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Abstract- As of this minute, there are innumerable 

environmental issues which the globe is dealing with 

for over the past decades. But the climate change is 

indeed perhaps the biggest threat facing the 

environment. The rise of 1.5–2 °C surface 

temperature has been reported in past 40–50 years. 

harsh due in next 50–100 years the earth 

temperature will be make harsh living conditions 

and results would be disastrous. The major cause of 

climate is global warming change. Global warming 

is caused by the emission of carbon mixing gases 

(greenhouse gases) from The most common cause of 

global warming is carbon dioxide, fossil fuel 

combustion in industries,  transport, electricity 

generation, agriculture and commercial sources. 

Besides that pollution, urbanisation, population etc. 

also contribute to climate change in Greater extent 

by broader parallels ways messing things up in the 

ecosystem. Owing to the unique properties of the 

nano materials, nanotechnolgy provides a diverse 

uses in environmental, agricultural, food and 

energy fields. Not only the environmental 

nanotechnology address against environmental in 

nature of problems, but nanotechnological products 

from the processes are seen as the powerful and 

novel tools/modes to achieve sustainable objectives. 

Nanotechnological materials, for example, nano 

composites, functionalized nano materials, metal 

organic frameworks, nano catalysts, bulking agents, 

carriers, carbon based materials, nano zeolite, nano 

silica, and other additives such as nano level 

lubricants, nano level coatings and etch have huge 

potential in Greenhouse gas sequestration and 

reduction, biofuel generation, wastewaters treatment 

and environmental clean-up in an eco-friendly way. 

The paper aims to present an overview of the 

nanotechnology solutions for addressing climate 

change. The purpose of this paper is to examine the 

long-term's trends and patterns of architectural and 

its proximity to the other types of design new 

nanocompounds on the environment and the 

advancement of sustainable means to address the 

climate change related problems.  

 

Indexed Terms- Climate change, Global warming, 

Environmental remediation, Environmental 

nanotechnology, Nanocomposites, Biofuel, 

Nanocatalyst, Carbonaceous materials. 

 

I. INTRODUCTION 

 

Climate change, which is the result of 200 years of 

anthropogenic activities, is reflected in overall higher 

global temperatures and in the increase of atmospheric 

CO₂ together with a higher frequency and intensity of 

weather anomalies [1,2]. These alterations present 

grave consequences for every living being, and are 

why record warm temperatures and the warming of 

the globe which they herald are an urgent worldwide 

issue. Historical Recorded Temperature from 1880 

shows that the Earth has been warmed 0.14°F 

(0.08°C) every 10 years with rate is twice from 1981 

[3]. In 2017, the global average temperature was 

already 1 degrees Celsius (1.8 degrees Fahrenheit) 

beyond pre-industrial levels, and growing by 0.2 

degrees per decade. The year 2020 was the second 

warmest after 2016, and in 2021 the temperature was 

the seventh year in a row that global temperatures have 

exceeded 1°C above pre-industrial levels [4]. 

 

Natural and industrial GHGs (including CO₂, methane, 

ozone, HFCs, SF₆ and PFCs) are the principal cause 

of global warming by retaining heat in the atmosphere. 

These gases do not only disintegrate the O3 layer, but 
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they also have some climate consequences including 

glacier melt, flooding, drought, and reduction in crop 

yield [5–7]. 

 

Nanotechnology, the technology of particle size of at 

least one dimension in the range 1–100 nm, has found 

applications as game changer in agriculture, 

environment, energy, medicine, and food industries 

[8–11]. Its advantages originate from special 

properties of nanoparticles (NPs), especially the 

relatively large surface area and surface-to-volume 

ratio, which improves contact, energy transmission, 

and gas adsorption [12]. In agriculture, 

nanotechnology has brought new materials such as 

nanofertilizers, nanopesticides, nanosensors for agro-

climatic and environmental monitoring [13]. 

Pathogen, toxins, and heavy metal nanobiosensors for 

food packaging There has been an increasing use of 

nanobiosensors for food packaging applications to 

detect pathogens, toxins, and heavy metals [10]. The 

development of biodegradable biobased 

nanopackaging would contribute greatly to the 

reduction of plastic pollution [10,14]. 

 

 
Fig. 1 shows climate-related health impacts. 

Materials of nanometer or at least nanometer-level 

grains via nanosynthesis, such as nanocatalyst, 

nanocoating, and nanolubricant, are sustainable 

alternatives to the conventional materials. For 

instance, nanocatalysts improve fuel combustion 

efficiency, and reduce GHG emissions whereas 

nanolubricants and coatings, reduce engine friction 

and hence CO₂ release [12]. Furthermore, the 

nanotechnology accelerates the growth of renewable 

energy systems (like solar, biofuels, fuel cells), which 

helps us decrease the dependence on fossil fuels and 

minimize climate change. In environmental treatment, 

nanomaterials significantly degrade dyestuffs and 

other pollutants in water [15] and many are capable of 

adsorbing GHGs. 

  

Table 1. Key function and applications of different 

types of Nanomaterial 

Nanomaterial 

Type 

Key Properties / 

Functions 

Applications 

Nanocatalyst 

Speedup 

reactions, improve 

efficiency, control 

emissions 

Fossil fuel, 

chemical 

industry, 

material 

production, 

pollution 

reduction, 

medicine 

Nanotubes 

Single and multi-

walled; used in 

composites; 

enhanced 

efficiency 

Raw materials 

and products for 

composites 

Nanofibers 

Material-efficient, 

air purification, 

monitoring of 

heavy metals, 

luminous 

materials 

Environmental 

monitoring, 

heavy metal 

detection, air 

pollutant 

filtration 

Nanocomposites 

Increased 

strength, novel 

properties, 

polymer 

composites, water 

treatment 

Water treatment, 

chemical and 

aerospace 

industries 

Nanopowders 

Organic/inorganic, 

pressure sensors, 

antigen/protein 

Biosensors, solar 

cells, pressure 

sensing, 
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detection, solar 

applications 

pollutant 

detection 

 

  

In green buildings, nanomaterials including but not 

limited to nanoglass, nanosilica, nanocoatings, and 

carbon nanotube are incorporated for dry insulation, 

solar heat utilization, and potentially refrigerant-free 

cooling [16,17]. However, environmental and health 

concerns associated with the toxicity and long-term 

stability of some NPs (e.g., Hg and Sn) require very 

strict safety regulations [18]. 

  

 
Fig. 3. Nanotechnology in combating climate change. 

 

Despite the profusion of reviews that cover the 

applications of nanotechnology, in-depth analyses for 

the potential applications in climate change are few. 

In this paper, we fill this gap by reviewing emerging 

trends and environmental implications of 

nanotechnology and sustainability in the context of the 

climate crisis. 

 

II. EFFECTS OF CLIMATE CHANGE 

 

Earth’s climate system has been seriously disrupted 

by climate change, resulting in major changes — 

warming of land, air and ocean, shifting in ocean 

currents, acidification, sea level rise, glacial melt, and 

extreme weather. Its consequences are multifaceted, 

affecting from environmental, agricultural and socio-

health perspectives. 

2.1 Environmental Impacts 

Climate change represents a major threat to the 

environment, impacting many environmental systems. 

Documented impacts are already 

detrimental:shoreline and local flooding, loss of 

biodiversity, degradation of marine ecosystems, 

formation of new glacial lakes, heat stress and 

seasonal changes leading to extreme weather events. 

Moreover, rivers and oceans are warming faster [19]. 
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Table 2: Efficacy of absorbed pollutants using different nanomaterials 

Adsorbent (Nanomaterial) Adsorbed Pollutants Efficiency References 

Multiwalled carbon nanotube (MWCNT) carboxylic Amido black 10B 131 mg/g [32] 

acid cysteamine MWCNTs (carboxyl functionalization) Alkylbenzene sulfonates 168 mg/g [33] 

Amino polyethylene glycol (a@PEG), polyhydroxylbutyrate (PHB), functionalize 

MWCNTs Chemical oxygen demand (COD) 

@PEG-CNTs (99.68%) > PHB-CNTs (97.89%) 

> P-CNTs (96.34%) > a@PEG-PHB-CNTs 

(95.42%) [34] 

Magnetic ammonia-functionalized MWCNTs Methylene blue (MB) 178.57 mg/g [35] 

MWCNTs Arsenite(III) 60–80% [36] 

MWCNTs 4-tert-octylphenol (endocrine disruptor) 94% [37] 

MWCNTs from activated carbon derived from wood sawdust, and doped with nickel-

ferrites (Ni–Fe) Metronidazole and levofloxacin 840.38 and 650.45 m2/g [38] 

MWCNTs Tetracycline (TC) qm = 494.91 mg/g [39] 

Surface oxidized nanocobalt magnetic nanomaterial embedded with nitrogen-doped 

CNTs (Co@CoO/NC) TC and rhodamine B (RhB) RhB (679.56 mg/g), TC (385.60 mg/g) [40] 

Zinc oxide–graphene Rhodamine blue (RB) 42 mg/g [41] 

Graphene oxide hydrated manganese oxide nanocomposites Lead(II) 553.6 mg/g [42] 

Graphene oxide Lanthanum oxide(III); Neodymium (III); Gadolinium (III); Yttrium (III) 

Lanthanum(III), Neodymium(III), 

Gadolinium(III), Yttrium(III) 
85.67 mg/g (La(III)); 188.60 (Nd(III)); 225.50 

(Gd(III)); 135.70 (Y(III)) [43] 

Thermally reduced graphene (TRG) and graphene nanoplatelets (GNP) Oil 

Batch adsorption: 1550 mg/g (TRG); 805 mg/g 

(GNP). Fixed bed: 1100 mg/g (TRG); 850 mg/g 

(GNP) [44] 

Graphene nanoplatelets (GNP) and graphene magnetite (GM) Emulsified oil 100 mg/g (GNP); 85 mg/g (GM) [45] 

Functionalized graphene nanosheets (FGNs) Copper(II) 103.22 mg/g [46] 

Polyurethane (PU)/graphene oxide (GO) electrospun membrane MB and RB 109.88 mg/g (MB); 77.15 mg/g (RB) [47] 

Nitrogen-doped graphene quantum dots (NGQDs) over graphene sheets MB (electrophotocatalysis) 93.00% [48] 

Nitrogen-doped graphene quantum dots (NGQDs) over graphene sheets MB (photocatalysis) 95.00–100.00% [49] 

Reduced graphene oxide/titanate nanotube composites Malachite green (MG) 113.5 mg/g and 91.72% [50] 

Graphene oxide (GO) functionalized by thiosemicarbazide (TSC), (GO-TSC) MB 196.8 (GO) and 596.642 mg/g (GO-TSC) [51] 

Hydrogel of GO decorated with silver nanoparticles (Ag NPs) MB 130.37 mg/g [52] 

Hydrocomposite (HCP) of GO supported by chitosan (GO/CSHCP) 

Congo red (CR), Acid Red 1 (AR1), Reactive 

Red 2 (RR2) 
43.06 mg/g (CR); 41.32 mg/g (AR1); 40.03 

mg/g (RR2) [53] 
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2.2 Agricultural Impacts 

Climate change has significantly impacted farm 

productivity. Variable weather and extreme events 

undermine both the quantity and quality of crop yield 

[20–22]. Changes to the timing and duration of 

growing seasons and increased heat and water stress 

place pressure on farming systems [23–25]. Soil 

salinity and drought are increasingly becoming 

alarming due to which there is a need to develop 

sustainable technologies to combat stress, improve 

resilience, and reduce vulnerability, leading to better 

yield formation. 

 

2.3 Other Impacts 

The health of human populations is also threatened by 

climate change. Problems including heat-related 

deaths (especially in the European population), 

allergic reactions, infectious diseases, cardio-

respiratory disease, malnutrition and mental stress are 

increasing  [26]. Climate change has intensified 

worldwide risks such as hunger, displacement and 

biodiversity loss. Hundreds of species are on the brink 

of extinction because of forest fires, disease and 

unsuitable habitats. An average of 23.1 million were 

displaced annually by extreme weather between 2010 

to 2019 [27]. In addition, climate change changes soil 

microbiomes -- important for soil fertility and 

biogeochemical cycles, and gut microbes, resulting in 

health issues such as intestinal inflammation [28,29]. 

In summary, ecosystems, health, agriculture, and 

global socio-economic structures among others are at 

a risk from climate change and life as usual is no 

longer as habitual. 

 

III. NANOMATERIALS - TYPES AND USAGE 

(CONCISE) 

 

Due to their particle dimensions ranging between 1 

and 100 nm, nanomaterials have specific 

physicochemical and biological properties for various 

applications. Nanotechnology specifically deals with 

the design, synthesis and manipulation of these nano-

architectures and their applications in almost all the 

domains. 

  

 
 

Categorization of advanced nanomaterials There are 

four general categories of advanced nanomaterials, 

classified as super nanomaterials, smart 

nanomaterials, active nanomaterials, and swarm 

nanomaterials: 

 

For example, super nanomaterials are perfectly 

monocrystalline and do not contain dislocations and 

show extreme strength. It includes, for example, 

materials for aerospace, such as aircraft wings or 

diamond bolts. 

 

Smart nanomaterials are those that can change their 

physical properties in response to external triggers, 

such as light, heat, or pressure. One example is smart 

paint, which alters light refraction through atomic 

rearrangements. 

 

Active nanomaterials are those that contain sensors, 

actuators and processors to sense altered 

environmental conditions and respond to them, which 

are useful for adaptive systems [64]. 

 

Swarm nano materials is a batch of nanomachines that 

work together in order to solve some problem and can 

be considered as a subcategory of active nano 

materials. 

 

These materials are being used in energy, electronics, 

health care, construction and environmental 

remediation. It is the inherent multifunctions and 

adaptability that made them the cornerstones of 

developing sustainable technologies (table 1). 
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IV. ENVIRONMENTAL REMEDIATION WITH 

NANOTECHNOLOGY TO ADDRESS 

CLIMATE CHANGE EFFECTS 

 

Moreover, nanotechnology provides new and 

sustainable answers to the leading environmental 

threats, such as pollution, greenhouse gas (GHG) 

emissions, and the energy shortage—the major causes 

danger of climate change (Fig. 3). It offers state-of-

the-art-technologies for environmental cleanup, 

renewable energy, green science and safe monitoring 

for pollution. 

  

4.1 Environmental Remediation using 

Nanotechnology 

Pollution greatly contributes to climate change by 

contaminating the air, water, and land with health 

hazards, acid rain, and ozone depletion. In this context, 

environmental nanotechnology (E-nano) offers 

potential alternatives to the traditional approaches for 

pollutant remediation [30]. 

 

4.1.1 Treatment of Heavy Metals and Pollutants by 

Bioremediation 

Conventional treatment processes were also been 

found to be limited in removal of contemporary 

contaminants. Nanomaterials bring water treatment to 

a new level by adsorption, membrane separation, 

photocatalysis, and sensing [31]. These include 

nanofibers, nanocomposites and metal-organic 

frameworks (MOF), that can remove harmful 

pollutants much more effectively (see Tables 1–2). 

 

4.1.2 Greenhouse Gas Sequestration (GHGS) 

GHGs such as CO₂, CH₄, and SF₆ trap heat and 

contribute to global warming. GHGS strategies that 

are based on nanotechnology are: 

(i) reducing the use of fossil fuels, 

ii) Seizure and utilization of GHGs, and 

iii)Enhancement of the process efficiency [12,78]. 

Nanomaterials of large surface area and containing 

functional groups such as CNTs nanozeolites and 

nanofilms are employed for the adsorption of GHGs 

[79] (Table 3). 

 

4.2 Nanotechnology for the Generation of Renewable 

Energy 

GHGs are the gases that high fossil fuels emit. Some 

of the environmentally-friendly alternatives are the 

biofuels (bioethanol, biodiesel, and biogas) and 

renewable energies (solar, wind, geothermal, ocean). 

Nanocatalysts have been utilized to increase biofuel 

production by immobilizing enzymes (cellulases, 

laccases) on magnetic or metal oxide supports and 

thereby: increasing the efficiency of the conversion 

[121,122]. 

  

In solar cells, nanomaterials like thin films, polymer 

cells and quantum dots are employed to increase the 

photovoltaic efficiency. Nanostructured 

semiconductors are also advantageous for 

thermoelectric conversion. High performance 

nanocomposites and coatings improve power 

equipment in wind and ocean energy generation [30]. 

For the hydrogen fuel cells, costly catalysts (e.g., 

platinum) are replaced by core shell and alloy 

materials thanks to a low-cost electric generation 

[123,124] (Table 4). 

 

4.3 Architecture Green and Sustainable 

Sustainable architecture is integral to our battle against 

global warming and the misuse of energy. 

Nanostructured materials (e.g., eco-coatings, 

nanoadsorbents, solar films) are employed to improve 

energy efficiency in smart homes and buildings 

[16,159]. Clean/green technologies; 

Nanotechnologies for clean/green construction are in 

line with world climate targets [160–162]. Table 5 

Synthesis of nanomaterials Building components 

applications of nanomaterials are shown in Table 5. 

 

4.4. Environmental Monitoring and Sensing 

Nanosensors with their increased surface reactivity 

and optical properties, can be very sensitive and 

accurate for analyzing pollutants and monitoring 

environmental variations [10,163]. Biosensors, which 

employ a biological receptor such as antigen, 

antibody, or enzyme, target specific 

chemical/biological analytes [164]. A comprehensive 

inventory of nanosensors applied for environmental 

monitoring is summarized in Table 6. 

 

In summary, the broader prospects of nanotechnology 

in addressing the environmental implications of 

climate change were presented in terms of pollution 

abatement, GHG sequestration, sustainable energy 

harvesting, smart infrastructure and real-time sensing. 
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V. ECOTOXICOLOGY OF 

NANOMATERIALS 

 

Nanomaterials (NPs) exhibit unique physicochemical 

properties including large surface area, reactivity and 

optical activity, resulting in wide applications in 

catalysis, medicine, energy, agriculture, and 

environmental remediation, mainly because of their 

nano-size. Nonetheless, the very properties that make 

NPs biologically active and targeting may also have 

the potential of enhancing the risk of toxicity for 

human and ecosystems [188]. 

 

In the nanoscale, materials may demonstrate a far 

different toxicological properties compared to the 

bulk ones. For example, while bulk asbestos is non-

carcinogenic, nanosized asbestos is carcinogenic 

[188]. Carbon-derived nanostructures such as CNTs 

and graphite are known to be toxic to some extent; 

however CNTs also do not have an established record 

as a potential hazardous agent in an organism. 

 

Nanoparticles can slip into the environment 

undetected, tainting the air, soil and water. Heavy 

metal NPs (e.g., As or Pb) have high stability and are 
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non-biodegradable and bioaccumulative, leading to 

risks after accumulation in plant, animal, and human 

tissues [18]. The lung is still the main portal of entry 

for the human body, affecting the respiratory system 

causing oxidative stress and chronic inflammation, 

formation of granulomas, and fibrosis [189,190]. 

 

Silver NPs Silver NPs are also characteristic 

examples of widely distributed consumer products 

highly affecting aquatic ecosystem which disturb the 

algae, fish, and microbial communities [191]. 

However, NPs are not well-characterised with respect 

to the long-term environmental and health influences 

of their presence within the biosphere. 

 

To handle risks, standardisation regarding exposure 

monitoring, toxicity testing, and integrated LCAs are 

necessary. Nonetheless, LCAs are currently 

constrained by data gaps with respect to nanoparticle 

bioavailability, toxicity, and environmental transport 

[193,194]. Less toxic alternatives, such as carbon-

based NPs (like graphene or fullerenes) could provide 

safer alternatives [192]. 

 

In this light, the responsible development of risk 

assessments and regulation of these materials should 

take into account the benefits they provide. 

 

VI. REGULATION ISSUES OF 

NANOMATERIALS 

 

In view of the rapid development of nanotechnology, 

it is important to create specific legislation and safety 

standards. The Government of India through its 

Department of Science and Technology (DST) 

released the “Guidelines and Best Practices for Safe 

Handling of Nanomaterials in Research Laboratories 

and Industries” in India. Nano science initiatives were 

started by the Government through DST Nano Mission 

(2001) and Nano Science and Technology Initiative 

(2007). The Eco Toxicity and Biodegradability Rules, 

2008 and the Hazardous Waste Rules, 2008 also 

regulate the disposal and trans boundary movement of 

nanowaste. 

 

But India does not have any such dedicated legislation 

such as TSCA (USA). Under the Environment 

Protection Act, 1986, it is the discretion of the 

government to formulate the subordinate chemical 

safety legislations and yet, there is lack of a 

comprehensive  
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Table 3: An account of various nanomaterial and nanosensors used for monitoring and sensing environmental pollutants 

Type of Nanomaterials - nanosensor Application - Analyte/parameters tested References 

Carbon nanotubes - Electrochemical 

Water quality monitoring -Ammonium, CoII, organo-

phosphate pesticides [165] 

Molybdenum disulfide (MoS2) - Electrochemical 

Biomedical and environmental monitoring- Glucose, uric acid, 

DNA, proteins, heavy metals, pesticides, nitrite etc. [166] 

TiO2/Ag0.35V2O5 - Gas sensor Environmental monitoring - Ethanol [151] 

Copper oxide/reduced graphene oxide nanocomposite - Gas sensor Environmental monitoring -Ammonia [167] 

Ag nanoparticles - Optical nanosensor: SERS 

Water quality monitoring -Pesticides, bacteria, viruses, 

protozoa [168] 

Gold nanowires - Electrical Water quality monitoring -Halides [169] 

Metal oxide semiconductor nanowires- Electrical Water quality monitoring -VOCs, NO2 [170] 

Magnetic beads - Magnetic nanosensor 

Water quality monitoring- Salmonella enteric, Newcastle 

disease virus, E. coli 0157:H7 [171] 

Magnetite (Fe3O4); maghemite (γ-Fe2O3) - Magnetic nanosensor Water quality monitoring -Mycobacterium bovis, Influenza A [172] 

Silica-coated polystyrene nanoparticles (PSNPs) - Luminescent TOP nanosensors Environmental parameters -Temperature, oxygen, pH [173] 

Nanoactuators, nanosensors, and nano energy harvesters - Flexoelectric nanosensors Pressure measurement -Pressure [174] 

AuNPs - ICTS nanosensors Diagnosis devices -Bacterial and viral antigen, proteins [175] 

AuNPs - DNA-Nanosensor Antibiotics detection -Streptomycin [176] 

Capped mesoporous silica nanoparticles - Fluorogenic aptasensors Antibiotics detection -Ochratoxin A [177] 

AuNPs/PANI/GSPE- Electrical Pesticide detection -Organophosphorus pesticides [178] 

DNA-functionalized gold nanoparticle- Electrical Pollutant detection -Silver ions [179] 

Luminescence nanoprobe- Electrical Pollutant detection -Heavy metals [180] 

AuNPs- Electrical Pathogen detection -E. coli K88 [181] 

Zr-based MOFs - Nanosensor Pesticide detection -Organophosphorus pesticides [182] 

Nanoporous Au- Electrical Pollutant detection -Pb2+ [183] 

Graphene - Chemical nanosensor Pollutant detection -Nitrotriazolone [184] 

Indium-doped ZnO nanoparticles - Chemiresistive nanosensor Pollutant detection -Trinitrotoluene [185] 

Dual-emission DNA-templated silver nanoclusters - Fluorophore ratiometric nanosensor Pollutant detection -Pb2+ [186] 

Lignin-derived structural memory carbon nanodots (CSM-dots) - Fluorescent Nanosensor Pollutant detection -Ag+ [187] 
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nanomaterial-specific regulation for safe 

commercialization. 

 

At the global level the nanotoxicity assessment has 

been driven by a number of initiatives. Key 

contributions are being made by the Nanotechnology 

Research Coordination Group (UK) and the National 

Nanotechnology Characterization Laboratory (USA) 

[195]. The International Alliance for Nano 

Environment and Human Health and Safety 

Harmonization is working to devise standard testing 

procedures [196]; the National Research Council 

(NRC) advocates high-throughput nanotoxicity 

screening in the US. 

 

In particular, the OECD Working Party on 

Manufactured Nanomaterials (WPMN), formed in 

2006, guides international activities on the safety and 

regulation of nanomaterials [197]. 

 

CONCLUSIONS AND FUTURE OUTLOOK 

 

Climate change, with its global repercussions that 

result from increased environmental decay and rising 

temperatures, continues to be a concern. Immediate 

action is required to minimize these impacts by use of 

alternative, cleaner technologies and processes. 

Nanotechnology is an emerging technology, which 

can provide environmentally friendly alternatives for 

many products areas. 

 

Nanomaterials such as nanosensors, nanocatalysts, 

nanocoatings, nanolubricants, MOFs, nanozeolites, 

nanocarbon, and functionalized nanostructures are 

characterized by the inherent physicochemical 

properties and are therefore regarded as suitable for 

integrated applications in bioenergy, pollutant 

removal, greenhouse gas control, environmental 

restoration and green building. 

 

Nanotechnology as a game changer in climate change 

mitigation by improving energy efficiencies, 

minimising resource requirements and providing new 

solutions to environmental issues, nanotechnology 

provides a transformative instrument to help mitigate 

climate change. The Gifts also support the 

development of smart materials, renewable energy 

options and pollution control technologies consistent 

with climate goals. 

In order to exploit its full strength, supportive 

international policies and local strategies are needed. 

In the future, nanotechnology has significant potential 

in developing novel, affordable, and sustainable 

solutions to address climate change, further 

cementing its key role in safeguarding our 

environmental future. 
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