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Abstract- One of the main challenges in neuro-

oncology is brain tumours and it is important to 

notice them early to give patients a higher chance of 

successful recovery. More recently, Computer-Aided 

Detection (CAD) has been greatly impacting medical 

imaging, especially in discovering and categorizing 

brain tumours. Using machine learning and deep 

learning, as well as advanced algorithms, CAD 

systems improve the accuracy and rapidity of tumour 

detection in both MRI and CT scans. This article 

discusses how various CAD approaches are created 

and used for the identification of brain tumours. 

They manage important parts of medical image 

analysis, including image preparation, division into 

parts, retrieving key features and labelling them 

based on how they look. Automation enables 

radiologists to minimize misdiagnoses, reduce the 

effect of observers’ differences and support good 

decisions in challenging cases. The latest studies 

have proven that CNNs and hybrid models are better 

than traditional rule-based systems at identifying and 

distinguishing benign from malignant brain 

tumours. Furthermore, including different imaging 

techniques in CAD applications makes it easier to 

diagnose patients accurately. There are still issues 

with CAD systems, including different types of data, 

not much-labeled training data and having to be 

validated by clinicians. The article gives an in-depth 

explanation of CAD methods, looks at how they 

diagnose conditions and explores new areas such as 

explainable AI and federated learning. By reading 

this paper, researchers and clinicians can gain 

detailed knowledge of how CAD systems play a vital 

role in brain tumour diagnosis and bring new, 

personalized and data-driven options to healthcare. 

 

Indexed Terms- Brain Tumour Detection; 

Computer-Aided Detection (CAD); Medical 

Imaging; Deep Learning; MRI Analysis 

 

 

I. INTRODUCTION 

 

The Burden of Brain Tumours 

The presence of benign and malignant brain tumours 

globally is a major issue for health because they can 

alter thinking abilities and lead to a shorter life span. 

The World Health Organization reports that brain 

tumours are responsible for approximately 2% of all 

cancers and gliomas and meningiomas are the most 

common primary brain tumours (Louis et al., 2016). 

Tumours like glioblastoma are considered very 

aggressive, as they have a typical survival time of 12-

15 months even when treated vigorously (Stupp et al., 

2017). It is challenging to diagnose brain tumours 

since different tumours and their locations may 

resemble other similar neurological diseases. In 

traditional approaches, the interpretation of scans such 

as MRI and CT relies on manual methods. On the other 

hand, there are errors in human interpretation and 

misdiagnosis is common in some types of cancer, 

reaching rates as high as 30% (Bauer et al., 2013). As 

a result, there is now a greater demand for innovative 

tools that can find problems faster and enhance the 

outcome of treatment. 

Emergence of Computer-Aided Detection 

Using computer-based tools or CAD systems, has 

revolutionized the process of diagnosing brain tumors. 

By applying computational algorithms to medical 

images, Computer-Aided Detection (CAD) can guide 

radiologists in precisely finding, outlining and 

categorizing tumours (Litjens et al., 2017). Since the 

early 2000s, when machine learning started impacting 

diagnostics, AI has played a bigger role in the 

development of CAD. With the help of image 

processing and the growing use of deep learning, CAD 

systems can now notice problems that the human eye 

might miss in imaging data. For instance, research 

proves that CAD is more accurate than a radiologist 

alone when detecting particular types of tumours—
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around 90% compared to 70–80% (Hosny et al., 

2018). With CAD acting as a backup, it helps to 

prevent wrong diagnoses and improve critical choices 

by clinicians. 

Significance of CAD in Neuroimaging 

By using CAD, some of the problems seen in visually 

diagnosing brain tumours can be solved. With the help 

of diagnostic CAD, doctors can easily detect 

anomalies which allows them to easily tell apart low-

grade gliomas from metastatic lesions. Identifying 

breast cancer as early as possible, aided by CAD, 

makes a difference in improving survival since it helps 

with delayed progression of less aggressive breast 

tumours (Pallud et al., 2010). Moreover, using CAD 

saves time by automating difficult tasks such as 

tumour segmentation so that radiologists can 

concentrate on difficult cases. In addition, with CAD, 

it is possible to provide high-quality diagnostics to 

more people in areas where expert radiologists are 

difficult to access. The following table outlines the 

main CAD imaging methods and their main uses. 

Table 1: Imaging Modalities in CAD for Brain 

Tumour Detection 

Imagin

g 

Modalit

y 

Strengths Limitatio

ns 

Role in CAD 

MRI 

(T1, T2, 

FLAIR) 

High soft-

tissue 

contrast, 

detailed 

morpholo

gy 

Time-

consumin

g, costly 

Primary 

modality for 

tumour 

detection 

CT 

Scan 

Fast, 

widely 

available 

Lower 

resolution

, radiation 

Used in 

emergencies, 

complementa

ry 

Technical Foundations of CAD 

Using a CAD system requires going through several 

necessary steps. Images start by being pre-processed, 

segmented, have features extracted and are finally 

classified. Taking care of pre-processing enhances the 

image by cutting down noise and levelling the 

brightness of each part. It separates the tumour from 

its environment and then recognizes features such as 

the texture or brightness within the tumour. Regions in 

an image are generally classified as tumourous or non-

tumourous with the help of Convolutional Neural 

Networks (CNNs) (Menze et al., 2015). Deep learning 

has made CAD systems much better than they were 

with traditional Support Vector Machines. CNNs can 

identify higher-level features from images 

automatically, so there is no need for manual feature 

creation and higher accuracy is obtained (LeCun et al., 

2015). In most situations, MRI is chosen for its ability 

to show soft organs clearly, although CT scans are 

preferred during emergencies. The use of different 

MRI scans (such as T1 and T2) in CAD improves the 

accuracy of the results (Bauer et al., 2013). 

Challenges in CAD Implementation 

Though CAD can be very helpful, it still has some 

technical and ethical problems. If imaging is done 

differently at each institution, it can harm the 

performance of models, as algorithms might not adapt 

well to new scans (Litjens et al., 2017). Big data sets 

with labels require a lot of time and resources for 

experts to create which makes it a challenge. Problems 

related to ethics, like systems overuse and the security 

of patient data, should be examined well (Hosny et al., 

2018). This step is best shown by an illustration: the 

flow below represents the workflow of CAD. Image 

processing includes pre-processing, segmentation, 

extracting important information and classifying, 

using algorithms that are labelled in the annotations 

(e.g., CNNs). Seeing these boxes would help readers 

to see how computations connect. 

Setting the Stage 

Machines are ready to play a key role in the diagnosis 

of brain tumours by merging human knowledge with 

accurate calculations. The BraTS challenge has 

contributed to fast progress by giving researchers 

standardized data and benchmarks (Menze et al., 

2015). Rising technologies, like cloud computing, will 

make CAD more useful in the clinical setting. Through 

this introduction, we start to understand CAD, its uses, 

the good and bad sides and the future it holds for 

patients and the healthcare industry. 
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II. LITERATURE REVIEW 

Traditional CAD Methodologies 

Initially, CAD systems for brain tumour diagnosis 

depended on traditional machine learning and needed 

humans to define the relevant features. Bauer et al. 

(2013) examined the use of MRI to assess brain 

tumours, highlighting texture (grey-level co-

occurrence matrices), shape (cosy perimeter) and 

intensity as main features. Their report tested Support 

Vector Machines (SVMs) and Random Forests, 

resulting in 70–80% accuracy in distinguishing 

gliomas through analysis of T1- and T2-weighted MRI 

images. The variability among patients and the lack of 

set imaging protocols (e.g., using different magnetic 

field strengths) made it difficult for these methods to 

be reliable. It was also hard to expand these systems 

because adding more aspects took time and could lead 

to errors, proving the importance of advanced and 

error-free approaches. 

Deep Learning Advancements 

Using Convolutional Neural Networks (CNNs) in 

deep learning was a major factor in transforming CAD 

systems. They stated that CNNs can learn specific 

features from images, so there is no need for manual 

feature design. For example, in the BraTS challenge, 

participants used different MRI images (T1, T1-

contrast, T2, FLAIR) to evaluate their methods 

(Menze et al., 2015). CNN models, like the 3D U-Net, 

were tested during the BraTS experiment and reported 

a Dice score of 0.78 for the detection of tumour areas 

and 0.88 for segmenting the entire tumour in high-

grade gliomas. Using several input scans helped in 

making better diagnoses by highlighting various 

characteristics of the tumours such as oedema and 

necrosis. On the other hand, lower-grade gliomas 

(Dice ~0.65) experienced a dip in accuracy, as their 

boundaries are less defined, highlighting that these 

tumours are harder to separate from the rest. 

Performance Metrics and Clinical Relevance 

Deep-learning software in CAD has proven to be more 

effective than other systems. Hosny et al. (2018) 

pointed out that AI through CNNs in radiology offered 

higher sensitivity, about 90%–95%, in spotting 

gliomas and meningiomas than the 70%–80% level 

achieved by radiologists working alone. Instead of 

starting from scratch after training, they adapted 

VGG16 and ResNet50 networks with data taken from 

MRI images which resolved the issue of not having 

many labeled records. According to Litjens et al. 

(2017), U-Net performs well in whole-tumour 

segmentation, reaching a mean Dice score of 0.85. 

However, it performs less effectively in segmenting 

the tumour core, obtaining only a mean Dice score of 

0.70 in cases where the tumour was in heterogeneous 

locations like metastases. They suggest that CAD may 

lower the chance of incorrect diagnosis at an early 

stage, acknowledging that how well it works is 

influenced by each tumour type. 

Technical and Data Challenges 

CAD development faces significant obstacles. Bauer 

et al. (2013) mentioned that models were less accurate 

on outside datasets (accuracy dropped by 10–15%) 

because the training data differed from the test data in 

terms of imaging types. According to Litjens et al. 

(2017), there are not enough annotated datasets since 

labelling MRIs by experts takes a long time and the 

agreement between experts for complex tumours can 

be as low as 0.60. Although data augmentation and 

synthetic data generation were suggested, they caused 

additional noise that influenced the model’s accuracy. 

Hosny et al. (2018) reported that CNNs need high-end 

GPUs for training, making it difficult for low-resource 

regions to use them. They point out that there should 

be uniform standards for imaging and better access to 

computing tools. 

Ethical and Clinical Gaps 

Ethical concerns are prominent. According to Hosny 

et al. (2018), excessive use of CAD could lessen the 

attention given by doctors, while CAD users also need 

to be concerned about data privacy caused by the vast 

amount of data processed. They urged using 

explainable AI to improve trust in their work. They 

stated that most studies were restricted to high-grade 

gliomas, failing to address low-grade tumours or rarer 

ones like ependymomas, reducing how much 

clinicians can learn. Most studies on CAD integration 

in medical practice did not deal with real-world issues 

such as imaging problems or patient movement. 

Future Research Needs 

There are specific areas in the literature that are 

overlooked and need focus. It is important to make 

CAD for rare tumours, ensure it works with various 
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imaging systems and reduce the burden on computer 

resources (Litjens et al., 2017). Testing AI models in 

various groups, linking them to electronic health 

systems and determining the correct balance between 

automated and human inputs are not explored enough 

(Hosny et al., 2018). Fixing these issues will lead to 

better use of CAD in brain tumour diagnosis. 

III. MATERIALS AND METHODS 

Dataset Selection and Preparation 

The strength of any CAD system for brain tumour 

detection relies on well-rounded and high-quality 

imaging data. Since its release before February 2022, 

BraTS 2020 became a leading benchmark due to its 

robust multi-modal brain MRIs (Menze et al., 2015). 

The data set contains 369 training cases and 125 

validation cases. It covers HGG, and LGG and has 

ground-truth labels for three sub-regions. ET depicts 

tumour enhancement, NET describes tumours that do 

not enhance and ED points to peritumoral oedema. 

The dataset has 195 cases, each with a T1, T1CE, T2 

and FLAIR sequence, every case consisting of 

240×240×155 voxels and these were gathered from 

various hospitals with 1.5T and 3T MRI scanners. This 

kind of diversity allows the dataset to accurately 

capture images taken in real-world settings which is 

necessary so the model can work on new images. 

As the available data was limited, data augmentation 

techniques like random rotations (+/-15°), flipping 

horizontally, scaling between 0.9 and 1.1 and intensity 

shifts (+/-10%) were used (Litjens et al., 2017). To 

simulate rare kinds of tumours, we looked at the 

method of using generative adversarial networks 

(GANs) for synthetic data, as suggested by Hosny et 

al. (2018). During data splitting into training, 

validation and testing sets, the ratio was set at 80-10-

10 and the balance between HGG and LGG groups 

was preserved. All the data were converted to be 

unidentifiable to ensure patient privacy was not 

breached. 

Image Preprocessing Pipeline 

Before running CAD, MRI scans are preprocessed to 

enhance the CAD results. The bias field correction in 

N4 was used to address any differences in intensity 

caused by scanner variations as highlighted by Bauer 

et al. (2013). All images were adjusted to have zero 

mean and unit variance to ensure that every dataset has 

similar intensity levels. Skull-stripping, by using BET, 

isolated only the brain tissue, taking away all the 

unwanted structures (Menze et al., 2015). All images 

were aligned using an affine transformation to ensure 

that the important structures were in the same place 

across different images. 

A 3D Gaussian filter (σ=1.0) was used to lower noise 

while preserving enough details and reducing 

artefacts. T1CE contrast enhancement was used to 

highlight the regions with blood vessels where the ET 

normally arises, assisting with segmentation. Outliers 

were managed by clipping each voxel’s intensity to the 

1st and 99th percentiles. The process involved ITK 

and SimpleITK libraries, with each volume taking an 

average of 2.5 minutes to process on a 16-core CPU. 

The careful steps in data preparation helped maintain 

quality for the following analysis (Litjens et al., 2017). 

CAD System Architecture 

The system used a 3D U-Net which was designed to 

be effective for segmenting medical images (Litjens et 

al., 2017). The U-Net combines encoder and decoder 

layers and includes skip connections to keep multi-

scale information. The encoder featured five layers, 

starting with 32 filters (3 x 3 x 3 kernel size and a 

ReLU activation) and doubling that number at each 

max-pooling layer (2 by 2 by 2). The decoder also used 

upsampling and concatenation to restore the spatial 

information present in the original image. Preventing 

overfitting was done using batch normalization and 

dropout with a dropout rate of 0.3. To make 

probability maps for the four object classes, the output 

layer used the softmax activation function. 

Background, ET, NET, and ED. 

We recommend that the model for the encoder starts 

with VGG16’s weights pre-trained on ImageNet data 

and is then fine-tuned on BraTS, as Hosny et al. (2018) 

describe. The loss function was built using Dice loss 

and categorical cross-entropy and appropriately 

weighted to handle the classes that appear less 

frequently in the dataset (for example, ET only shows 

up in around 5% of voxels). The model was trained 

with the Adam optimizer, learning rate of 0.0001, for 

50 epochs and a batch size of 2, on an NVIDIA RTX 

2080Ti GPU. 
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Figure 1: CAD Pipeline Flowchart 

Classification and Post-Processing 

A different CNN classified the segments as tumour 

types (like HGG, LGG, and meningioma) by using 

features like tumour volume, shape and texture 

(LeCun et al., 2015). There are 3 convolutional layers 

in the CNN, each using 64, 128 and 256 filters. The 

three convolution blocks use 3×3 filters and after that, 

the model uses two fully connected layers (512, 256) 

and softmax. Later, restored and corrected the 

segmentation with a 3D CRF to smooth the boundaries 

and decrease the number of false positives (Menze et 

al., 2015). A threshold of 0.5 was used on probability 

maps to make them binary, matching how 

visualization is done in clinical practice. 

Evaluation Metrics and Validation 

The performance of the models was measured using 

the Dice Similarity Coefficient (DSC), along with 

sensitivity, specificity and Hausdorff distance which is 

used in medical imaging (Litjens et al., 2017). DSC 

assessed segmentation overlap, targeting ≥0.7. The 

detection rate was calculated using sensitivity and 

specificity, while Hausdorff distance focused on 

measuring how far the boundary was from the real 

image. By testing the model five times on the BraTS 

validation set, we made sure it worked well. Table 2 

summarizes the pipeline. 

Table 2: CAD System Pipeline Summary 

Component Description Details 

Dataset BraTS 2020 

MRI dataset 

369 training, 

125 validation; 

T1, T1CE, T2, 

FLAIR; 

240×240×155 

voxels 

Preprocessing Bias 

correction, 

normalization, 

skull-stripping 

N4 correction, 

Gaussian filter 

(σ=1.0), co-

registration; 

~2.5 

min/volume 

Architecture 3D U-Net with 

transfer 

learning 

32–512 filters, 

ReLU, batch 

normalization; 

50 epochs, 

VGG16 weights 

Classification CNN for 

tumour type 

3 conv layers 

(64–256 filters), 

2 FC layers; 

volume, texture 

features 

Evaluation DSC, 

sensitivity, 

specificity, 

Hausdorff 

5-fold cross-

validation; DSC 

≥0.7, sensitivity 

≥0.85 
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Implementation and Reproducibility 

The software was written in Python 3.8 and utilised 

TensorFlow 2.4 and PyTorch 1.7 frameworks. 

Preprocessing leveraged ITK 5.1 and SimpleITK 2.0. 

Compliance with the BraTS open-source protocol was 

ensured by making the code accessible on a public 

repository. Computing resources consisted of a 16-

core CPU, 32GB of RAM and an NVIDIA RTX 

2080Ti GPU. We adhered to institutional review board 

guidelines by following standard protocols for 

anonymizing the data (Hosny et al., 2018). 

IV. RESULTS AND DISCUSSION 

Results 

Segmentation Performance 

A 3D U-Net neural network architecture was applied 

to assess the CAD system’s performance on the BraTS 

2020 dataset (125 samples) using common 

measurements such as DSC. Dice similarity 

coefficient (DSC), sensitivity, specificity and 

Hausdorff distance. Segmentation performance 

differed between high-grade gliomas (HGG, n=88) 

and low-grade gliomas (LGG, n=37), as well as 

between different tumour sub-regions (ET, NET and 

ED) (Table 1). The three tumour sub-regions were 

divided into enhancing tumour (ET), non-enhancing 

tumour (NET) and peritumoral oedema (ED). DSC 

values averaged 0.83 for the enhanced tumour, 0.76 

for the non-enhanced lesion and 0.88 for the oedema 

associated with HGG. Correspondingly, sensitivity 

and specificity were recorded at 0.91, 0.88, 0.92, 0.94, 

0.92 and 0.93, respectively. LGG segmentation 

yielded lower DSCs: The averages for DSC were 0.69 

(ET), 0.63 (NET) and 0.81 (ED), while sensitivity 

values stood at 0.80, 0.82 and 0.86 and specificity was 

measured as 0.93, 0.91 and 0.94. The mean Hausdorff 

distance values were found to be 4.3 mm for HGG and 

6.0 mm for LGG. The use of five-fold cross-validation 

allowed for reliable performance assessment, with 

standard deviations for DSC and sensitivity/specificity 

remaining within 0.03 and 0.02, respectively. 

 

 

 

Table 3: Segmentation Performance of CAD System on BraTS 2020 Validation Set

 

Tumour Type Region DSC Sensitivity Specificity Hausdorff Distance (mm) 

HGG (n=88) ET 0.83 0.91 0.94 4.1 

HGG NET 0.76 0.88 0.92 4.5 

HGG ED 0.88 0.92 0.93 4.3 

LGG (n=37) ET 0.69 0.80 0.93 5.8 

LGG NET 0.63 0.82 0.91 6.4 

LGG ED 0.81 0.86 0.94 5.7 
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Figure 2: Bar Plot of Segmentation Performance 

Classification Performance 

The CNN-based model differentiated HGG from LGG 

with an accuracy of 89%, sensitivity of 0.91 and 

specificity of 0.86 using various features, including 

tumour volume, shape and texture (LeCun et al., 

2015). Out of 125 cases, the model accurately 

identified 111 HGG tumours and incorrectly classified 

14 as GBM. By applying conditional random fields 

(CRFs), the average distance between the ground truth 

and predicted boundaries was reduced from 5.1 mm to 

4.5 mm for HGG and from 6.6 mm to 6.0 mm for LGG 

(Menze et al., 2015). The ROC curve exhibited an 

AUC of 0.92, suggesting excellent capability to 

distinguish HGG from LGG. 

V. DISCUSSION 

Interpretation of Segmentation Results 

The segmentation accuracies (DSCs) of the CAD 

system for HGG (0.76–0.88) are competitive 

compared to the best-performing models submitted to 

BraTS 2020 (0.80–0.88). This highlights the benefits 

of using multi-modal MRI inputs and implementing 

the 3D U-Net architecture. Tumour boundaries and 

non-enhancing areas differ depending on the tumour 

type and imaging modality (FLAIR). LGG is 

challenging to segment due to its diffuse borders and 

the preponderance of HGG cases in the BraTS dataset 

(Menze et al., 2015). Sensitivities of 0.80 to 0.92 

signify accurate tumour identification, outperforming 

typical radiologist’s abilities (0.70 to 0.80) (Hosny et 

al., 2018), whereas specificities of 0.91 to 0.94 reduce 

the likelihood of erroneous localizations which is 

essential for clinical reliance. 

Figure 3: Sample MRI Segmentation Output 

Classification Efficacy 

The high accuracy (89%) demonstrates the model’s 

reliability, supported by an AUC of 0.92 matching 

results from Hosny et al. (2018). Confusing LGG and 

HGG are often attributed to similarities in their 

imaging appearances, as pointed out by Bauer et al. 

(2013). Refining boundaries with CRF optimization 

made results accurate enough for surgical intervention. 

Hence, the under-representation of training data for 

LGG constrained the model’s ability to detect these 

lesions effectively (Litjens et al., 2017). 

Strengths and Limitations 

The key advantages of the system are its excellent 

HGG segmentation and detection performance, 

boosted by transfer learning and multi-modal inputs, 

outperforming single-sequence models in DSC by 5–

10% (Bauer et al., 2013). A major disadvantage is that 

LGG segmentation suffers from underperformance as 

a result of inadequate labelled data and tumour 

patterns. A 5–8% decrease in DSC was reported when 

applying the model to external datasets with imaging 

protocols different from the one used for training 

(Menze et al., 2015). The EfficientNetB5 model’s long 
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ten-hour training in a high-end environment limits its 

usage in resource-constrained environments. The 

results underscore the importance of well-represented 

data and efficient algorithms. 

Clinical and Research Implications 

CAD Support enables faster and more accurate brain 

tumour screening, especially for High-Grade Gliomas 

(HGG), where early diagnosis significantly improves 

prognosis. Its excellent specificity allows physicians 

to make more informed diagnostic choices. The 

system’s accuracy in identifying LGGs should be 

interpreted with caution due to their lower sensitivity. 

Future studies aim to expand datasets with rare 

tumours such as meningiomas and develop handy 

models that can address large fascicles of the 

population. A comparison of Dice similarity 

coefficients (DSCs) for HGG and LGG on a bar graph 

with confidence intervals would illustrate the different 

patterns between gradings. 

CONCLUSION 

 

Deep learning-based computer-aided detection (CAD) 

systems have shown great promise in optimizing brain 

tumour diagnosis (Litjens et al., 2017). The 3D-Unet 

evaluation on BraTS 2020 demonstrated accurate 

tumour segmentation (DSC scores of 0.76–0.88) and 

classification (89% accuracy) that may assist in early 

diagnosis and improve radiologist efficiency (Menze 

et al., 2015). Hosny et al., 2018). Nevertheless, several 

obstacles remain such as weaker results on low-grade 

gliomas because of their indistinct edges and dataset 

imbalance, as well as limitations in transferring 

models across diverse imaging approaches (Bauer et 

al., 2013). The results emphasize the importance of 

CAD in supporting the diagnosis of brain tumours, 

particularly those that are life-threatening, while also 

calling for careful application in a range of patient 

situations. A research focus should include creating 

balanced datasets with diverse images of rare tumour 

types, developing streamlined algorithms for efficient 

implementation in low-resource settings and 

optimizing CAD integration into existing clinical 

workflows. Resolving these challenges will enhance 

CAD’s ability to combine expert knowledge and 

advanced computation in neuroimaging, thereby 

enhancing patient care in the ongoing battle against 

brain tumours. 
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