 

University of Hull 
 

Abstract- This research made progress on not only 

identifying valid deep learning models that can detect 

various eye diseases but also making the diagnosis 

process easier for physicians. This study focuses on 

three eye diseases, Cataract, Glaucoma and Diabetic 

Retinopathy. These three diseases are the leading 

causes of eye disorders which have resulted in 

irreversible visual impairment. Also, these three 

diseases are at different locations of the eye, the 

detection of their symptoms and analysis of the 

fundus images have set up different challenges. 

Various models, including Convolutional Neural 

Network (CNN), transfer learning architectures such 

as VGG16, InceptionV3, ResNet152V2, 

InceptionResNetV2, and DenseNet201 were used for 

Eye disease detection from patients’ retinal images.  

DenseNet201 excelled, achieving a notable accuracy 

of 86.14%, a precision of 90.52%, a recall of 82.58%, 

and an AUC of 97.95%. To enhance model 

robustness, Monte Carlo (MC) dropout was 

integrated to estimate uncertainty levels, revealing 

the model's favourable performance under 

uncertainty. Furthermore, Local Interpretable 

Model-agnostic Explanations (LIME) was employed 

to elucidate the model's decision-making process, 

providing insights into how predictions were derived. 

This comprehensive approach showcases the 

efficacy of combining diverse models, leveraging 

transfer learning, and employing uncertainty 

estimation and explainability techniques for 

accurate eye disease detection. 

 

I. INTRODUCTION 

 

Eye diseases, known as the global leading cause of 

vision loss, have affected millions of people (Bourne 

et al.2021). These conditions can affect any part of the 

eye, including the cornea, iris, lens, retina, and optic 

nerve. Cataracts, glaucoma, age-related macular 

degeneration (AMD), and diabetic retinopathy are the 

most common eye diseases that have posed a huge 

threat to people's life quality (Chalakkal et al., 2020). 

Cataracts occur as a clouding of the lens as a result of 

a build-up of proteins in the eye. This leads to blurred 

vision (Fekrat et al., 2021). Glaucoma is a disease of 

the optic nerve and involves a characteristic pattern of 

progressive damage to the nerve that transmits visual 

information to the brain. This can mean patchy losses 

of vision that are not noticed until late in the disease 

(Mélik et al.2020). Age-related macular degeneration 

is a painless eye condition that leads to the gradual loss 

of central vision (Thier & Holmberg, 2022). Diabetic 

retinopathy is a complication of diabetes, caused by 

high blood sugar levels damaging the back of the eye. 

It can cause blindness if left undiagnosed and 

untreated. This is because it affects the retina and the 

retinal blood vessels. There are two types of diabetic 

retinopathy: background retinopathy and proliferative 

retinopathy. Background retinopathy can occur at any 

stage and often does not affect sight. Proliferative 

retinopathy is when background retinopathy advances 

and the blood vessels in the retina start to become 

blocked. The retina is the part of the eye that converts 

light coming through the eye into electrical signals 

(Kropp et al.2023). It is reported that approximately 

75% of total blindness can be avoided by early 

detection and treatment (Wong & Sabanayagam, 

2020). Many of these cases can be prevented by early 

detection and treatment (Allison et al., 2020). As the 

current trend in the medical field suggests the 

convergence of artificial intelligence and medical 

science, the combination of AI and computer vision in 

the field of ophthalmology is a very promising 

development. This paper focuses on the use of deep 

learning algorithms for the detection of eye diseases. 

This study will explore the use of confidence 

estimation techniques combined with explainable 

artificial intelligence models to provide insightful 

information to medical professionals about the 

reliability of computer-aided diagnosis. 
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II. LITERATURE REVIEW 

 

A good number of research has been done in this field 

by several researchers using different machine 

learning and deep learning algorithms and diagnostic 

methods. Ramanathan et al. (2021) explored Eye 

Disease (ED) detection using Machine Learning (ML) 

algorithms including Logistic Regression (LR), 

Random Forests (RF), Gradient Boosting (GB) and 

Support Vector Machines (SVM). Their findings 

emphasized the potential of ML in automating ED 

detection, achieving a notable accuracy rate of 90% in 

classifying various EDs but overlooked the 

quantification of prediction uncertainty. Rahul Pahuja 

et al. (2022) utilised ML architectures effectively. 

Their study's strength lies in the use of ML and Deep 

Learning (DL) architectures for an automated 

diagnosis of ED by creating CNN and SVM models to 

classify ED. The study showcased the effectiveness of 

ML models in achieving 87.08% and 87.5% 

accuracies respectively. However, like the rest of the 

works mentioned here, it falls short in discussing 

uncertainty estimation and interpretability, thereby 

leaving room for improvement in ensuring reliable and 

transparent decision-making. Arunkumar, (2021) 

focused on ML models for the detection of human eye 

disease. The author utilised Neural Networks (NNET), 

RF, K-Nerest Neighbor (KNN) and SVM models, 

achieving accuracies of 75.32%, 63.63%, 64.50% and 

57.07% respectively. However, the study lacks 

explicit discussion on confidence estimation and 

explainability, leaving a gap in understanding the 

model's decision-making process. Nouf et al. (2022) 

applied various ML model classifiers including  SVM, 

KNN, Naıve Bayes (NB), Multi-layer perceptron 

(MLP), Decision Tree (DT) and RF as well as Deep 

Learning (DL) models such as CNN based on 

Resnet152 model on the Ocular Disease Intelligent 

Recognition dataset to detect human eye infections of 

Glaucoma disease. With this study, the RF and MLP 

classifiers achieved the highest accuracy of 77% in 

comparison to the other ML classifiers while the deep 

learning model (CNN model: Resnet152) attained an 

accuracy of 84% for the same task and dataset. Zahraa 

et al. (2023) presented an ML-based method for 

targeted ocular detection using the  Ocular Disease  

Intelligent Recognition  (ODIR)  dataset. The study 

utilized ML models such as NB,  DT,  RF  and KNN 

on both binary and multiclass classification tasks. 

Amongst other models, NB achieved the highest 

accuracy (75%) in binary classification while NB 

achieved the highest accuracy (88%) for multiclass 

classification. Rodr et al.(2022) customised a new 

dataset with 20 classes which they called the MuReD 

(Multi-label Retinal Diseases) dataset, this was 

customised from the publicly available datasets to 

have varieties of eye diseases to predict. The C-Tran 

architecture was selected as the classification model, 

this model achieved 90% accuracy. While successful 

in customization, it also leaves a gap in understanding 

model reliability and interpretability. 

 

III. OBJECTIVES 

 

All the works discussed earlier contributed 

substantially to the development of ML algorithms for 

various eye disease detection. Although the achieved 

levels of accuracy were high (75%-90%) across the 

range of the outlined studies, none of these works 

explicitly address confidence estimation or employ 

explainable AI techniques. This is important because 

it enhances reliability, trust, and transparency. The 

work presented herein aims to extend upon these 

foundations by introducing confidence estimation 

methods like Monte Carlo (MC) dropout and 

explainable AI methods like Interpretable Model-

Agnostic Explanations (LIME). These additions seek 

to provide a measure of confidence in predictions and 

offer insights into features influencing the model’s 

decisions, crucial for adoption in clinical settings. 

 

The research objectives of the present study are to: 

1. Develop ML models for various eye disease 

detection that are accurate and reliable for 

diagnosing various eye diseases. 

2. Integrate uncertainty estimation techniques, such 

as MC dropout, to quantify prediction uncertainty. 

3. Incorporate explainable AI methods, specifically 

LIME, to provide insights into the features 

influencing the model’s decisions.  

 

IV. MATERIALS AND METHODS 

 

Figure 1 shows the process taken to achieve automatic 

ED detection. Starting from detecting and classifying 

ED into different classes to implementing model 

confidence estimation to quantify model predictions, 

and finally introducing model explainability to explain 
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how the model has made its prediction. In this study, 

all experiments were programmed and implemented 

using Python 3.11.7 with Keras and Tensorflow 

(Tensorflow,2024). Anaconda Jupiter notebook was 

used as the software environment of the experiment 

and models were run on an Intel(R) Core(TM) i5-

1145G7 @ 2.60GHz, 2611 Mhz, 4 Core(s), and 8 

Logical Processor(s) with 32GB RAM. 

 

 
Figure 1: Process Schema for Automatic DR 

Detection 

 

V. DATA COLLECTION AND 

PREPROCESSING 

 

An eye disease dataset sourced from Kaggle (Eye-

disease (kaggle.com)) was used in this study. This 

dataset comprises 4,217 colour images (Figure 2) 

categorised into four groups: Cataract (1,038 images), 

DR (1,098 images), Glaucoma (1,007 images), and 

Healthy (1,074 images). To ensure all images have a 

similar size, images were resized to 128x128 pixels, 

retaining the aspect ratio. For easier computation, all 

matrix representations of images were further 

flattened into vectors. Each value within the vector 

was normalized to between 0 and 1, this step is crucial 

to mitigate the effect of different pixel values, as the 

model could be sensitive to the magnitude of input. 

Also, a data augmentation technique is applied. 

Through using affine transformation in the Tensorflow 

library, the numbers of each category are increased to 

1100. Horizontal flip, rotation, zooming, shifting, etc., 

were used to artificially increase the size of the images. 

Specifically, an extra number of the data is created by 

applying these linear transformations. Moreover, both 

horizontal and vertical flipping were used to further 

increase the images in the dataset. This step is essential 

to balance each category of the dataset, alleviate 

overfitting and expand the diversity of the dataset, 

hence improving the generalization capability in the 

later model training phase. 

 

 
Figure 2: Representative samples of different Eye 

diseases 

 

VI. MODEL TRAINING 

 

Upon data preprocessing, models were trained for eye 

disease detection. Baseline CNN and transfer learning 

models including models VGG16, InceptionV3, 

ResNet152V2, InceptionResNetV2 and DenseNet201 

were employed. Models were trained on 80% of the 

dataset and tested on 20%. Considering the dataset size 

(Table 1) the batch size was set to 16, this helps the 

models generalize better on unseen data. Models 

underwent training for a maximum of 10 epochs, with 

a callback patience of 2. This monitored the model’s 

accuracy and stopped the training process when the 

model stopped improving, it also prevented overfitting 

and saved training time. Optimisers such as Adam 

(Adaptive Moment Estimation), RMSprop (Root 

Mean Square prop) and SGD (Stochastic Gradient 

Descent) were tested with Learning Rates (LR) of 

0.001, 0.0005, and 0.0001 on the baseline CNN model. 

The best-performing optimiser and LR were then 

applied to the transfer learning models. Meanwhile, 

categorical crossentropy was used as the loss function 

with softmax activation to measure the difference 

between the predicted output and the true output. The 

designed CNN for image classification consists of 

three convolutional layers followed by max-pooling 

for down-sampling. The architecture incorporates 

Rectified Linear Unit (ReLU) activation functions to 

introduce non-linearity. The final layers include 

flattening to transform feature maps into a 1D vector, 

a dense layer with ReLU activation, and an output 

layer for class prediction. The transfer learning models 

(VGG16, Inceptionv3, ResNet152V2, 

InceptionResNetV2 and DenseNet201) were loaded 

with frozen weights and layers. Additional layers, 

including dropout, batch normalization, and dense 

layers, were added to fine-tune the model for a specific 

classification task. 
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Table 1: Hyperparameter Configurations. 

Parameters Multiclass Classification 

Batch Size 32 

Dataset Size 4,400 images 

Epoch Number 10 

Learning Rate (LR) 0.001, 0.0005, 0.0001 

Optimizer Adam, RMSprop, SGD 

Activation 

Function 

softmax 

Loss Function Categorical Crossentropy 

 

VII. EVALUATION METRICS 

 

All ML models were evaluated based on Accuracy, 

Precision, Recall and AUC given from equations 1-3 

below. Accuracy is used to show how often the model 

is correct overall, Precision shows how many of the 

predicted positive cases are truly positive, Recall of a 

model shows how many of the actual positive cases 

the model correctly identifies and AUC measures how 

well the model distinguishes between positive and 

negative cases. 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
 x 100%   (1) 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 x 100%     (2) 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 x 100%    (3) 

 

VIII. CONFIDENCE ESTIMATION 

INTEGRATION 

 

Confidence Estimation plays a crucial role in 

comprehending the model’s behaviour, empowering 

users to make more informed decisions and bolstering 

the overall reliability of ML systems. The Monte-

Carlo Dropout method is utilized to obtain the 

confidence score from the machine learning model's 

prediction. Monte Carlo Dropout is a technique that 

involves randomly dropping out neurons during the 

training process and performing multiple forward 

passes to yield a distribution of predictions (Sun et 

al.2023). This distribution provides not only the class 

label but also the associated confidence scores. By 

visualizing the confidence levels of the model's 

predictions for different regions in an eye fundus 

image, medical professionals can easily identify high-

risk regions. A threshold can be set based on the 

confidence level, and the corresponding regions in the 

image can be classified into different categories based 

on their confidence levels. This information provides 

valuable insights for medical professionals in 

identifying high-risk regions more effectively. During 

testing, the model was iteratively evaluated with 

dropout enabled, providing insights into its level of 

confidence or uncertainty for individual predictions. 

 

IX. EXPLAINABLE AI TECHNIQUES 

IMPLEMENTATION 

 

Explainable AI is crucial in domains like healthcare to 

explain how the model arrived at the prediction made. 

LIME (Local Interpretable Model-Agnostic 

Explanations) is a widely used explainable AI 

technique in various domains, including credit 

scoring, healthcare, and remote sensing (Silva et 

al.2023). LIME aims to explain the reasoning behind 

the output predictions by attributing the change in the 

output to different input features.  

In this study, LIME was leveraged to provide 

explanations for the outputs of the trained 

DenseNet201 model. LIME selects a specific instance 

for explanation and generates a perturbed dataset by 

introducing slight variations to its features. After 

passing the perturbed dataset through the original 

model, predictions are obtained for each sample. A 

simple interpretable model is then trained on the 

perturbed dataset, mapping input features to model 

predictions. The resulting locally fitted model 

provides heatmap explanations for the original model's 

prediction on the selected instance, highlighting the 

importance of each feature (Allgaier et al., 2023). The 

heatmap of these explanations is then visualized as 

seen in Figures 5 and 6 to aid users in understanding 

the model's decision-making process.  

 

X. RESULT AND DISCUSSION 

 

• Performance Evaluation of ML Models 

Table 2 presents the performance metrics of several 

deep learning models trained on eye disease datasets, 

including CNN, VGG16, InceptionV3, ResNet50V2, 

InceptionResNetV2, and DenseNet201. The 

evaluation metrics include accuracy, precision, recall, 

and area under the receiver operating characteristic 

curve (AUC). These metrics provide insights into the 

models' ability to correctly classify instances, 
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distinguish between classes, and handle class 

imbalances. DenseNet201 achieved the highest 

accuracy of 86.14%, followed closely by CNN and 

VGG16 with 84.12%. InceptionV3 had the lowest 

accuracy of 68.48%, indicating that it misclassified a 

significant portion of instances. DenseNet201 also 

exhibited the highest precision of 90.52%, indicating 

its ability to minimize false positives. VGG16 

followed closely with a precision of 87.39%. 

InceptionV3 exhibited respectable precision 

(86.68%), despite its lower accuracy, suggesting that 

when it predicts a positive outcome, it is usually 

correct. CNN and DenseNet201 demonstrated the 

highest recall (>82%), indicating its ability to capture 

a large proportion of positive instances. However, 

InceptionV3 exhibited the lowest recall (51.66%), 

indicating its weakness in identifying true positives. 

DenseNet201 achieved the highest AUC of 97.95%, 

indicating its strong discriminative ability across 

various thresholds. CNN, VGG16, and ResNet50V2 

also demonstrated high AUC values (>95%), 

indicating excellent overall performance. InceptionV3 

and InceptionResNetV2 had relatively lower AUC 

values (90.42% and 89.39%, respectively), indicating 

weaker discrimination ability compared to other 

models. Based on the performance metrics, 

DenseNet201 emerges as the top-performing model in 

terms of accuracy, precision, recall, and AUC. VGG16 

also performs well across these metrics, closely 

following DenseNet201. In contrast, InceptionV3 and 

InceptionResNetV2 show comparatively lower 

performance, particularly in recall and AUC. 

 

DenseNet201 outperforms other models as evident in 

Figure 3. Its robust performance is attributed to its 

features which include a 201-layer deep model that 

distinguishes itself through its unique dense 

connectivity pattern, where each layer directly 

receives input from all preceding layers. This 

architecture facilitates efficient feature reuse, allowing 

the model to capture intricate patterns effectively. 

Additionally, DenseNet201 incorporates batch 

normalization, pooling, and separable convolution 

layers, enhancing computational efficiency and 

minimizing memory requirements (Wang et.al 2020). 

 

 

 

Table 2: Performance metrics by six models for 

multiclass classification of different Eye Diseases 

Model Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

AU

C 

(%) 

CNN 84.12 85.16 82.9

4 

96.8

9 

VGG16 84.12 87.39 81.2

8 

96.8

9 

InceptionV3 68.48 86.68 51.6

6 

90.4

2 

ResNet152V2 79.50 81.83 75.2

4 

95.2

3 

InceptionResN

etV2 

66.23 87.33 44.9

1 

89.3

9 

DenseNet201 86.14 90.52 82.5

8 

97.9

5 

Figure 3: Comparison of different classification 

models in terms of Accuracy, Precision, Recall and 

AUC 
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• Confidence Estimation Accuracy Analysis 

Utilizing MC Dropout, the model's uncertainty levels 

were assessed. The calibration curve, which shows the 

relationship between the confidence score outputted 

by a model and the actual accuracy of those 

predictions, was utilized to inspect the level of 

confidence estimated by the model. Figure 4 visually 

represents the evaluation of uncertainty predictions in 

the classification model (DenseNet201) on ten image 

samples. Notably, nodes 3, 5, and 7 show deviations, 

indicating instances of under-confidence, while the 

model is generally confident in predicting other nodes. 

To further validate the confidence level of the model, 

5 random samples were chosen from the validation set 

of the dataset and a bar chart was plotted for each 

selected sample showing both predicted and actual 

class (Figure 5). All 5 samples demonstrated true 

prediction of the actual class, which validates that the 

model is highly confident in its prediction.  

 

 

 

Figure 4: Visualization depicting the evaluation of 

uncertainty predictions of the classification model 

(DenseNet201) on ten image samples. Each node’s 

position corresponds to the level of uncertainty. The 

closer the node is to the perfectly calibrated line, the 

higher the confidence level. 
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Figure 5: Visualization depicting the evaluation of uncertainty predictions of the classification model (DenseNet201) 

on five image samples.

 

 

• Interpretability of Explainable AI Technique 

Preserving consistent effectiveness, the model's 

accuracies and AUCs hovered at approximately 86% 

and 97% respectively across all evaluated categories, 

adhering to its fundamental principles. The result of 

the LIME explanation is visualized into four images 

(Figure 6), the predicted class from the dataset, the 

positive-only LIME Explanation (POLE), the Positive 

and Negative LIME Explanation (PNLE) and the 

LIME Heatmap Explanation (LHE).  In the Positive 

Only LIME Explanation (POLE), the focus is on 

highlighting the parts of the retinal image that the 

model considers important for making its prediction. 

POLE identifies specific features or patterns in the 

retinal image that strongly suggest the presence of the 

condition the model is predicting. In addition to 

highlighting the positive aspects, the negative ones are 

also considered in PNLE. It's like looking at both the 

light and shadow in a photograph. The positive 

explanation still shows us where the model sees signs 

of the condition, but also looks at areas that might 

contradict that diagnosis. This gives a more balanced 

understanding of how the model is interpreting the 

image and making its prediction. The heatmap helps to 

visualize the overall influence of different parts of the 

image on the model's decision. The intensity of colours 

(red and blue) in Figure 7 shows how strongly certain 

areas contribute to the prediction. The darker the color, 

the stronger the influence. In this heatmap, areas 

highlighted in blue indicate strong positive influence, 

suggesting they strongly support the model's 

prediction. Conversely, areas in red indicate a strong 

negative influence, suggesting they might go against 
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the prediction. Lighter shades of red and blue show 

areas of lesser influence, providing a gradient of 

importance across the image. Looking at these 

different types of explanations together shows a 

clearer picture of how the model analyzed the retinal 

image and made its prediction. These insights can help 

us validate the model's predictions, identify areas for 

improvement, and ultimately build trust in its ability to 

assist in diagnosing conditions based on retinal 

images. 

 

Figure 6: LIME explanation depicting the retinal 

images with corresponding heatmaps generated by 

LIME

 
 

Figure 7: Intensity of colors for the LIME 

explanation 

 
 

CONCLUSION 

 

Early detection of various eye diseases, including 

glaucoma, diabetic retinopathy, and cataracts, is 

crucial for preventing vision loss. Machine learning 

models offer promise in revolutionizing eye disease 

detection, enabling timely intervention and 

personalized treatment. Numerous research groups 

explored ED detection using ML methods, however, 

some gaps were still present. This study addressed the 

gaps by presenting ML models that can detect and 

classify different eye diseases with a measure of 

confidence and explanations in predictions. This study 

applied six classification models, namely CNN, 

VGG16, InceptionV3, ResNet152V2, 

InceptionResNetV2 and. DenseNet201 model 

excelled in these tasks with an accuracy of 86.14% and 

AUC of 97.95%. Additionally, MC dropout was 

integrated to estimate the level of uncertainty. This 

study further used heatmaps under the LIME 

explainable AI paradigm for scientific validation. 

These outcomes underscore the versatility of the 

selected models, showcasing high confidence in 

predictions and their adaptability to different 

classification scenarios. The robust performance 

highlights the potential of these models for diverse 

medical imaging applications. Overall, this project 

addresses the broader spectrum of model behaviour. 

By enabling the model to quantify its uncertainty, the 

project advances beyond black-box predictions, 

creating a foundation for AI-assisted clinical decisions 

that are informed by reliability metrics. 

 

FUTURE WORK 

 

The model interpretability can be enhanced by 

exploring advanced interpretability methods like 

SHAP (Shapley Additive explanations) or attention 

mechanisms for more accurate explanations. 

Additionally, It is recommended to focus on utilizing 

diverse and large datasets containing high-resolution 

images. This approach can enhance the model's ability 

to learn robust features and generalize effectively to 

unseen data. By leveraging high-resolution images, 

finer details and nuances can be captured, leading to 

improved feature representation and discriminative 

pattern learning. 
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