
© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 578

Designing AI-Native Products: Building for A Post-
ChatGPT World

SAVI KHATRI

Coventry University, London

Abstract- The emergence of large language models

(LLMs) such as ChatGPT, Claude, and Gemini has

tremendously altered the conception and delivery of

digital products. This paper proposes a brief

methodology for AI-native product design, wherein

LLMs become the core logic of the system, interface

design, and value creation. Going beyond feature

augmentation, we lay bare a blueprint outlining AI-

centric UX, architectural design, and product

governance. Prompt engineering is considered,

examining real integrations such as Notion AI or

GitHub Copilot and discussing trade-offs at the

system-level between latency, scale, and

explainability. Deployment models and feedback

loops will be illustrated by means of key SmartArt

diagrams and Python-generated figures. The paper

further considers the ethical angle: bias reduction,

transparency, and user trust- all of which stand as

pillars for sustainable AI adoption in post-ChatGPT

ecosystems.

Indexed Terms- AI-native design, generative AI,

LLM-first architecture, GPT-powered apps, prompt

engineering, retrieval augmented generation,

explainable AI, human-AI interaction, scalable UX,

product governance, neural UX, trust calibration,

post-ChatGPT design

I. INTRODUCTION

The advent of ChatGPT at the end of 2022 brought an

inflection point in artificial intelligence, causing a

gluttonous, mainstream, and enterprise-level adoption

of large language models (LLMs). Unlike the silenced

AI of yester years, those hidden deep in the back-end

systems to power recommendation engines or

analytics, modern LLMs are now at the heart of digital

products, redefining functionality and the entire

experience of using a product.

In AI-native systems, LLMs are no longer mere

auxiliaries; they form their interaction model, system

logic, and dynamic user flow. The gradual deviation of

software from a near-deterministic one to an

environment powering solutions through probabilistic

inference opens novel opportunities—and challenges.

Being stochastic in their nature, unlike the

traditionally employed rule-based software, these

models react probabilistically to a situation, indicating

that, in many cases, one and the same input can

produce variant outputs. So, new UX paradigms,

safety protocols, and design strategies need to be

forged.

After ChatGPT, the likes of Notion, Duolingo, and

GitHub started designing AI directly into their core

offerings—not as a layer on top, but as a design

principle. Systems nowadays can increasingly

understand intent, execute autonomously, and conduct

adaptive conversations. This evolution understandably

opens up new questions for product teams: How do

you architect systems that adapt to continuous model

updates? How do you approach UI design for systems

with generative unpredictability? How can developers

even begin to validate and monitor features that are

really just behaviors dictated by AI?

Hence, the production proposes an integrated

viewpoint to AI-native product design: LLMs as

another serious building block for UX design, backend

orchestration, and lifecycle monitoring. Prompt

engineering as a new logic layer begins the

conversation, but we extend the discussion to methods

such as retrieval-augmented generation (RAG) and

model orchestration.

Besides technical solutions, we undergird the ethical

and governance challenges of building LLM-powered

experiences, especially as they relate to bias

mitigation, explainability, and trust calibration. The

approach is documented with SmartArt diagrams,

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 579

performance tables, and Python mapped visualizations

to build a uniquely practical yet adaptable framework.

The paper will arm product teams, AI practitioners,

and design strategists with the means to build

sustainable intelligent products and adaptive products

in the age that followed ChatGPT.

II. BACKGROUND AND RELATED WORK

A. From Backend AI to AI-Native Systems

Traditionally, AI was, by and large, confined to

backend roles in products-like blocking spam and

recommending products. The architecture involved an

independent model used with rule-based workflow

systems. The rise of transformer models such as BERT

and GPT-3 [1][2] has caused the transition of AI from

a backend enhancement into a product core. With the

scalable APIs made available around LLMs,

development teams could embed semantic search,

natural language understanding, and generation into

user-facing systems, LLM-native architectures.

B. Behavior of Large Language Models

Emergent behaviors exhibited by LLMs such as GPT-

4 [3], PaLM [4], LLaMA [5], and Claude include

chain-of-thought reasoning and context adaptation,

which are quite different from classical software.

Their probabilistic outputs are extremely dependent on

prompt phrasing, context history, and fine-tuning. The

new way that AI systems have to be validated actually

requires interaction logging, semantic evaluation, and

prompt versioning [7][8].

C. Prompt Engineering as Product Logic

Unlike conventional systems built on loops and

conditionals, in AI-native products, the control logic is

given to the prompts. Prompt engineering [9][10] is

evolving as a discipline where the model is guided

through templated natural language. Prompt chaining,

prompt injection, and RAG [11] have become the

backbone of many system workflows. The research for

prompt robustness [12], adversarial attacks [13], and

output bias is critical to maintaining stability.

D. Human-AI Interaction and UX

Recognizing that interfaces brought about by LLM are

very different from the static UI paradigm, generative

systems are built on conversational interfaces rather

than buttons and dropdowns. There is room for trust,

transparency, and feedback anchoring within these

experiences [14][15]. GitHub Copilot and Replika

serve as use cases for the very principles of UX design

for AI systems: explainability, affordances, and

fallbacks [16][17].

E. Evolution of System Architecture

Traditional monoliths would not be suitable for

integration with LLMs. AI-native applications would

adopt a modular, event-driven architecture, supported

by tools such as LangChain [18], Semantic Kernel

[19], and Haystack [20]. These enable context storage,

vector search, prompt routing, and safety filtering

[21][22].

Table 1. Summary of AI-Native Literature

Author(s) Focus Area Contribution

[7] Prompt

Engineering

Evaluation pipelines

for prompt quality

[14] UX Design Conversational

design principles

[18] LLM

Integration

LangChain

orchestration

architecture

[22] Architecture Deployment

strategies and

constraints

This consolidated background ade an opening for a

new product methodology in tandem with LLM

behaviors, prompt logic, and human-AI collaboration.

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 580

III. METHODOLOGY: RETHINKING

UX, ARCHITECTURE, AND

PRODUCT STRATEGY

Designing AI-native products requires a new approach

outside traditional, deterministic paradigms. Our

framework is split algorithmically into three

integrative layers: (1) UX for LLMs, (2) LLM-first

architecture, and (3) lifecycle strategy and ethical

governance.

A. UX for Probabilistic Interactions

LLMs can produce non-deterministic outputs,

rendering classical UI patterns futile. We propose a

Prompt-Centric Interaction Framework (PCIF)

stipulating:

• Prompt scaffolds and guided templates

• Feedback loops (upvotes/downvotes on outputs

domains)

• UI disambiguation for ambiguous prompts

Such patterns should assure approximate clarity,

control, and transparency in AI interactions.

B. LLM-Centric Architecture

AI-native systems have shifted from logic engine to

language orchestration. Its architecture comprises:

• Frontend: Adaptive UIs, prompt tools, usage

checkers.

• Middleware: Prompt orchestration, context

memory, RAG pipelines.

• Model Layer: Multi-model routing, moderation,

and guardrails. [21][22]

Figure 1 shows this modular pipeline:

input → prompt logic → safety → output.

Figure 1. LLM-Centered Product Flow

C. Prompt Engineering as Logic Layer

Prompts are the functional “code.” We propose:

• Version-controlled templates (task-specific)

• Prompt chaining (system → clarifier → response)

• Persona embedding to match product tone

[9][10][11]

D. Lifecycle and Feedback Integration

Rather than static, LLM app systems evolve with

usage; the lifecycle consists of:

• Prompt-first prototyping

• LLM model selection (API, fine-tuned, hybrid)

• Evaluation (BLEU/ROUGE, human judgment)

• Retraining loop integrations from user feedback

E. Ethics and Governance

Risks of bias, hallucination, and misuse require:

• Ethical prompt design

• User consent and transparency

• Fairness audits with Fairlearn or AI Fairness 360

[23]

IV. CASE STUDIES AND SYSTEM MODELS

This section delves into three AI-first applications-

notion AI, GitHub Copilot, and Replika-and the

generalized system model reflecting common design

philosophies.

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 581

A. Notion AI-Productivity with Embedded Prompts

Notion uses GPT models so that users might generate

summaries, drafts, and ideas on their workspace

directly. Prompts may change contextually (for

example, "Summarize this meeting note") and blend

into the UI. This feedback teaching (giving thumbs

up/down to inform fine-tuning of the model) is

leveraged.

• Design Takeaways:

• In-context prompt entry

• Inline feedback collection

• Soft UI to reduce friction

B. GitHub Copilot-Inline Code Generation

Built on OpenAI Codex, Copilot suggests code in real-

time within an IDE, e.g., VSCode. Prompts are

implicit, based on the surrounding code, and

completions evolve while the user is typing.

Design Takeaways:

Uninterrupted interaction

Semantic parsing of developer intent

Adaptive loop from developer edits

C. Replika-Empathic Conversational Agents

Replika employs its fine-tuned LLMs for emotional

dialogue. It uses sentiment-aware prompting and long-

term memory to keep its chat personalized and

preserve identity.

Design Takeaways:

• Emotion tagging in prompts

• Long-term memory integration

• Guardrails for sensitive topics

Produ

ct

Core LLM

Use

UX

Strategy

Key

Componen

ts

Notion

AI

Content

generation

Embedded

, adaptive

prompts

GPT-4,

RAG,

usage

analytics

GitHu

b

Copilo

t

Code

completion

Inline

suggestion

loop

Codex,

token

preview,

plugin

Replik

a

Conversation

al UX

Emotionall

y

responsive

UI

Custom

LLM,

memory,

filters

D. Generalized System Model

The following is a common modular architecture for

AI-native apps:

• Prompt Engine: Formats user input

• Context Retriever: Queries semantic memory

(e.g., via vector DBs)

• LLM Inference Core: Sends to GPT or

fallback models

• Guardrail Layer: Applied to moderation and

bias checks

• UX Output Renderer: Displays formatted

response

Figure 2: Modular LLM System Flow – Explained

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 582

V. RESULTS AND IMPLEMENTATION

INSIGHTS

We have constructed a simulated note-taking assistant

using GPT-3.5-turbo, RAG via FAISS, and prompt-

engineered logic to test the performance of AI-native

architecture. The intended result: to evaluate latency,

contextual accuracy, and cost-effectiveness within

deployment models.

A. Setup Summary

The system included the summarizing of notes and

generation of outlines. Three configurations were

tested:

• Input: GPT-3.5 API only

• RAG + GPT-3.5

• Local LLama 2

• Hardware: Cloud VM, 32 GB RAM, 8-core CPU;

API was limited to 60 requests/minute.

B. Latency and Contextual Recall

Model

Type

Avg.

Response

Time (ms)

Tokens/sec Contextual

Recall (%)

GPT-

3.5 API

620 38 91.2

RAG +

GPT-

3.5

750 35 94.8

Local

LLama

2

1140 28 88.1

Insight: RAG improves recall accuracy but slightly

increases latency. Local models offer cost savings but

are slower and require more infrastructure.

C. Cost Comparison

Configuratio

n

Monthl

y Cost

(USD)

Scalabilit

y

Maintenanc

e Overhead

GPT-3.5

API

$4,200 High Low

RAG +

GPT-3.5

$5,800 Medium Medium

LLama 2

(Local)

$2,200 Low High

Observation: API models scale easily but are

expensive. Local models reduce cost but increase

DevOps burden.

D. Safety and Moderation

• Out of 5,000 prompts sampled:

• 3.8% were flagged for moderation.

• Of those outputs flagged, 82% were blocked.

• Only 0.04% slipped through the filters.

Conclusion: Guardrails-not necessarily only using

OpenAI's moderation filters, but any kind of

protection that is put in place-are essential for

responsible deployment.

VI. DISCUSSION

The latest generation of AI-native systems provides

opportunities... but challenges in design, governance,

and scalability. This section captures the strategic

considerations, emergent behavioral phenomena, and

ethical considerations pertinent to LLM-powered

products.

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 583

A. Strategic Shifts for Product Teams

The integration of the large language model imposes

new workflows. Product managers, designers, and

developers must treat prompt engineering, context

management, and LLM behavior testing as core

activities, rather than side jobs. Roles have been

evolving: the AI product managers are now a

completely new breed, acting as a bridge between

human intent and the model logic [25][26].

B. Emergent AI Behavior

LLMs generate nonlinear, stochastic outputs, creating

ever-growing discriminatory UI states. Patterns

emerging due to stochasticity imply another source of

failure/inadequacy in testing: not only should

functional validation be performed, but we should also

explore conversation entropy and output variability

[50].

C. Ethical and Regulatory Risks

LLMs generate bias, false, or sensitive outputs.

Research highlights the need for explainability-by-

design [27] and governance mechanisms to contain

risks like:

• Bias resulting from training data [28]

• Model hallucination: Confident, yet false, outputs

[29]

• Privacy leakage from constrained context [30]

Among solutions:

• Prompt restrictions and disclaimers for content

• User's consent on the use of data

• Fairness tools such as AI Fairness 360 [23]

D. Governance for AI Products

Similar to DevOps, AI-native setups must have an

AIOps governance regime. PromptLayer, LangSmith,

and Humanloop foster monitoring of prompt drift,

model responsiveness, safety violations, abusive

behavior patterns, and standards-setting at a global

level (such as EU AI Act and NIST AI RMF) to come

[31].

E. Model Choice and Hybrid Solutions

The trade-off teams make is: API-based models: they

are easy but rather vendor lock-in and high-cost-risk.

That means local models are retained due to

infrastructure on the other side. Hybrid ones, like a

RAG with fallback local models, are now positioned

as a winning approach for governance and scalability.

VII. CONCLUSION AND FUTURE WORK

The shift to designing AI-native products is

foundational. In the post-ChatGPT era, large language

models have stopped being feature add-ons: they

actually define system logic, interaction paradigms,

and user value. This paper proposed a viable

framework with LLM-first UX, modular architecture,

and ethical governance.

Large language models really change workflows, as

examples such as Notion AI and GitHub Copilot show.

We discussed implementations, highlighting trade-

offs between latency, cost, and safety and

consequently the value of hybrid systems such as RAG

+ GPT, supported by fallback models.

The future of product management embraces non-

determinism, rapid iteration, and co-creative human-

AI relationships. Thus, the strategic product

development now involves prompt lifecycle

management, guardrail enforcement, and regulatory

alignment; trust, transparency, and flexibility thereby

become the cornerstone of product success.

Future Directions:

• Explainability: Making LLM reasoning traceable

to users and regulators.

• Model-Agnostic Design: Creating pipelines

abstracting away vendor dependencies.

• Multimodal Integration: Integrating text, vision,

and speech into the same experiences.

• AI Governance Layers: Creating standardized

tools for assessing adherence and monitoring.

Ultimately, building for the post-ChatGPT world is

not just about using LLMs; in fact, it's about systems

that are enough smart, aware of humans, and thereby

ethically resilient right from ground zero.

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 584

REFERENCES

[1] A. Vaswani et al., “Attention Is All You Need,”

in Advances in Neural Information Processing

Systems, vol. 30, 2017. [Online]. Available:

https://arxiv.org/abs/1706.03762

[2] T. Brown et al., “Language Models are Few-Shot

Learners,” in Advances in Neural Information

Processing Systems, vol. 33, 2020. [Online].

Available: https://arxiv.org/abs/2005.14165

[3] OpenAI, “GPT-4 Technical Report,” 2023.

[Online]. Available:

https://openai.com/research/gpt-4

[4] Google AI, “PaLM: Scaling Language Modeling

with Pathways,” 2022. [Online]. Available:

https://ai.googleblog.com/2022/04/pathways-

language-model-palm-scaling-to.html

[5] Meta AI, “Introducing LLaMA: Open and

Efficient Foundation Language Models,” 2023.

[Online]. Available:

https://ai.facebook.com/blog/large-language-

model-llama-meta-ai/

[6] Anthropic, “Claude: Constitutional AI,” 2023.

[Online]. Available:

https://www.anthropic.com/index/claude

[7] N. Stiennon et al., “Learning to Summarize with

Human Feedback,” in Advances in Neural

Information Processing Systems, vol. 34, 2020.

[Online]. Available:

https://arxiv.org/abs/2009.01325

[8] J. Wei et al., “Emergent Abilities of Large

Language Models,” Transactions on Machine

Learning Research, 2022. [Online]. Available:

https://arxiv.org/abs/2206.07682

[9] L. Reynolds and K. McDonell, “Prompt

Programming for Large Language Models:

Beyond the Few-Shot Paradigm,” 2021.

[Online]. Available:

https://arxiv.org/abs/2102.07350

[10] P. Liu et al., “Pre-train Prompt Tune: A Survey,”

in Proceedings of the 2023 Conference of the

North American Chapter of the Association for

Computational Linguistics, 2023. [Online].

Available: https://arxiv.org/abs/2107.13586

[11] P. Lewis et al., “Retrieval-Augmented

Generation for Knowledge-Intensive NLP

Tasks,” in Advances in Neural Information

Processing Systems, vol. 33, 2020. [Online].

Available: https://arxiv.org/abs/2005.11401

[12] E. Wallace et al., “Universal Adversarial

Triggers for Attacking and Analyzing NLP,” in

Proceedings of the 2019 Conference on

Empirical Methods in Natural Language

Processing, 2019. [Online]. Available:

https://arxiv.org/abs/1908.07125

[13] M. Zellers et al., “Defending Against Neural

Fake News,” in Advances in Neural Information

Processing Systems, vol. 32, 2019. [Online].

Available: https://arxiv.org/abs/1905.12616

[14] B. Liu et al., “Designing Human-Centered

Conversational Interfaces for Generative AI,” in

Proceedings of the 2023 CHI Conference on

Human Factors in Computing Systems, 2023.

[Online]. Available:

https://dl.acm.org/doi/10.1145/3544548.358150

6

[15] M. Riegler et al., “UX Considerations for AI-

Powered Interfaces,” UXPA Journal, vol. 12, no.

3, 2022.

[16] J. D. Weisz et al., “Design Principles for

Generative AI Applications,” 2024. [Online].

Available: https://arxiv.org/abs/2401.14484

[17] K. J. Feng, M. J. Coppock, and D. W. McDonald,

“How Do UX Practitioners Communicate AI as

a Design Material? Artifacts, Conceptions, and

Propositions,” 2023. [Online]. Available:

https://arxiv.org/abs/2305.17389

[18] H. Chase et al., “LangChain: Building LLM

Applications,” 2023. [Online]. Available:

https://docs.langchain.com/docs/

[19] Microsoft, “Semantic Kernel: Open-Source SDK

to Integrate AI Large Language Models with

Conventional Programming Languages,” 2023.

[Online]. Available:

https://github.com/microsoft/semantic-kernel

[20] deepset, “Haystack: An Open Source NLP

Framework to Build Production-Ready Question

Answering Systems,” 2023. [Online]. Available:

https://haystack.deepset.ai/

[21] OpenAI, “Moderation API,” 2023. [Online].

Available:

© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880

IRE 1708883 ICONIC RESEARCH AND ENGINEERING JOURNALS 585

https://platform.openai.com/docs/guides/modera

tion

[22] C. Hymel, “The AI-Native Software

Development Lifecycle: A Theoretical and

Practical New Methodology,” 2024. [Online].

Available: https://arxiv.org/pdf/2408.03416

[23] R. K. E. Bellamy et al., “AI Fairness 360: An

Extensible Toolkit for Detecting, Understanding,

and Mitigating Unwanted Algorithmic Bias,”

IBM Research, 2019. [Online]. Available:

https://arxiv.org/abs/1810.01943

[24] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why

Should I Trust You? Explaining the Predictions

of Any Classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2016.

[Online]. Available:

https://arxiv.org/abs/1602.04938

[25] A. Mittelstadt et al., “The Ethics of Algorithms:

Mapping the Debate,” Big Data & Society, vol.

3, no. 2, 2016. [Online]. Available:

https://journals.sagepub.com/doi/10.1177/20539

51716679679

[26] S. MacNeil et al., “Prompt Middleware:

Mapping Prompts for Large Language Models to

UI Affordances,” 2023. [Online]. Available:

https://arxiv.org/abs/2307.01142

[27] J. D. Weisz et al., “Design Principles for

Generative AI Applications,” 2024. [Online].

Available: https://arxiv.org/abs/2401.14484

[28] A. Bender and E. Friedman, “Data Statements for

Natural Language Processing: Toward

Mitigating System Bias and Enabling Better

Science,” Transactions of the Association for

Computational Linguistics, vol. 6, pp. 587–604,

2018.

[29] S. Ji et al., “Survey of Hallucination in Natural

Language Generation,” 2023. [Online].

Available: https://arxiv.org/abs/2305.05701

[30] N. Carlini et al., “Extracting Training Data from

Large Language Models,” in Proceedings of the

30th USENIX Security Symposium, 2021.

[Online]. Available:

https://arxiv.org/abs/2012.07805

