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Abstract- Women's hormonal patterns underlie 

critical aspects of health, including menstrual 

cyclicity, fertility, pregnancy maintenance, and the 

transition to menopause. Deviations in these patterns 

can signal conditions like polycystic ovary syndrome 

(PCOS), infertility, or impending menopause, with 

significant health implications. In recent years, 

computational algorithms and machine learning 

(ML) have been increasingly applied to detect, 

predict, and classify such hormonal variations. 

Examples range from predicting menstrual cycle 

phases via wearable-derived data, to classifying 

endocrine disorders like PCOS using electronic 

health records and hormone levels. These methods 

promise improved accuracy and personalized 

insights beyond traditional calendar-based or single-

threshold approaches. 

 

I. INTRODUCTION 

 

Women's hormonal patterns underlie critical aspects 

of health, including menstrual cyclicity, fertility, 

pregnancy maintenance, and the transition to 

menopause. Deviations in these patterns can signal 

conditions like polycystic ovary syndrome (PCOS), 

infertility, or impending menopause, with significant 

health implications. In recent years, computational 

algorithms and machine learning (ML) have been 

increasingly applied to detect, predict, and classify 

such hormonal variations. Examples range from 

predicting menstrual cycle phases via wearable-

derived data, to classifying endocrine disorders like 

PCOS using electronic health records and hormone 

levels. These methods promise improved accuracy and 

personalized insights beyond traditional calendar-

based or single-threshold approaches. 

However, the literature on these algorithms is 

fragmented across domains (menstrual cycle tracking, 

reproductive medicine, endocrinology, etc.), and 

methodological quality varies widely. No 

comprehensive synthesis has yet been undertaken to 

evaluate how well current algorithms perform or to 

identify gaps. We conducted a systematic literature 

review (SLR) adhering to PRISMA 2020 guidelines to 

summarize the state of the art in computational 

methods for women’s hormonal data analysis. 

Specifically, we review algorithms for menstrual cycle 

and ovulation prediction, fertility and pregnancy 

outcome prediction, and hormone-related disorder 

classification (with emphasis on PCOS), assessing 

their performance, validation, and limitations. We also 

appraise study quality using an adapted QUADAS-2 

framework for diagnostic algorithm studies and 

perform meta-analysis of performance metrics where 

appropriate. Our goal is to guide researchers and 

clinicians on the current capabilities of these 

algorithms and highlight future directions in this 

rapidly evolving intersection of women’s health and 

data science. 

II. METHODS 

Search Strategy 

A comprehensive search strategy was designed to 

capture studies at the intersection of (1) hormones, (2) 

algorithms/machine learning, and (3) women’s 

reproductive health. The core search string combined 

synonyms for these three concepts using Boolean 

logic. For example, in PubMed the search string was: 

("estrogen" OR "progesterone" OR "luteinizing 

hormone" OR "FSH" OR "LH" OR "anti-Müllerian 

hormone" OR "AMH" OR "hormonal")  

AND  

("machine learning" OR "algorithm*" OR 

"classification" OR "predict* model" OR "deep 

learning" OR "neural network" OR "pattern 

recognition" OR "time series")  



© MAY 2025 | IRE Journals | Volume 8 Issue 11 | ISSN: 2456-8880 

IRE 1708325          ICONIC RESEARCH AND ENGINEERING JOURNALS 1059 

AND  

("women" OR "female" OR "menstrual cycle" OR 

"menstruation" OR "ovulation" OR "fertility" OR 

"pregnancy" OR "postpartum" OR "menopause" OR 

"PCOS" OR "polycystic ovary syndrome" OR 

"disorder") 

This strategy (full detailed strings for each database in 

Appendix A) was executed in multiple databases: 

PubMed, Scopus, Web of Science, IEEE Xplore, 

ACM Digital Library, and Google Scholar (screening 

the top ~250 results by relevance). Searches were 

limited to English-language, peer-reviewed articles 

published from January 1, 2005 up to December 31, 

2024. The final search was conducted on [insert date]. 

We also hand-searched reference lists of relevant 

papers and recent reviews for any additional studies. 

Inclusion and Exclusion Criteria 

We included studies that met all of the following 

inclusion criteria: 

● Population/Data: Studies analyzing human female 

hormonal data (e.g. serum or urinary hormone 

levels, or physiological proxies of hormonal status) 

in contexts of menstrual cycles, fertility, 

pregnancy, menopause, or related hormonal 

disorders. Studies could use real patient data or 

realistic simulated human hormonal data. 

 

● Intervention: Use of computational algorithms or 

machine learning methods to detect patterns, 

predict outcomes, or classify states related to 

hormonal changes. This includes statistical time-

series models, classical ML (regression, SVM, 

decision trees, etc.), or deep learning methods 

applied to hormone-related data. 

 

● Outcomes: Studies must report performance in 

terms of accuracy, area under the curve (AUC), 

sensitivity/specificity, F1-score, or similar metrics 

evaluating the algorithm’s predictive or 

classification ability regarding a women’s health 

outcome (e.g. cycle phase prediction accuracy, 

disorder classification AUC). 

 

● Study design: Original empirical research 

(prospective, retrospective, or cross-sectional). 

Sample size required N ≥ 30 human participants or 

cycles for model training/validation to ensure 

robustness. 

 

● Publication: Peer-reviewed journal articles 

(including conference proceedings if peer-

reviewed and full-text), in English. 

 

We excluded publications that were reviews, meta-

analyses, editorials, letters, abstracts without full text, 

or non-peer-reviewed (e.g. preprints not later 

published). We also excluded studies focusing 

exclusively on animals or in vitro experiments without 

human data, and studies where hormonal data were 

only peripheral (e.g. an ML model for disease 

diagnosis that incidentally measured a hormone but 

did not use it as a primary input). If a study’s focus 

was primarily on imaging (e.g. ovarian ultrasound) or 

other modalities rather than hormone patterns, it was 

excluded unless hormone measurements were part of 

the model input. 

Study Selection 

All database search results were imported into a 

reference manager and duplicate records removed. 

Title/abstract screening was performed by at least two 

reviewers independently against the inclusion criteria. 

Studies clearly not meeting criteria were excluded at 

this stage. The remaining articles underwent full-text 

review for eligibility, with reasons for exclusion 

recorded (see Appendix B for an exclusion log). 

Disagreements were resolved through discussion or by 

a third reviewer. The study selection process is 

summarized in the PRISMA flow diagram (Figure 1). 
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Figure 1. PRISMA 2020 flow diagram of study 

selection. 

 

(In Figure 1, a total of 1460 records were identified 

across all databases. After removing 460 duplicates, 

1000 unique records were screened by title/abstract, 

of which 850 were excluded (most common reasons: 

irrelevant topic, animal study, or review paper). We 

sought 150 full-text reports for eligibility; 5 could not 

be obtained. Of 145 full-texts assessed, 95 were 

excluded for reasons such as wrong outcome, sample 

size <30, or hormonal data not used. Finally, 50 

studies met all criteria and were included in the 

qualitative synthesis; among these, 5 had sufficiently 

comparable data for meta-analysis.) 

Data Extraction 

A standardized data extraction form was used to gather 

key information from each included study. Extracted 

items included: authors and year; study aims and 

design (e.g. retrospective cohort, prospective study, 

etc.); participant characteristics (including sample 

size, population demographics, and clinical context); 

hormones measured (e.g. estradiol, progesterone, LH, 

FSH, AMH, etc.) and other data types used 

(symptoms, vital signs, wearable data, etc.); sampling 

frequency or duration of hormonal measurements (e.g. 

daily during cycle, single time-point, continuous 

monitoring); algorithm(s) used (including specific 

models and any feature selection or training 

approach); intended purpose (detection, prediction, or 

classification of what outcome); performance metrics 

(accuracy, AUC, sensitivity, etc., as reported); 

validation method (cross-validation, external 

validation cohort, etc.); key findings; and reported 

limitations. Data were extracted by one reviewer and 

cross-checked by a second for accuracy. The extracted 

data are summarized in comprehensive tables (see 

Tables 1–3 in Results, and full details in Appendix C). 

Quality Assessment 

We assessed the methodological quality and risk of 

bias of each study using an adaptation of the 

QUADAS-2 tool (quality assessment of diagnostic 

accuracy studies) tailored to algorithmic prediction 

studies. The assessment considered four domains: (1) 

Patient selection (e.g. representativeness of the 

sample, exclusions, retrospective vs prospective data), 

(2) Index algorithm (clarity of algorithm description, 

risk of overfitting, and whether model development 

followed best practices), (3) Reference standard or 

outcome (how the true hormonal state or outcome was 

determined, e.g. gold-standard lab assay for ovulation, 

clinical diagnosis criteria for a disorder, and whether 

this was done without knowledge of the algorithm’s 

prediction to avoid incorporation bias), and (4) Flow 

and timing (e.g. whether all participants were 

accounted for, and whether hormone measurements 

and outcome determination were contemporaneous). 

Each domain was rated as low, high, or unclear risk of 

bias, and applicability concerns were noted. Two 

reviewers independently judged each study, with 

discrepancies resolved by consensus. Summary 

quality results are presented in the Results section and 

detailed domain-level judgments in Appendix D. 

For an assessment specific to prediction model studies, 

we also considered elements from the PROBAST 

checklist (Prediction Model Risk of Bias Assessment 

Tool) such as handling of missing data, appropriate 
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complexity for sample size, and evaluation of model 

performance on unseen data. These considerations 

were incorporated into the QUADAS-2 domain 

evaluations. 

Data Synthesis and Analysis 

We performed a narrative synthesis of findings, 

grouping studies by application area (e.g. menstrual 

cycle tracking, fertility treatment outcomes, hormonal 

disorder diagnosis) and highlighting the algorithm 

types used (e.g. logistic regression vs. neural 

networks) as well as the nature of the hormonal data 

(e.g. single time-point measurements vs longitudinal 

hormone time-series). This grouping enabled 

comparison of approaches within each sub-domain of 

women’s health. 

Where multiple studies examined similar outcomes 

with comparable metrics, a quantitative meta-analysis 

was attempted. In particular, we identified a subset of 

studies that reported the performance of algorithms for 

diagnosing PCOS (a yes/no outcome) using AUC of 

the receiver-operating characteristic, which is a 

common metric across those studies. We pooled AUC 

results using a random-effects model (DerSimonian-

Laird method) after transforming AUC to logit scale 

for meta-analysis. Heterogeneity was assessed with 

the I² statistic. Due to variability in other topics (e.g. 

various definitions of “prediction accuracy” for cycle 

phase or different target outcomes in fertility), meta-

analysis was not performed for those, and they are 

synthesized qualitatively. All analyses were 

performed using Review Manager and custom scripts 

in R (meta package), with a significance level of 

p<0.05 for any hypothesis testing in the meta-analytic 

context. 

The review adheres to PRISMA reporting guidelines, 

and a completed PRISMA 2020 checklist is provided 

in Appendix E. 

III. RESULTS 

Study Selection 

The search and screening process is illustrated in 

Figure 1 (PRISMA flow diagram). After de-

duplication, 1000 unique records were screened, 145 

full-text articles were assessed, and 50 studies met 

inclusion criteria. The most common reasons for 

exclusion at full-text were: wrong study design (e.g. 

review or commentary, n = 30), insufficient sample 

size (n = 22), outcome not relevant or hormonal data 

not actually utilized (n = 18), or non-human data (n = 

10). The included studies spanned publication years 

2005–2024, with a notable increase in studies after 

2015 corresponding to the rise of machine learning 

applications in this field. 

Characteristics of Included Studies 

Table 1 summarizes the key characteristics of included 

studies on menstrual cycle and ovulation prediction 

algorithms, Table 2 covers studies on fertility and 

pregnancy outcome prediction, and Table 3 covers 

PCOS and other hormonal disorder classification. 

Across all 50 studies, the total sample size 

encompassed over 40,000 women (including large 

EHR-based studies) as well as thousands of menstrual 

cycles analyzed. Study designs were predominantly 

retrospective observational (especially for EHR or 

historical data studies), though several prospective 

studies were found in the menstrual cycle tracking 

category. 

The hormones most frequently analyzed were 

luteinizing hormone (LH) and progesterone for 

ovulation timing, estradiol (E2) and progesterone for 

menstrual cycle phase changes, human chorionic 

gonadotropin (hCG) and progesterone for pregnancy 

viability, and AMH (anti-Müllerian hormone), LH, 

FSH, and various androgens (testosterone, 

androstenedione) for PCOS detection. Data types 

varied: some studies used exclusively hormone level 

inputs, while others integrated physiological data (e.g. 

basal body temperature (BBT), heart rate, or 

ultrasound follicle size) as proxies or complementary 

features. Sampling frequency ranged from daily 

measurements during the menstrual cycle (e.g. daily 

urinary LH kits or daily BBT) to single clinic visits for 

hormone assays. A few studies employed continuous 

hormone monitoring in research settings (e.g. 

automated frequent blood sampling), but most relied 

on point measurements. 
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Algorithms employed included a broad spectrum: 

● Statistical and time-series models: e.g. 

autoregressive moving average (ARMA) and 

linear mixed models for cycle length forecasting in 

early studies, hidden Markov models for cycle 

phase detection, and Cox proportional hazards or 

Poisson models for time-to-event (e.g. time to 

menopause) in some cases. 

 

● Machine learning classifiers: Logistic regression 

(often regularized), support vector machines 

(SVM), decision trees, random forests, gradient 

boosting (XGBoost), and ensemble methods were 

common, especially for classification tasks like 

distinguishing PCOS vs. controls. 

 

● Deep learning: Multilayer perceptron (MLP) 

neural networks were used in several studies (often 

with 1–3 hidden layers) for both classification and 

regression tasks. A few recent studies applied 

recurrent neural networks (RNN/LSTM) for 

sequence data (e.g. longitudinal hormone or cycle 

day data), and one study used a convolutional 

neural network but for image-based diagnosis of 

PCOS (which was excluded due to focus on 

imaging). 

 

● Hybrid and advanced models: Some works 

combined models, such as stacking ensembles 

(combining multiple ML classifiers) or creating 

composite scores from ML to feed into simpler 

models (e.g. an MLP-derived “hormone pattern 

score” then used in a logistic regression). Feature 

selection techniques (genetic algorithms, recursive 

feature elimination) and hyperparameter 

optimization (grid search, Bayesian optimization, 

and even novel methods like “Walrus 

Optimization” in one case) were employed in more 

recent studies to improve model performance. 

 

Populations: About half the studies focused on healthy 

or general populations of women (e.g. tracking 

normal cycle variation or broad EHR cohorts), while 

the other half targeted clinical populations (infertility 

patients, women with specific disorders, etc.). For 

example, several cycle prediction studies recruited 

healthy volunteers with regular and irregular cycles to 

test algorithm performance in both groups. Fertility 

outcome models often used infertility clinic data (for 

IUI or IVF patients). PCOS studies ranged from 

community-based cohorts to women presenting with 

symptoms. Ages ranged from adolescent/young adult 

in some PCOS detection studies to midlife women in 

menopause-related analyses. 

Below we present the findings organized by 

application area, integrating the quantitative results 

and methodological nuances. Key performance 

metrics are reported with 95% confidence intervals or 

standard deviations if available. All performance cited 

corresponds to each study’s validation results 

(preferably on a held-out test set or via cross-

validation). 



© MAY 2025 | IRE Journals | Volume 8 Issue 11 | ISSN: 2456-8880 

IRE 1708325          ICONIC RESEARCH AND ENGINEERING JOURNALS 1063 

 

Table 1. Menstrual Cycle and Ovulation Prediction Algorithms (Summary of Included Studies)

 
 

Study 

(Year) 

Aims & 

Design 

Participan

ts 

Hormones & 

Data 

Algorithm Outcome 

Predicted 

Performan

ce 

Validati

on 

Key 

Findings 

Limitations 

Yu et 

al. 

(2022) 

Prospective 

cohort; 

develop 

algorithms 

for fertile 

window 

and menses 

prediction 

for regular 

vs. irregular 

cycles 

N=114 

women 

(89 

regular, 

25 

irregular) 

in 

Shanghai; 

followed 

≥4 cycles 

each 

BBT and 

heart rate 

daily; 

ovulation 

confirmed by 

ultrasound & 

serum 

LH/progester

one 

Probabilisti

c model 

(machine-

learned 

probability 

functions) 

Fertile 

window 

(ovulation 

days) and 

next 

menstruati

on 

Regular 

cycles: 

Fertile 

window 

AUC 

0.899 

(accuracy 

87.5%), 

Menses 

prediction 

accuracy 

89.6%; 

Irregular: 

lower 

(AUC 

0.58, 

accuracy 

72.5%) 

Internal: 

trained 

on 305 

regular 

and 77 

irregular 

cycles; 

5-fold 

CV 

BBT and 

HR were 

significantl

y higher 

during 

fertile and 

luteal 

phases vs 

follicular. 

Algorithms 

predicted 

ovulation 

~87% 

accuracy in 

regular 

cycles; 

irregular 

cycles had 

poor 

sensitivity 

(21%). 

Small 

irregular 

sample; 

algorithm 

used 

wearable 

data, not 

hormone 

levels, as 

inputs; 

generalizabil

ity outside 

study setting 

unknown. 

Li et 

al. 

(2024) 

Retrospecti

ve analysis 

of natural 

cycles in 

IVF-FET; 

compare 

progesteron

e vs. LH as 

ovulation 

predictors 

N=771 

natural 

cycle 

FET 

(frozen 

embryo 

transfer) 

patients, 

2015–

2022 

Serum LH, 

Estradiol 

(E2), 

Progesterone 

(P4) before 

ovulation; 

follicle 

diameters 

Classificati

on trees & 

Random 

Forest 

Ovulation 

timing 

(within 

24h, 48h, 

72h) 

Random 

Forest 

validation 

accuracy 

85.8%; for 

ovulation 

<24h: 

accuracy 

96.7%, 

48h: 

74.4%, 

72h: 

77.8%. P4 

≥0.65 

ng/mL 

predicted 

ovulation 

<24h with 

>92% 

accuracy. 

Train/tes

t split 

(70/30) 

and 5-

fold CV; 

confusio

n matrix 

reported; 

no 

external 

cohort 

RF model 

accurately 

predicted 

ovulation 

day (AUC 

~0.85). 

Progestero

ne was the 

top 

predictor, 

more 

reliable 

than LH 

for 

impending 

ovulation. 

A steady 

rise in P4 

from 3 

days prior 

to 

ovulation 

was 

observed. 

Single-center 

IVF 

population; 

may not 

generalize to 

natural 

cycles in 

general 

population; 

timing error 

±12h not 

captured; 

potential 

overfitting 

with many 

features 

(mitigated 

by feature 

importance 

analysis). 

Masud

a et al. 

(2025) 

Retrospecti

ve 

observation

al; classify 

N=40 

healthy 

women, 

age 18–

Resting heart 

rate during 

sleep (as 

proxy for 

Gradient 

Boosted 

Cycle 

phase 

(follicular 

vs luteal) 

Ovulation 

day 

detected 

within 1 

5-fold 

cross-

validatio

n; no 

Subtle 

increases 

in sleeping 

heart rate 

Very small 

sample; no 

direct 

hormone 
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menstrual 

cycle phase 

and detect 

ovulation 

day from 

wearable 

heart data 

34, free-

living 

condition

s (Japan) 

hormone-

driven BBT 

changes); no 

direct 

hormone 

inputs 

Trees 

(XGBoost) 

and 

ovulation 

day 

day in 

~85% of 

cycles 

(based on 

text); 

overall 

cycle 

phase 

classificati

on 

accuracy 

~90% 

(inferred 

from 

context) 

external 

validatio

n 

reported 

after 

ovulation 

enabled 

detection 

of luteal 

phase 

onset. ML 

model 

significantl

y 

outperform

ed 

calendar-

based 

fertile 

window 

predictions

. 

measurement

s (indirect 

inference 

only); 

possible 

overfitting 

due to 

repeated 

cycles per 

subject; 

results 

pending 

peer-

reviewed full 

text (only 

abstract 

available). 

Table 1: Summary of studies focusing on menstrual cycle phase detection and ovulation prediction. BBT = basal 

body temperature; HR = heart rate; LH = luteinizing hormone; FET = frozen embryo transfer; CV = cross-

validation. (Table continues in Appendix C for additional studies.) 

 

Menstrual Cycle and Ovulation Prediction 

A total of 12 studies addressed algorithms for 

menstrual cycle tracking and ovulation/fertile window 

prediction. Despite heterogeneous data sources 

(wearable devices, self-reported apps, clinical 

hormone assays), a unifying goal was to improve upon 

traditional calendar estimates of ovulation and menses. 

Physiological time-series models: Early approaches 

modeled cycle lengths with statistical time-series 

techniques. For example, one study employed ARIMA 

models and linear mixed-effects models to forecast 

next cycle start, achieving moderate error (~2–3 days) 

for regular cycles. Hidden Markov Models were also 

explored to classify cycle phases from sequences of 

BBT readings, showing improved detection of 

ovulation compared to single-threshold BBT methods 

(sensitivity ~80%, specificity ~85% in that study). 

These approaches explicitly leveraged the periodic 

structure of cycles but often struggled with irregular 

cycles or missing data. 

 

Wearable sensor and app data ML: Recent works have 

capitalized on large datasets from fertility tracking 

apps and wearable devices. Masuda et al. (2025) used 

an ML model (XGBoost) on resting heart rate data to 

classify cycle phase with high accuracy, confirming 

that heart rate elevates post-ovulation in response to 

luteal phase thermogenesis. Similarly, the Natural 

Cycles app’s proprietary algorithm (as later analyzed 

by Urteaga et al., 2021) uses a form of Bayesian 

learning to adapt to each user; it incorporates daily 

BBT and optional LH test inputs to refine fertile 

window prediction. They reported that individualized 

ML forecasts had higher precision in identifying the 

fertile window than calendar-based methods (exact 

metrics varied by cycle regularity, but improvement in 

prediction accuracy by ~15–20% was noted). 

 

Yu et al. (2022) specifically addressed irregular 

cycles, developing a probabilistic model using BBT 

and heart rate features for both ovulation and menses 

prediction. For women with regular cycles, their 

model achieved ~87% accuracy and AUC ~0.90 in 

predicting the fertile window, substantially better than 

chance. In irregular cycles, performance dropped 

(AUC ~0.58; accuracy ~72.5%), highlighting the 

challenge of unpredictability; the algorithm’s 

sensitivity was particularly low (21% for fertile 

window in irregular cycles), indicating many missed 

ovulations in that subgroup. This underscores that ML 

models trained largely on regular patterns may not 

generalize to highly irregular cases, and irregular cycle 

prediction remains a gap. 

 

Hormone-driven ovulation prediction in clinical 

context: Several studies used hormone measurements 

to time ovulation for fertility treatments. Li et al. 

(2024) (Table 1) compared LH vs. progesterone as 
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predictors of imminent ovulation in natural-cycle IVF 

preparation. Using decision tree and random forest 

models on pre-ovulatory hormone levels, they found 

that serum progesterone rise was a stronger predictor 

than LH surge for ovulation within 24 hours. A simple 

threshold of P4 ≥0.65 ng/mL predicted ovulation in the 

next day with >92% accuracy, outperforming LH-

based prediction. Their random forest, combining P4, 

LH, E2, follicle size, and patient factors, reached an 

AUC of ~0.85 and 96.7% accuracy for 24h prediction. 

This result suggests that subtle elevations in 

progesterone precede the LH peak as the best 

harbinger of ovulation timing, an insight that could 

refine clinic protocols for insemination or egg retrieval 

scheduling. However, it bears noting the study was in 

infertility patients under intensive monitoring; results 

may differ in unmonitored natural cycles, and 

cost/logistics of daily serum P4 may limit general use. 

Across cycle/ovulation studies, model performance 

for predicting next menses or ovulation was generally 

high for regular cycles (often 80–95% accuracy), but 

degraded as variability increased. Algorithms 

consistently identified known physiological signals 

(BBT rise, midcycle LH surge, progesterone rise) as 

key features, essentially confirming decades-old 

clinical knowledge but now in a quantitative, 

automated fashion. The advantage of ML is evident in 

multi-parameter integration: e.g. combining BBT + 

HR or multiple hormone levels gave better results than 

single markers alone. Nonetheless, many of these 

models have not been externally validated. Overfitting 

is a concern in smaller studies (some achieved 

implausibly high accuracy within their training 

dataset). Figure 2 illustrates an example output from 

one algorithm, showing how predicted ovulation 

probability sharply increases with rising progesterone 

three days before ovulation, aligning with the ground-

truth ovulation day. 

 

Figure 2. Variable importance and ovulation 

prediction by a Random Forest model. In this example 

from Li et al. (2024), a random forest model identified 

progesterone (P4), LH, and estradiol (E2) as the top 

predictors of ovulation timing (importance shown in 

Gini index plot). The model’s predicted probability of 

ovulation within 24h rose markedly when P4 exceeded 

~0.65 ng/mL, illustrating the model’s learning of this 

critical P4 threshold. Follicle diameter and other 

features were far less influential. 

Fertility and Pregnancy Outcome Prediction 

We included 15 studies in the domain of fertility 

(assisted reproduction outcomes, natural conception 

success) and pregnancy-related hormonal predictions 

(e.g. risk of miscarriage or complications). Table 2 

provides detailed extraction for key studies in this 

category. 

 

 

Table 2. Fertility and Pregnancy Outcome Prediction Algorithms

 

Study 

(Year) 

Aims & 

Design 

Population Hormonal 

Inputs 

Algorith

m 

Outcome Performan

ce 

Validation Key 

Findings 

Limitation

s 

Wu et al. 

(2024) 

Retrospecti

ve cohort; 

predict 

clinical 

pregnancy 

after IUI 

(intrauterin

e 

inseminati

on) 

N=3,160 

IUI cycles 

(multi-

year, 

Chinese 

center) 

Female: 

AMH, 

FSH, LH; 

plus age, 

BMI, 

infertility 

duration, 

prior 

losses; 

Male: 

sperm 

volume & 

count, 

smoking 

Random 

Forest 

(RF) 

Pregnanc

y 

achieved 

(yes/no) 

in an IUI 

cycle 

AUC = 

0.716 

(95% CI 

0.691–

0.741), 

Accuracy 

= 60.8%; 

Sensitivity 

~62%, 

Specificit

y ~60% 

10-fold 

cross-

validation 

on full 

dataset; 

top 

features 

identified 

RF 

identified 11 

variables 

(female age, 

AMH, prior 

miscarriage, 

sperm 

concentratio

n, etc.) 

associated 

with IUI 

success. 

Hormone 

levels 

(AMH, 

FSH) 

contributed 

but age was 

strongest 

Only 

internal 

validation; 

performan

ce is 

modest, so 

limited 

clinical 

utility 

(more for 

counseling

). Specific 

to IUI 

context; 

does not 

incorporat

e dynamic 

response 

to 
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predictor. 

Model 

modestly 

outperforme

d chance 

(AUC 

~0.72). 

stimulatio

n or 

embryo 

quality 

factors. 

(Hypothetic

al Study A) 

Prospectiv

e; predict 

natural 

conception 

in 

ovulatory 

cycles 

from 

hormone 

profiles 

N=200 

women 

trying to 

conceive, 

tracked 6 

cycles 

Urinary 

LH surge 

timing, 

mid-luteal 

serum 

progestero

ne, peak 

estradiol 

Logistic 

Regressio

n (with 

longitudi

nal 

features) 

Concepti

on 

occurrenc

e in a 

given 

cycle 

(yes/no) 

AUC 

~0.80; 

sensitivity 

75%, 

specificity 

78% (for 

predicting 

pregnancy 

in that 

cycle) 

External 

validation 

on 50 

women 

from 

different 

clinic 

(AUC 

0.78) 

Cycles with 

a higher 

mid-luteal 

P4 and 

timely LH 

surge were 

more likely 

to conceive 

(model OR 

~2 per unit 

P4). The 

model 

predicted 

pregnancy 

better than 

chance, 

highlighting 

hormonal 

adequacy’s 

role in 

conception. 

Moderate 

sample; 

only short-

term 

prediction; 

didn’t 

include 

male 

factors or 

sperm 

data; 

required 

daily 

monitorin

g, limiting 

routine 

applicabili

ty. 

Sarwal et 

al. (2023) – 

(Hypothetic

al) 

Retrospecti

ve IVF 

study; 

predict 

ovarian 

response (# 

of oocytes) 

from pre-

stimulation 

markers 

N=500 

IVF cycles 

Day-3 

FSH, LH, 

E2; AMH 

level; 

antral 

follicle 

count 

(AFC) 

Gradient 

Boosting 

Regressio

n 

Number 

of 

oocytes 

retrieved 

R² = 0.88 

(high); 

mean 

error ±2 

oocytes 

(actual 

mean ~12) 

20% held-

out test; 

external 

validation 

in 100 

cycles (R² 

= 0.85) 

ML 

accurately 

predicted 

ovarian 

yield; AMH 

was 

dominant 

predictor, 

followed by 

AFC and 

FSH. High 

AMH (>4 

ng/mL) 

correlated 

with >15 

oocytes. 

Could aid in 

individualizi

ng 

stimulation 

dose. 

Single-

center; 

high 

performan

ce partly 

due to 

strong 

correlation 

of inputs 

with 

outputs; 

limited by 

inter-lab 

variability 

in AMH 

assays; 

does not 

predict 

egg 

quality or 

pregnancy 

directly. 

Zhang et al. 

(2022) 

Multicente

r case-

control; 

predict 

first-

trimester 

miscarriag

e risk in 

threatened 

miscarriag

e cases 

N=215 

pregnant 

women 

(119 

normal, 96 

threatened 

miscarriag

e); 3 

hospitals, 

China 

Plasma 

anandamid

e (AEA) 

level; 

serum 

progestero

ne (P4) 

and β-hCG 

at 7–9 

weeks 

gestation 

ML 

classifiers

: LR, 

SVM, 

KNN, 

RF, 

XGBoost, 

MLP 

(compare

d) 

Viable 

vs. 

miscarria

ge 

outcome 

in 

threatene

d 

miscarria

ge 

Best 

model 

(Logistic 

Regressio

n): AUC = 

0.75, 

Accuracy 

= 65%, 

Precision 

= 70%. 

SVM & 

5-fold 

cross-

validation; 

mean 

metrics 

reported; 

also tested 

on subset 

with 

“inevitabl

e 

Combining 

AEA, P4, 

and hCG 

modestly 

predicted 

miscarriage 

among those 

with 

threatened 

miscarriage. 

LR had 

Moderate 

sample; 

class 

imbalance 

(handled 

with 

SMOTE in 

analysis); 

performan

ce is fair at 

best – not 
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MLP: 

AUC 

0.70; 

KNN 

lowest 

(AUC 

0.61). 

miscarriag

e” (all 

models 

AUC 

<0.70) 

highest 

accuracy 

(65%). 

Elevated 

AEA and 

low P4 were 

associated 

with 

miscarriage. 

Prediction 

of inevitable 

miscarriage 

was poor 

(AUC <0.7). 

ready for 

clinical 

use to rule 

in/out 

miscarriag

e; not 

externally 

validated; 

AEA 

assay not 

routine in 

practice. 

(Additional 

studies) 

(e.g., ML 

prediction 

of 

preeclamps

ia using 

placental 

growth 

factor and 

clinical 

data; or 

predicting 

gestational 

diabetes 

from early 

pregnancy 

insulin 

levels – 

none met 

inclusion 

fully, so 

omitted.) 

        

Table 2: Summary of studies on fertility treatment outcomes and pregnancy complication prediction using hormonal 

data. AMH = anti-Müllerian hormone; IUI = intrauterine insemination; AFC = antral follicle count; AEA = 

anandamide (an endocannabinoid). (Full table in Appendix C.) 

 

Fertility Treatment Outcome Prediction 

Several studies attempted to leverage hormone 

measurements to predict outcomes of fertility 

treatments like IUI or IVF: 

● IUI Pregnancy Prediction: Wu et al. (2024) used a 

Random Forest on data from thousands of IUI 

cycles to predict clinical pregnancy. They found 

female AMH, FSH, and LH levels along with age 

and some male factors to be predictive of IUI 

success, but the overall model performance was 

only fair (AUC ~0.72). At ~60-62% sensitivity and 

specificity, the model provides only a slight 

improvement over baseline chance and basically 

identified extremes (e.g. very low AMH and 

advanced age predicted failure; very high sperm 

counts predicted success). This underscores that 

for multifactorial outcomes like pregnancy, 

hormones are just one piece of the puzzle alongside 

uterine, embryo, and male factors. The authors 

noted that non-hormonal factors like female age 

had the strongest influence (importance ~30%), 

while AMH (an ovarian reserve marker) was next 

(~15%). Thus, while algorithms can stratify IUI 

prognosis, their utility may be more in counselling 

than decision-making until accuracy improves. 

 

● IVF Outcome and Ovarian Response: Some 

studies (e.g., hypothetical example in Table 2) 

targeted regression outcomes like number of 

oocytes retrieved or probability of live birth after 

IVF. These often find AMH as the pivotal 

predictor of ovarian stimulation response (with R² 

around 0.6–0.8 when combined with age and antral 

follicle count). One study reported an ML model 
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that could predict high or low responders with 

>90% accuracy by thresholding AMH (similar to 

current clinical practice but with a data-driven 

cutoff). For IVF live birth prediction, ML models 

incorporating hormones (like peak estradiol, 

progesterone on trigger day) along with embryo 

grading have shown AUC ~0.65–0.75 in internal 

tests. These are modest improvements, reflecting 

that while hormones indicate biological response, 

the ultimate outcome (pregnancy) has many other 

contributors. 

 

● Ovulation induction timing for IUI/IVF: A study 

by Leeners et al. (2020) (conference abstract) 

developed an interpretable ML model for optimal 

trigger timing in IVF, using daily estradiol and 

follicle sizes to decide when to administer hCG. 

The model performed similarly to expert clinicians 

and provided rule-based explanations. This kind of 

application shows promise in operational decision 

support, where algorithms can continuously 

monitor hormone trends and signal when a 

threshold pattern is reached. 

 

Pregnancy Complication Prediction 

● Miscarriage (Early Pregnancy Loss): Zhang et al. 

(2022) investigated first-trimester threatened 

miscarriage patients, measuring plasma 

anandamide (AEA) – an endocannabinoid – along 

with progesterone and hCG. Their hypothesis was 

that a combination of these biochemical signals 

could predict which women with early pregnancy 

bleeding would progress to miscarriage. Their 

results showed logistic regression slightly 

outperformed more complex ML (perhaps due to 

the small dataset), with an AUC of 0.75. 

Progesterone was higher and AEA lower in viable 

pregnancies vs. miscarriages, aligning with known 

associations (low progesterone is a risk factor for 

miscarriage). However, all models had limited 

predictive value (accuracy ~65%) and poor 

generalization to predicting inevitable miscarriage 

(distinguishing among those with threatened 

miscarriage, which ones will inevitably miscarry, 

where AUC dropped below 0.7). This indicates 

current algorithms with these markers are not yet 

reliable predictors on an individual level. Larger 

studies or additional biomarkers (e.g. cytokines or 

placental proteins) might be needed to improve 

early miscarriage prediction. 

 

● Other complications: We found few studies 

focusing on hormonal pattern algorithms for 

complications like preeclampsia or gestational 

diabetes that met our criteria. One reason is that 

these conditions often involve other biomarkers 

(e.g. angiogenic factors for preeclampsia) rather 

than classic reproductive hormones. Some ML 

work exists combining clinical factors with 

hormones like SHBG or adiponectin for 

gestational diabetes prediction, but those often had 

<30 participants or did not focus on hormone 

patterns per se and thus were excluded. This 

highlights a gap: hormonal and metabolic changes 

in pregnancy are dynamic, and ML could 

potentially identify patterns (e.g. aberrant hCG or 

progesterone rise) predictive of complications, but 

research in this area is currently limited. 

 

Overall, in fertility/pregnancy applications, algorithm 

performance tended to be moderate (AUC ~0.65–

0.75), indicating these are complex outcomes with 

many confounders. The models often confirmed 

known risk factors (age, AMH for infertility; low 

progesterone for miscarriage), and the incremental 

value of ML was sometimes marginal over traditional 

assessment. Importantly, very few of these models had 

external validation. One notable exception was a 

multicenter study by Kuang et al. (2015) (cited in 

Appendix C) that developed a model for ovulation and 

pregnancy in PCOS patients, which was validated 

externally (they reported AUC ~0.68–0.72 for 

predicting pregnancy). 

 

Use-case: These models could be used to stratify 

patients (e.g. identifying those who might benefit from 

closer monitoring or adjunct therapies if the algorithm 

predicts low success probability). However, given the 

modest accuracies, clinicians should use them as 

supportive tools rather than definitive predictors at this 

stage. 

 

Hormonal Disorder Classification: PCOS and Others 

The largest group of included studies (23 out of 50) 

dealt with algorithms for classifying or predicting 

hormone-related disorders, predominantly Polycystic 

Ovary Syndrome (PCOS). A few studies addressed 
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other conditions (e.g. distinguishing causes of 

anovulation, or predicting menopause timing), but 

PCOS – being a common endocrine disorder with 

diagnostic complexity – has attracted substantial ML 

research. Table 3 summarizes key PCOS-related 

studies. 

 

 

Table 3. Algorithms for PCOS and Hormonal Disorder Detection

 

Study 

(Year) 

Aims & 

Design 

Populati

on 

Hormones 

Used 

Algorithm(s) Outcom

e 

(Diagn

osis) 

Perform

ance 

Validatio

n 

Key 

Findings 

Limitations Stu

dy 

(Ye

ar) 

Castro 

et al. 

(2015) 

Develop 

EHR-

based 

algorith

m to 

identify 

PCOS 

patients 

more 

accurate

ly than 

ICD 

codes 

N≈500 

women’

s EHRs 

at MGH 

(Boston)

; 

retrospe

ctive 

EHR text 

(mentions 

of 

hirsutism, 

irregular 

menses), 

structured 

data (LH, 

testosterone 

levels) 

Rule-based 

NLP + 

Logistic 

Regression 

PCOS 

diagnos

is 

(Rotter

dam 

criteria 

via 

chart 

review) 

Sensitivi

ty 88%, 

Specifici

ty 92% 

(vs. 

expert 

chart 

diagnosi

s); ICD-

9 code 

alone: 

spec 

98%, 

sens 

45% 

10-fold 

CV on 

labeled 

set; 

manual 

chart 

review as 

gold 

standard 

EHR-

driven 

algorithm 

identified 

PCOS 

cases 

missed by 

ICD code 

(captured 

~2× more 

true cases 

than 

billing 

code). Key 

features: 

elevated 

testosteron

e, 

oligomeno

rrhea 

notes. 

Single 

institution; 

rule-based 

text parsing 

may not 

generalize to 

other EHRs; 

requires 

integration of 

unstructured 

data, which is 

complex. 

 

Xu et 

al. 

(2022) 

Predict 

PCOS 

using 

minimal 

serum 

markers 

in 

Chinese 

women 

N=384 

(PCOS 

192, 

controls 

192); 

retrospe

ctive 

cohort, 

China 

AMH, 

Androstene

dione, BMI, 

cycle length 

(others 

considered 

but 

removed) 

Logistic 

regression 

(stepwise) 

PCOS 

vs. no 

PCOS 

AUC = 

0.85, 

Sensitivi

ty 82%, 

Specifici

ty 79% 

(at 

optimal 

threshol

d) 

70/30 

train-test 

split; 

external 

validation 

on 

separate 

100 

women: 

AUC 

0.83 

A simple 

model 

using 

AMH + 

androstene

dione + 

BMI + 

cycle 

length 

achieved 

good 

discriminat

ion. AMH 

was the 

strongest 

single 

predictor; 

adding 

BMI 

improved 

specificity 

in obese vs 

lean cases. 

Online risk 

calculator 

provided. 

Clinic-based 

sample; may 

differ in 

general 

population or 

adolescents; 

potential 

spectrum bias 

(many 

controls were 

infertile with 

other 

diagnoses). 
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Vagios 

et al. 

(2021) 

Assess 

AMH 

alone vs 

AMH+

BMI 

model 

in 

diagnosi

ng 

PCOS 

and 

other 

ovulator

y 

disorder

s 

N=1,010 

infertile 

women 

in IUI 

cycles; 

retrospe

ctive 

Serum 

AMH; BMI 

incorporate

d in model 

equation 

Logistic 

model (AMH 

adjusted for 

BMI) 

PCOS 

vs. 

other 

ovulato

ry 

dysfunc

tion 

(OVDY

S) vs. 

normal 

(3-

class) 

At 95% 

specificit

y: AMH 

alone 

detected 

71% of 

PCOS; 

AMH+B

MI 

model 

detected 

85%. 

(PCOS 

vs others 

AUC not 

given; 

implied 

improve

ment 

with 

BMI) 

Internal 

bootstrap

ping; 

evaluated 

detection 

rates at 

fixed 

spec 

Including 

BMI in 

interpretati

on of 

AMH 

improved 

PCOS 

detection, 

especially 

in edge 

cases. 

Obese 

PCOS 

often had 

false-

negatively 

low AMH 

if using a 

fixed 

cutoff – 

corrected 

by model. 

Conversel

y, lean 

PCOS 

with high 

AMH 

confirmed. 

Focused on 

infertile 

women 

(higher PCOS 

prevalence, 

specific 

context); not 

evaluated in 

general 

screening 

population; 

moderate 

overlap 

between 

PCOS and 

OVDYS 

groups may 

challenge 

generalization

. 

 

El-

Rashid

y et al. 

(2023) 

Develop 

an 

explaina

ble ML 

model 

for 

PCOS 

using a 

public 

dataset 

N=541 

(PCOS 

192, 

controls 

349) 

from 

UCI 

PCOS 

dataset 

(clinical 

+ labs) 

Mix of 

symptoms 

(irregular 

cycles, 

hirsutism, 

etc.) and 

labs 

(insulin, 

glucose, 

LH, FSH, 

etc.) 

Ensemble 

(stacking) of 

LR, RF, DT, 

NB, SVM, 

KNN, 

XGBoost; 

feature 

selection 

applied 

PCOS 

vs. non-

PCOS 

10-fold 

CV: 

Accurac

y 96%, 

Precisio

n 97%, 

Recall 

94% 

(AUC 

not 

explicitl

y 

reported, 

presuma

bly 

>0.95); 

one split 

achieved 

100% 

accuracy 

10-fold 

CV only; 

SHAP 

used for 

interpreta

bility 

Stacked 

ensemble 

achieved 

near-

perfect 

classificati

on on this 

dataset. 

Top 

features: 

polycystic 

ovarian 

morpholog

y, insulin 

resistance 

(HOMA-

IR), and 

irregular 

menses. 

Model 

explanatio

ns aligned 

with 

clinical 

expectatio

ns. 

Likely 

overfitting 

due to small, 

clean dataset 

and 

oversampling; 

external 

validity 

unknown. 

Dataset is not 

representative 

of general 

population 

(controls may 

be very 

healthy, cases 

well-defined). 

 

Zad et 

al. 

(2024) 

Predict 

undiagn

osed 

PCOS 

from 

EHR 

data for 

N=30,60

1 

women 

(18–45) 

at risk 

for 

PCOS in 

FSH, LH, 

Estradiol 

(E2), 

SHBG; plus 

clinical 

features 

(BMI, 

Gradient 

Boosted 

Trees + MLP 

“hormone 

score” (4-

layer NN on 

FSH,LH,E2,

PCOS 

diagnos

is 

within 

5 years 

(yes/no

) 

5-fold 

CV: 

AUC 

0.823 

(SD 

0.017); 

Indepen

5-fold 

CV and 

held-out 

test 

(20%); 

multiple 

models 

An ML 

model 

integrating 

lab and 

clinical 

data 

identified 

Retrospective 

and reliant on 

EHR data 

quality 

(missing data, 

miscoding 

possible); not 

 



© MAY 2025 | IRE Journals | Volume 8 Issue 11 | ISSN: 2456-8880 

IRE 1708325          ICONIC RESEARCH AND ENGINEERING JOURNALS 1071 

earlier 

interven

tion 

EHR 

(BMC, 

Boston); 

retrospe

ctive 

irregular 

menses 

codes, 

infertility 

history, lab 

results) 

SHBG) fed 

into logistic 

model 

dent test: 

AUC 

0.85 for 

diagnose

d PCOS 

vs 

controls. 

Detected 

~80% of 

PCOS 

cases on 

average 

2 years 

before 

clinical 

diagnosi

s. 

compared 

(LR, RF, 

GBM, 

MLP); 

best used 

combined 

approach 

women 

likely to 

receive a 

PCOS 

diagnosis 

in the 

future 

(early 

detection). 

Hormone 

MLP score 

+ obesity 

were 

strongest 

predictors. 

Non-linear 

hormone 

patterns 

(e.g. high 

LH+FSH 

only 

significant 

if obesity 

present) 

were 

captured. 

prospectively 

tested. Model 

tuned to those 

with some 

suspicion in 

EHR 

(performance 

would drop in 

truly 

unselected 

population). 

Tiwari 

et al. 

(2019) 

– 

“Anant

” (cited 

in Zad 

2024) 

Develop 

a 

smartph

one-

based 

PCOS 

screenin

g tool 

(non-

invasive

) 

N=100 

(PCOS 

50, 

controls 

50); 

cross-

sectiona

l, India 

Questionnai

re 

(menstrual 

regularity, 

hirsutism), 

clinical 

measures 

(BMI), and 

serum 

insulin & 

glucose 

(HOMA-

IR) 

Naïve Bayes 

classifier + 

fuzzy expert 

system 

PCOS 

vs non-

PCOS 

Accurac

y ~95%, 

Sensitivi

ty ~98%, 

Specifici

ty ~92% 

(as 

reported 

in text) 

80/20 

train-test 

split; no 

external 

validation 

Combinin

g clinical 

signs with 

an insulin 

resistance 

index 

yielded 

high 

accuracy 

in this 

sample. 

Emphasize

d the role 

of 

metabolic 

screening 

along with 

menstrual 

history. 

Very small 

sample; likely 

overfit 

(performance 

unusually 

high); limited 

feature set 

(excluded 

ultrasound/ho

rmones like 

AMH); 

results not 

peer-reviewed 

in high-

impact forum. 

 

(No 

dedicat

ed 

menop

ause 

predicti

on ML 

found) 

– – – – – – – Menopaus

e 

prediction 

models 

exist using 

AMH 

(statistical 

models 

with 2–3 

year error), 

but no 

ML-

specific 

study met 

inclusion. 

This 

–  
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remains a 

gap for 

future 

research. 

Table 3: Summary of studies on algorithmic detection of PCOS and related hormonal disorders. EHR = electronic 

health record; NLP = natural language processing; SHBG = sex hormone-binding globulin; NB = Naive Bayes; DT 

= decision tree; HOMA-IR = insulin resistance index. (Full table in Appendix C.) 

 

PCOS Detection and Prediction 

PCOS was a major focus, with studies using diverse 

data sources: dedicated research cohorts with targeted 

hormone measurements, general EHR data, and public 

datasets. The complexity of PCOS (which involves 

reproductive hormones, metabolic factors, and clinical 

signs) lent itself to multifactorial models. 

Key hormones for PCOS in these studies included 

AMH, LH, FSH, estradiol, testosterone (and free 

androgen index), SHBG, and sometimes insulin or 

glycemic markers reflecting metabolic aspects. Since 

PCOS diagnosis is based on a combination of clinical 

and biochemical criteria, many models integrated 

hormone levels with features like BMI, menstrual 

irregularity, and ultrasound findings if available. 

Minimalist models with a few hormones: Xu et al. 

(2022) demonstrated that a simple logistic model using 

AMH and androstenedione levels plus BMI and cycle 

length achieved AUC ~0.85 in diagnosing PCOS in a 

Chinese cohort. AMH (anti-Müllerian hormone, 

reflecting follicle count) is known to be elevated in 

PCOS; their model essentially created a decision 

boundary in the AMH vs BMI space. Vagios et al. 

(2021) similarly found that adjusting AMH for BMI 

improves diagnostic precision. In lean PCOS patients, 

AMH thresholds can be lower, whereas obese PCOS 

patients might have lower AMH than expected – 

combining BMI resolves this by allowing a lower 

AMH cutoff for lean women and higher cutoff for 

obese women for PCOS detection. This principle was 

encapsulated in a patient-specific risk equation. While 

these models are not complex ML by modern 

standards, they are clinically interpretable and perform 

on par with more complex models for PCOS, 

achieving sensitivities ~80–90% at high specificity. 

Machine learning on heterogeneous data: More 

complex models came from integrating various 

features. The EHR-based studies (Castro 2015, Zad 

2024) used dozens of variables from clinical records. 

Castro et al. (2015) used a combination of NLP on 

clinical text (to detect PCOS symptoms mentioned in 

notes) and structured lab values. They significantly 

increased case finding compared to relying on 

diagnosis codes alone, which often miss PCOS cases 

due to coding issues. Their approach was a precursor 

to later ML: essentially rule-based but effective (88% 

sensitivity vs chart review). Zad et al. (2024) took this 

further with a full ML pipeline on EHR data: they used 

gradient-boosted trees and an embedded neural 

network for hormone interactions. Their best model 

(combining an MLP “hormone score” with other 

features in a linear model) detected PCOS with ~82% 

AUC in 5-fold CV, and about 85% in an enriched test 

set. Notably, they could identify women at risk of 

PCOS a median of 2 years before formal diagnosis by 

recognizing patterns of mildly abnormal hormones, 

irregular cycle documentation, and obesity earlier on. 

This suggests ML could prompt earlier intervention 

(e.g. lifestyle advice or further evaluation) for PCOS 

if integrated into EHR systems. A caution is that their 

model was applied to women already flagged by some 

hint (all had some lab or symptom suggestive of PCOS 

to be included); performance in a truly unfiltered 

primary care population would likely be lower. 

Public dataset / theoretical models: Some studies like 

El-Rashidy et al. (2023) used a public PCOS dataset 

(e.g. UCI Machine Learning Repository) to 

experiment with feature selection and explainability. 

They reported nearly perfect accuracy after balancing 

the classes, which is likely an overfit to that specific 

small dataset. The features driving their model (insulin 

level indicating insulin resistance, presence of 

polycystic ovaries on ultrasound, etc.) are consistent 

with PCOS pathophysiology, but such extreme 

performance has not been replicated in larger real-

world data. It highlights how data preprocessing 

(handling class imbalance, feature selection) can 
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inflate results if not carefully validated externally. Zad 

et al. (2024) note in their discussion that prior studies 

reported AUCs ranging 73% to 100% for PCOS 

diagnosis, the upper end being questionable results 

from likely overfit models. Our review found most 

robust studies cluster AUC in the 0.80–0.90 range for 

PCOS classification, with none truly achieving 100% 

on independent data. 

● Meta-analysis (PCOS): We meta-analyzed 5 

studies (with independent populations) reporting 

AUC for PCOS vs. controls: the pooled AUC was 

0.81 (95% CI: 0.78–0.85), with moderate 

heterogeneity (I² = 52%). This quantitative 

synthesis (Forest plot in Appendix F) confirms that 

most algorithms perform in the low- to mid-0.80s 

AUC. Subgroup analysis hinted that models using 

AMH tended to have slightly higher AUC on 

average (by ~0.05) than those that did not use 

AMH, reflecting AMH’s value as a biomarker. 

There was no significant difference between neural 

network vs. simpler models in performance (p = 

0.40), suggesting that the limiting factor is data 

signal (and maybe diagnostic inconsistency) rather 

than algorithm sophistication given current sample 

sizes. 

 

Other hormonal disorders: Surprisingly few studies 

focused on other female hormonal disorders with ML: 

● Menopause prediction: We did not find any ML 

study meeting criteria that focused on predicting 

age at menopause or diagnosing menopausal status 

from hormones. There are statistical models using 

AMH to predict time to menopause, but they report 

wide confidence intervals and weren’t ML-driven. 

One recent study tried a neural network on 

longitudinal AMH data to forecast menopause 

within 5 years (conference abstract, hence 

excluded). In general, menopause timing is hard to 

predict; even the best models achieve only ~80% 

accuracy for predicting menopause within a 

specific window. Future ML could incorporate 

large cohort data (like SWAN hormonal 

trajectories) to improve this. 

 

● Differentiating other causes of anovulation: One 

study (Vagios 2021) classified not just PCOS but 

other oligo-ovulatory disorders (like functional 

hypothalamic amenorrhea). That model had more 

difficulty separating PCOS from other causes 

when AMH levels overlapped, but adding BMI 

helped (because hypothalamic amenorrhea 

patients were often underweight with low BMI, 

distinguishing them from PCOS who tended to 

higher BMI). This hints that ML could aid in the 

differential diagnosis of amenorrhea by 

quantitatively combining hormone patterns with 

clinical context. 

 

● Endometriosis: We found no direct studies on 

endometriosis detection via hormones; 

endometriosis lacks a specific hormone signature 

(it's more inflammatory). Some works are 

exploring combinations of cytokines or 

microRNA, but those fell outside our focus. 

 

● POI (Premature Ovarian Insufficiency): No 

included study specifically targeted POI, though 

it’s another area where AMH-based prediction 

might be attempted with ML to identify women at 

risk of early ovarian failure. 

 

Summary of PCOS ML performance: Many ML 

models for PCOS achieve sensitivity and specificity in 

the 80–90% range, which is an improvement over 

many individual tests (for instance, AMH alone might 

have ~70–80% sensitivity at 90% specificity for PCOS 

depending on cutoff). The algorithms tend to exploit 

well-known features (AMH, LH:FSH ratio, 

testosterone, clinical features of hyperandrogenism) 

rather than uncovering entirely new predictors. This is 

expected given PCOS diagnostic criteria are 

established, but ML can provide a more objective 

composite of these criteria and possibly detect subtle 

cases. An interesting output of some models is feature 

importance or coefficients, which often show: 

● AMH as a top predictor (consistently). 

 

● The LH/FSH ratio emerges as important in some 

models (a classic PCOS marker of ovarian 

dysfunction). 

 

● Obesity (BMI) and insulin resistance markers also 

contribute, aligning with PCOS as an endocrine-
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metabolic hybrid condition. 

 

● Past pregnancy (gravidity) negatively associated 

with PCOS risk (since PCOS causes anovulation, 

fewer pregnancies occur – models correctly learn 

this). 

 

Quality Assessment Results 

Overall study quality was moderate, with some 

common limitations identified: 

● Patient selection bias: 60% of studies were rated 

high risk in this domain. Many were single-center 

retrospective studies on specific subpopulations 

(e.g. infertility clinic patients), which may not 

represent the general population. Some explicitly 

only included known PCOS cases and healthy 

controls, potentially exaggerating algorithm 

performance by excluding diagnostic “grey zone” 

cases. A few studies had very small sample sizes 

(N just 30–50, barely over our cutoff), raising 

concerns about statistical power and overfitting. 

 

● Index test (algorithm) bias: About 40% had high or 

unclear risk. Several studies did not pre-specify 

their modeling approach (prone to p-

hacking/model-hacking, trying many algorithms 

and reporting the best). Only ~30% of studies 

performed external validation on an independent 

cohort, which is crucial to gauge real-world 

performance. Most others used internal cross-

validation only. This means reported accuracies 

may be optimistic. Additionally, in studies using 

complex models, often insufficient detail was 

given to fully reproduce the method (affecting 

reproducibility, though not strictly bias). 

 

● Reference standard: For diagnostic tasks like 

PCOS or miscarriage, the reference (ground truth) 

was usually a clinical diagnosis or outcome that is 

reasonably reliable. However, PCOS criteria 

differences (Rotterdam vs NIH) could cause 

misclassification; only a few studies clearly stated 

how PCOS was defined by the clinicians (we 

judged unclear if not stated). In cycle phase 

detection, the reference (ovulation day) was 

determined by high-quality methods (ultrasound or 

hormonal confirmation) in the prospective studies, 

so that was generally low risk. We rated ~20% of 

studies at high risk in reference standard, mainly 

where it was unclear if outcome assessors were 

blind to model outputs or if the outcome itself was 

subject to some bias. E.g., if an algorithm uses 

ultrasound data to predict PCOS and the reference 

diagnosis also considered ultrasound findings, 

there's incorporation bias – few studies addressed 

such issues. 

 

● Flow and timing: Most studies had complete data 

for their intended analysis (low concern), but some 

longitudinal studies had loss to follow-up (e.g. not 

all women completed the full tracking in a 

prospective cycle study, which could bias results if 

those lost had different cycle patterns). A handful 

of studies did not clearly account for all 

participants (e.g. “some patients were excluded for 

missing data” without describing numbers – 

judged unclear). The timing between hormone 

measurements and outcome was appropriate in all 

cases (e.g. in pregnancy studies, hormones were 

measured before knowing the pregnancy 

outcome). 

 

In terms of applicability, most studies directly 

matched our review question (they did involve 

relevant populations and outcomes). One concern is 

that about one-third of included studies used enriched 

samples (like all known PCOS vs clear controls), so 

their applicability to a screening context (where one 

must distinguish PCOS from look-alikes or in a mixed 

population) is limited. 

Quality assessment specific to machine learning 

methodology showed: 

● Only ~25% of studies performed an independent 

test or external validation, which is the gold 

standard to claim a model’s performance. 

 

● Many studies did not report using a separate 

validation for hyperparameter tuning vs final 

testing, which can lead to optimistic bias if not 

properly separated. 
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● Class imbalance was an issue in some (e.g. 

miscarriage prediction had far fewer miscarriages 

than normal outcomes). Some addressed it with 

oversampling (SMOTE), others did not mention 

handling it, which could skew metrics like 

accuracy. 

 

● Explainability was rarely addressed (except a 

couple that used SHAP values or similar). This 

doesn’t affect bias per se but impacts how results 

can be interpreted clinically. 

 

In summary, while the studies show promising results, 

the risk of bias is non-negligible. The findings should 

be interpreted with caution, especially for those 

studies without external validation or with small 

samples. 

Narrative Synthesis by Algorithm Type & Data 

Characteristics 

We observed some trends when grouping by algorithm 

type and data characteristics: 

● Classical ML vs. Deep Learning: Interestingly, 

simpler models (logistic regression, decision trees) 

often performed as well as or better than complex 

deep learning in these datasets. For example, in 

miscarriage prediction, logistic regression 

outperformed an MLP neural net. In PCOS, a 

straightforward logistic model with the right 

features (AMH, BMI) achieved AUC 0.85, 

comparable to an ensemble model’s 0.82. Deep 

learning (neural nets) tended to appear in studies 

with either very large data (like EHR with tens of 

thousands of records, where the nonlinear patterns 

might matter) or where the input was sequential 

(like time-series of hormones where RNNs could 

be suitable). However, given many of these health 

questions had limited sample sizes and well-known 

predictors, deep learning did not dramatically 

exceed traditional methods. This is consistent with 

the notion that for tabular clinical data with a few 

hundred cases, tree-based or regression models 

plus domain knowledge can be quite effective. 

Deep learning’s benefits might emerge with much 

larger integrated datasets (e.g. combining omics, 

imaging, and clinical data in future). 

 

● Supervised vs. Unsupervised: Nearly all studies 

were supervised learning (with known outcomes). 

A few hinted at unsupervised components, like 

clustering of hormone patterns or using 

autoencoders to reduce dimensionality, but this 

was not a main focus in reviewed studies. There is 

room for unsupervised exploration (e.g. clustering 

menstrual cycle types or PCOS phenotypes) that 

wasn’t covered extensively in our review. 

 

● Time-series data vs. static: Algorithms that 

explicitly handle time-series (sequence models, or 

feature extraction from sequences) showed 

advantages in cycle prediction tasks. E.g., models 

using the full curve of a hormone (like 

progesterone rise over days) predicted ovulation 

better than those using a single day’s value. 

Conversely, for PCOS, which is more static 

(diagnosis based on one point or average values), 

cross-sectional models sufficed. There were no 

studies applying, say, longitudinal analysis to track 

a woman’s hormone trajectories over years to 

predict a future outcome (like transition to 

menopause or development of PCOS) – a potential 

future direction as long-term data become 

available. 

 

● Multi-modal data integration: The most successful 

algorithms tended to be those that combined 

multiple data types – for instance, the EHR-PCOS 

models mixing lab results with clinical features, or 

fertility models mixing male and female factors. 

This suggests that an algorithm that only looks at 

hormones in isolation might miss context. On the 

other hand, a few hormone-only algorithms (like 

using P4 alone for ovulation, or AMH alone for 

PCOS) did surprisingly well because those 

hormones are directly linked to the outcome. So 

the benefit of adding more features is situation-

dependent. When additional features add noise or 

bias (e.g. self-reported symptoms with error), they 

can degrade performance if not handled properly 

(which is why feature selection was important in 

some studies). 

 

● Performance vs. data richness: There is a clear 

relationship between the richness of input data and 
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model performance. For example, menstrual cycle 

phase prediction achieved 90%+ accuracy when 

using high-resolution data (daily BBT + HR), 

whereas using only calendar dates yields much 

lower accuracy (often <70%). For PCOS, using a 

panel of hormones + symptoms gave AUC ~0.9, 

whereas using just one hormone (say, testosterone) 

would be far lower. However, adding irrelevant or 

low-quality features can also hurt performance if 

not handled well. Some studies used feature 

selection to avoid noise from too many inputs. 

 

Meta-Analysis of Performance in PCOS Diagnosis 

As mentioned, we quantitatively synthesized PCOS 

diagnostic performance. Figure 3 (see Appendix F) 

shows the forest plot. The pooled sensitivity was 81% 

(CI 75–86%) and specificity 80% (73–86%) at the 

summary operating point (though each model chose its 

own threshold, we approximated an average). We did 

not pool other domains due to heterogeneity, but an 

informal comparison of, for instance, ovulation 

prediction accuracy across 4 studies shows a range of 

85–95% for identifying the fertile window in regular 

cycles, whereas in irregular cycles it ranged much 

lower (50–75%). 

It was not possible to meta-analyze “cycle prediction 

error” as each study reported it differently (some gave 

mean error in days, others gave percent within a 

window). Likewise, pregnancy prediction metrics 

were variably reported (some gave odds ratios rather 

than predictive accuracy). 

Research Gaps and Future Directions 

Our systematic review identified several gaps and 

avenues for future research: 

● External Validation and Generalizability: A 

pressing need is for external validation of existing 

models. Few models (especially for PCOS and 

cycle prediction) have been tested outside their 

development dataset. Future studies should apply 

models to different populations (e.g. different 

ethnic groups, community vs clinical samples) to 

ensure generalizability. Collaboration to share data 

or use federated learning could help develop 

robust, general models. 

 

● Prospective Evaluation: Nearly all studies were 

retrospective. For algorithms to be adopted in 

practice, prospective trials are needed where the 

model’s predictions are generated in real-time and 

assessed for accuracy and clinical impact. For 

example, a prospective study could test if using an 

ML model to guide IUI timing (versus standard 

practice) improves pregnancy rates, or if an EHR 

alert for high PCOS risk leads to faster diagnosis 

and better outcomes. Such impact studies are 

lacking. 

 

● Inclusion of Underrepresented Groups: Many 

cycle tracking studies enrolled only women with 

regular cycles, and PCOS studies often looked at 

women already seeking fertility care (thus 

typically in 20s-30s). Future work should include 

adolescents (where diagnosis of conditions like 

PCOS is tricky and where cycle pattern algorithms 

could help) and peri-menopausal women (to track 

hormonal changes approaching menopause). Also, 

conditions like premature ovarian insufficiency 

(POI) might be detectable by algorithms 

monitoring irregular cycles and rising FSH – an 

area not deeply explored. 

 

● Richer Hormonal Monitoring: So far, most studies 

rely on single daily measures or routine lab tests. 

Emerging technology (e.g. continuous hormone 

monitors, frequent home urine tests integrated with 

apps) could provide much more data on hormonal 

fluctuations. ML algorithms could leverage high-

frequency data to detect subtle aberrations (like 

luteal phase deficiencies or anovulatory cycles). 

One can envision an algorithm that, with 

continuous hormone data, detects an anovulatory 

cycle in real-time and alerts the user. Research 

should move in this direction as data availability 

grows. 

 

● Multi-omics and Integrated Models: Beyond the 

traditional hormones, future predictive models 

might incorporate genomic or metabolomic data to 

refine risk predictions – for example, combining 

genetic risk scores for PCOS with hormone levels 

to improve early prediction of PCOS in 

adolescence. Some recent works indicate that 
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unsupervised clustering might find distinct PCOS 

phenotypes; ML could then tailor diagnostic 

criteria to subtype. No study in our review did this, 

pointing to a future research area. 

 

● Menopause and Aging: As noted, ML in predicting 

menopause or identifying perimenopause onset is 

in its infancy. Given large cohort studies collecting 

annual hormone measurements (FSH, AMH) and 

symptoms, researchers could train models to 

forecast the final menstrual period within a certain 

time frame, or to classify women’s menopausal 

status from a single blood sample more accurately 

than current FSH-based methods. This would be 

valuable for women making family planning or 

health decisions. 

 

● Explainability and Clinical Acceptance: Many 

clinicians remain cautious about “black box” 

algorithms. Future studies should emphasize 

interpretable ML (as a few did, using SHAP values 

or simplified scoring systems) so that the models’ 

decision logic aligns with clinical reasoning. For 

instance, an ML model for PCOS could be distilled 

into a simple risk score that clinicians can 

manually compute – enabling trust and adoption. 

Additionally, investigating why models make 

errors (e.g. which phenotypes are misclassified) 

could reveal gaps in our clinical knowledge or data 

collection. 

 

● Ethical and Privacy Considerations: With 

increasing use of personal data (e.g. app tracking), 

there are concerns around data privacy and how 

these algorithms are used. Future work should 

ensure compliance with data protection regulations 

and consider the ethical implications if, say, an app 

predicts a health condition (PCOS or pregnancy 

status) – how is that information communicated 

responsibly to the user? These aspects, while 

outside the scope of our review, will become 

important as algorithmic predictions become more 

common in consumer-facing applications. 

 

 

 

IV. DISCUSSION 

In this systematic review, we synthesized two decades 

of research on computational methods for women’s 

hormonal health. The findings demonstrate that 

algorithmic approaches, especially those using 

machine learning, have improved the detection and 

prediction of key reproductive events and disorders. 

For menstrual cycle tracking, ML algorithms can 

capture individual variability far better than calendar 

methods, achieving high accuracy in predicting 

ovulation and menstruation when given rich data. In 

the context of fertility, while hormone-based models 

provide some predictive power for outcomes like 

IUI/IVF success or miscarriage, they currently offer 

moderate discrimination (AUC ~0.7) and should be 

integrated with other clinical factors for decision 

support rather than used in isolation. 

PCOS emerges as a condition where algorithms can 

significantly aid earlier diagnosis and management. 

Tools leveraging hormone profiles and clinical data 

can identify women at risk of PCOS before they 

traverse the often lengthy diagnostic odyssey. This is 

especially pertinent given PCOS’s heterogeneity – ML 

can parse patterns that might not fit the textbook case 

yet still indicate pathology. Notably, our review 

highlights that no single hormone is diagnostic in 

isolation; rather, it’s the constellation (AMH + 

androgens + irregular cycles + metabolic markers) that 

provides robust identification. ML excels at 

combining such features into a risk score. 

However, we must temper enthusiasm with the 

methodological shortcomings observed. Many studies 

did not test their models prospectively or outside their 

development setting, raising concerns about real-

world performance. There is also the issue of clinical 

usefulness: an algorithm might be statistically accurate 

but not change management. For example, knowing a 

patient’s miscarriage risk is 65% vs 50% may not alter 

treatment (unless an intervention exists to lower risk). 

In contrast, algorithms that directly inform an action – 

like timing of insemination or indicating need for an 

endocrine evaluation – have clearer utility, and those 

were among the promising applications identified 

(e.g., timing IVF trigger or prompting PCOS 

screening). 
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Another point is the balance between complexity and 

interpretability. Some reviewed studies achieved 

excellent performance with complex ensembles or 

neural nets, but simpler models were often nearly as 

good and easier to interpret. A tendency observed is to 

apply the latest ML techniques sometimes without 

clear justification (several papers tried an array of 

algorithms without explaining why a neural net was 

needed for a dataset of a few hundred). Going forward, 

researchers should match the technique to the 

problem’s nature and data volume, and focus on 

clinical interpretability, especially for deployment. 

Despite these challenges, the trend is that data-driven 

algorithms will increasingly become part of women’s 

health care. Already, millions use period-tracking apps 

that implicitly contain predictive algorithms, though 

often proprietary. It’s crucial that the medical 

community evaluates these algorithms rigorously (as 

some independent studies in our review did) and 

guides their improvement. There is also potential for 

these tools to improve inclusivity in healthcare – for 

instance, remote or underserved populations could 

benefit from app-based hormonal tracking with AI 

guidance to know when to seek care. 

Future research should prioritize large, collaborative 

datasets, external validations, and prospective impact 

studies. Additionally, expanding the scope beyond the 

well-trodden areas (periods and PCOS) to menopausal 

health, contraception (e.g. algorithms to detect 

ovulation in peri-menopausal women to guide 

contraception), and endocrine disorders like thyroid 

disease in pregnancy could be valuable. Integrating 

psychosocial parameters (stress, etc.) might also 

improve cycle predictions, as stress can disrupt cycles 

and ML could potentially quantify such effects if data 

are available. 

CONCLUSION 

Computational algorithms and machine learning 

models have shown considerable promise in analyzing 

hormonal patterns in women’s health, enabling more 

personalized and timely predictions of reproductive 

events and diagnosis of endocrine disorders. This 

PRISMA-guided review found that algorithms can 

detect ovulation and fertile windows with high 

accuracy (often >85–90% in ideal conditions), predict 

certain fertility outcomes and pregnancy risks with 

moderate success, and identify conditions like PCOS 

with AUC around 0.8–0.9 in diverse settings. The 

best-performing models leverage multiple data 

sources and capture non-linear relationships that elude 

simple clinical rules – for example, the subtle interplay 

of several hormone levels that together indicate a 

hormonal imbalance. 

However, current evidence is based mostly on 

retrospective studies with heterogeneous quality. To 

translate these algorithms into clinical practice, further 

validation and refinement are needed. In particular, 

addressing data biases, ensuring models generalize 

across populations, and demonstrating clear clinical 

benefit will be key. With increasing availability of big 

data (from electronic records and personal devices) 

and advancing AI techniques, we anticipate rapid 

progress in this field. Future tools might routinely alert 

women and clinicians to impending ovulation, early 

pregnancy issues, or latent hormonal disorders, thus 

improving health outcomes through proactive 

management. Realizing this vision will require 

multidisciplinary collaboration between data 

scientists, clinicians, and patients, as well as careful 

attention to ethics and equity. 
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