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Abstract- The emergence of large language models 

(LLMs) such as ChatGPT, Claude, and Gemini has 

tremendously altered the conception and delivery of 

digital products. This paper proposes a brief 

methodology for AI-native product design, wherein 

LLMs become the core logic of the system, interface 

design, and value creation. Going beyond feature 

augmentation, we lay bare a blueprint outlining AI-

centric UX, architectural design, and product 

governance. Prompt engineering is considered, 

examining real integrations such as Notion AI or 

GitHub Copilot and discussing trade-offs at the 

system-level between latency, scale, and 

explainability. Deployment models and feedback 

loops will be illustrated by means of key SmartArt 

diagrams and Python-generated figures. The paper 

further considers the ethical angle: bias reduction, 

transparency, and user trust- all of which stand as 

pillars for sustainable AI adoption in post-ChatGPT 

ecosystems. 
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I. INTRODUCTION 

 

The advent of ChatGPT at the end of 2022 brought an 

inflection point in artificial intelligence, causing a 

gluttonous, mainstream, and enterprise-level adoption 

of large language models (LLMs). Unlike the silenced 

AI of yester years, those hidden deep in the back-end 

systems to power recommendation engines or 

analytics, modern LLMs are now at the heart of digital 

products, redefining functionality and the entire 

experience of using a product. 

In AI-native systems, LLMs are no longer mere 

auxiliaries; they form their interaction model, system 

logic, and dynamic user flow. The gradual deviation of 

software from a near-deterministic one to an 

environment powering solutions through probabilistic 

inference opens novel opportunities—and challenges. 

Being stochastic in their nature, unlike the 

traditionally employed rule-based software, these 

models react probabilistically to a situation, indicating 

that, in many cases, one and the same input can 

produce variant outputs. So, new UX paradigms, 

safety protocols, and design strategies need to be 

forged. 

After ChatGPT, the likes of Notion, Duolingo, and 

GitHub started designing AI directly into their core 

offerings—not as a layer on top, but as a design 

principle. Systems nowadays can increasingly 

understand intent, execute autonomously, and conduct 

adaptive conversations. This evolution understandably 

opens up new questions for product teams: How do 

you architect systems that adapt to continuous model 

updates? How do you approach UI design for systems 

with generative unpredictability? How can developers 

even begin to validate and monitor features that are 

really just behaviors dictated by AI? 

Hence, the production proposes an integrated 

viewpoint to AI-native product design: LLMs as 

another serious building block for UX design, backend 

orchestration, and lifecycle monitoring. Prompt 

engineering as a new logic layer begins the 

conversation, but we extend the discussion to methods 

such as retrieval-augmented generation (RAG) and 

model orchestration. 

Besides technical solutions, we undergird the ethical 

and governance challenges of building LLM-powered 

experiences, especially as they relate to bias 

mitigation, explainability, and trust calibration. The 

approach is documented with SmartArt diagrams, 
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performance tables, and Python mapped visualizations 

to build a uniquely practical yet adaptable framework. 

The paper will arm product teams, AI practitioners, 

and design strategists with the means to build 

sustainable intelligent products and adaptive products 

in the age that followed ChatGPT. 

II. BACKGROUND AND RELATED WORK 

A. From Backend AI to AI-Native Systems 

Traditionally, AI was, by and large, confined to 

backend roles in products-like blocking spam and 

recommending products. The architecture involved an 

independent model used with rule-based workflow 

systems. The rise of transformer models such as BERT 

and GPT-3 [1][2] has caused the transition of AI from 

a backend enhancement into a product core. With the 

scalable APIs made available around LLMs, 

development teams could embed semantic search, 

natural language understanding, and generation into 

user-facing systems, LLM-native architectures.  

B. Behavior of Large Language Models 

Emergent behaviors exhibited by LLMs such as GPT-

4 [3], PaLM [4], LLaMA [5], and Claude include 

chain-of-thought reasoning and context adaptation, 

which are quite different from classical software. 

Their probabilistic outputs are extremely dependent on 

prompt phrasing, context history, and fine-tuning. The 

new way that AI systems have to be validated actually 

requires interaction logging, semantic evaluation, and 

prompt versioning [7][8].  

C. Prompt Engineering as Product Logic 

Unlike conventional systems built on loops and 

conditionals, in AI-native products, the control logic is 

given to the prompts. Prompt engineering [9][10] is 

evolving as a discipline where the model is guided 

through templated natural language. Prompt chaining, 

prompt injection, and RAG [11] have become the 

backbone of many system workflows. The research for 

prompt robustness [12], adversarial attacks [13], and 

output bias is critical to maintaining stability. 

 

 

D. Human-AI Interaction and UX 

Recognizing that interfaces brought about by LLM are 

very different from the static UI paradigm, generative 

systems are built on conversational interfaces rather 

than buttons and dropdowns. There is room for trust, 

transparency, and feedback anchoring within these 

experiences [14][15]. GitHub Copilot and Replika 

serve as use cases for the very principles of UX design 

for AI systems: explainability, affordances, and 

fallbacks [16][17].  

E. Evolution of System Architecture 

Traditional monoliths would not be suitable for 

integration with LLMs. AI-native applications would 

adopt a modular, event-driven architecture, supported 

by tools such as LangChain [18], Semantic Kernel 

[19], and Haystack [20]. These enable context storage, 

vector search, prompt routing, and safety filtering 

[21][22]. 

Table 1. Summary of AI-Native Literature 

Author(s) Focus Area Contribution 

[7] Prompt 

Engineering 

Evaluation pipelines 

for prompt quality 

[14] UX Design Conversational 

design principles 

[18] LLM 

Integration 

LangChain 

orchestration 

architecture 

[22] Architecture Deployment 

strategies and 

constraints 

 

This consolidated background ade an opening for a 

new product methodology in tandem with LLM 

behaviors, prompt logic, and human-AI collaboration. 
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III. METHODOLOGY: RETHINKING 

UX, ARCHITECTURE, AND 

PRODUCT STRATEGY 

Designing AI-native products requires a new approach 

outside traditional, deterministic paradigms. Our 

framework is split algorithmically into three 

integrative layers: (1) UX for LLMs, (2) LLM-first 

architecture, and (3) lifecycle strategy and ethical 

governance. 

A. UX for Probabilistic Interactions 

LLMs can produce non-deterministic outputs, 

rendering classical UI patterns futile. We propose a 

Prompt-Centric Interaction Framework (PCIF) 

stipulating:  

• Prompt scaffolds and guided templates 

• Feedback loops (upvotes/downvotes on outputs 

domains) 

• UI disambiguation for ambiguous prompts 

Such patterns should assure approximate clarity, 

control, and transparency in AI interactions.  

B. LLM-Centric Architecture 

AI-native systems have shifted from logic engine to 

language orchestration. Its architecture comprises: 

• Frontend: Adaptive UIs, prompt tools, usage 

checkers. 

• Middleware: Prompt orchestration, context 

memory, RAG pipelines. 

• Model Layer: Multi-model routing, moderation, 

and guardrails. [21][22] 

Figure 1 shows this modular pipeline:  

input → prompt logic → safety → output.  

 

 

 

 

Figure 1. LLM-Centered Product Flow 

 

C. Prompt Engineering as Logic Layer 

Prompts are the functional “code.” We propose: 

• Version-controlled templates (task-specific) 

• Prompt chaining (system → clarifier → response) 

• Persona embedding to match product tone 

[9][10][11] 

D. Lifecycle and Feedback Integration 

Rather than static, LLM app systems evolve with 

usage; the lifecycle consists of: 

• Prompt-first prototyping 

• LLM model selection (API, fine-tuned, hybrid) 

• Evaluation (BLEU/ROUGE, human judgment) 

• Retraining loop integrations from user feedback 

E. Ethics and Governance 

Risks of bias, hallucination, and misuse require: 

• Ethical prompt design 

• User consent and transparency 

• Fairness audits with Fairlearn or AI Fairness 360 

[23] 

 

IV. CASE STUDIES AND SYSTEM MODELS 

This section delves into three AI-first applications-

notion AI, GitHub Copilot, and Replika-and the 

generalized system model reflecting common design 

philosophies. 
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A. Notion AI-Productivity with Embedded Prompts 

Notion uses GPT models so that users might generate 

summaries, drafts, and ideas on their workspace 

directly. Prompts may change contextually (for 

example, "Summarize this meeting note") and blend 

into the UI. This feedback teaching (giving thumbs 

up/down to inform fine-tuning of the model) is 

leveraged. 

• Design Takeaways: 

• In-context prompt entry 

• Inline feedback collection 

• Soft UI to reduce friction 

B. GitHub Copilot-Inline Code Generation 

Built on OpenAI Codex, Copilot suggests code in real-

time within an IDE, e.g., VSCode. Prompts are 

implicit, based on the surrounding code, and 

completions evolve while the user is typing. 

 

Design Takeaways: 

 

Uninterrupted interaction 

 

Semantic parsing of developer intent 

 

Adaptive loop from developer edits 

 

C. Replika-Empathic Conversational Agents 

Replika employs its fine-tuned LLMs for emotional 

dialogue. It uses sentiment-aware prompting and long-

term memory to keep its chat personalized and 

preserve identity. 

Design Takeaways: 

• Emotion tagging in prompts 

• Long-term memory integration 

• Guardrails for sensitive topics 
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D. Generalized System Model 

The following is a common modular architecture for 

AI-native apps: 

• Prompt Engine: Formats user input 

• Context Retriever: Queries semantic memory 

(e.g., via vector DBs) 

• LLM Inference Core: Sends to GPT or 

fallback models  

• Guardrail Layer: Applied to moderation and 

bias checks 

• UX Output Renderer: Displays formatted 

response 

Figure 2: Modular LLM System Flow – Explained 



© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880 

IRE 1708883          ICONIC RESEARCH AND ENGINEERING JOURNALS 582 

 

V. RESULTS AND IMPLEMENTATION 

INSIGHTS 

We have constructed a simulated note-taking assistant 

using GPT-3.5-turbo, RAG via FAISS, and prompt-

engineered logic to test the performance of AI-native 

architecture. The intended result: to evaluate latency, 

contextual accuracy, and cost-effectiveness within 

deployment models. 

A. Setup Summary 

The system included the summarizing of notes and 

generation of outlines. Three configurations were 

tested: 

• Input: GPT-3.5 API only 

• RAG + GPT-3.5 

• Local LLama 2 

• Hardware: Cloud VM, 32 GB RAM, 8-core CPU; 

API was limited to 60 requests/minute. 

B. Latency and Contextual Recall 

Model 

Type 

Avg. 

Response 

Time (ms) 

Tokens/sec Contextual 

Recall (%) 

GPT-

3.5 API 

620 38 91.2 

RAG + 

GPT-

3.5 

750 35 94.8 

Local 

LLama 

2 

1140 28 88.1 

Insight: RAG improves recall accuracy but slightly 

increases latency. Local models offer cost savings but 

are slower and require more infrastructure. 

C. Cost Comparison 

Configuratio

n 

Monthl

y Cost 

(USD) 

Scalabilit

y 

Maintenanc

e Overhead 

GPT-3.5 

API 

$4,200 High Low 

RAG + 

GPT-3.5 

$5,800 Medium Medium 

LLama 2 

(Local) 

$2,200 Low High 

Observation: API models scale easily but are 

expensive. Local models reduce cost but increase 

DevOps burden. 

D. Safety and Moderation 

• Out of 5,000 prompts sampled:  

• 3.8% were flagged for moderation. 

• Of those outputs flagged, 82% were blocked. 

• Only 0.04% slipped through the filters. 

Conclusion: Guardrails-not necessarily only using 

OpenAI's moderation filters, but any kind of 

protection that is put in place-are essential for 

responsible deployment. 

VI. DISCUSSION 

The latest generation of AI-native systems provides 

opportunities... but challenges in design, governance, 

and scalability. This section captures the strategic 

considerations, emergent behavioral phenomena, and 

ethical considerations pertinent to LLM-powered 

products. 
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A. Strategic Shifts for Product Teams 

The integration of the large language model imposes 

new workflows. Product managers, designers, and 

developers must treat prompt engineering, context 

management, and LLM behavior testing as core 

activities, rather than side jobs. Roles have been 

evolving: the AI product managers are now a 

completely new breed, acting as a bridge between 

human intent and the model logic [25][26]. 

B. Emergent AI Behavior 

LLMs generate nonlinear, stochastic outputs, creating 

ever-growing discriminatory UI states. Patterns 

emerging due to stochasticity imply another source of 

failure/inadequacy in testing: not only should 

functional validation be performed, but we should also 

explore conversation entropy and output variability 

[50].  

C. Ethical and Regulatory Risks 

LLMs generate bias, false, or sensitive outputs. 

Research highlights the need for explainability-by-

design [27] and governance mechanisms to contain 

risks like: 

• Bias resulting from training data [28] 

• Model hallucination: Confident, yet false, outputs 

[29] 

• Privacy leakage from constrained context [30] 

Among solutions: 

• Prompt restrictions and disclaimers for content 

• User's consent on the use of data 

• Fairness tools such as AI Fairness 360 [23] 

D. Governance for AI Products 

Similar to DevOps, AI-native setups must have an 

AIOps governance regime. PromptLayer, LangSmith, 

and Humanloop foster monitoring of prompt drift, 

model responsiveness, safety violations, abusive 

behavior patterns, and standards-setting at a global 

level (such as EU AI Act and NIST AI RMF) to come 

[31]. 

 

E. Model Choice and Hybrid Solutions 

The trade-off teams make is: API-based models: they 

are easy but rather vendor lock-in and high-cost-risk. 

That means local models are retained due to 

infrastructure on the other side. Hybrid ones, like a 

RAG with fallback local models, are now positioned 

as a winning approach for governance and scalability. 

VII. CONCLUSION AND FUTURE WORK 

The shift to designing AI-native products is 

foundational. In the post-ChatGPT era, large language 

models have stopped being feature add-ons: they 

actually define system logic, interaction paradigms, 

and user value. This paper proposed a viable 

framework with LLM-first UX, modular architecture, 

and ethical governance. 

Large language models really change workflows, as 

examples such as Notion AI and GitHub Copilot show. 

We discussed implementations, highlighting trade-

offs between latency, cost, and safety and 

consequently the value of hybrid systems such as RAG 

+ GPT, supported by fallback models. 

The future of product management embraces non-

determinism, rapid iteration, and co-creative human-

AI relationships. Thus, the strategic product 

development now involves prompt lifecycle 

management, guardrail enforcement, and regulatory 

alignment; trust, transparency, and flexibility thereby 

become the cornerstone of product success. 

Future Directions: 

• Explainability: Making LLM reasoning traceable 

to users and regulators. 

• Model-Agnostic Design: Creating pipelines 

abstracting away vendor dependencies. 

• Multimodal Integration: Integrating text, vision, 

and speech into the same experiences. 

• AI Governance Layers: Creating standardized 

tools for assessing adherence and monitoring. 

Ultimately, building for the post-ChatGPT world is 

not just about using LLMs; in fact, it's about systems 

that are enough smart, aware of humans, and thereby 

ethically resilient right from ground zero. 

 



© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880 

IRE 1708883          ICONIC RESEARCH AND ENGINEERING JOURNALS 584 

REFERENCES 

 

[1] A. Vaswani et al., “Attention Is All You Need,” 

in Advances in Neural Information Processing 

Systems, vol. 30, 2017. [Online]. Available: 

https://arxiv.org/abs/1706.03762 

[2] T. Brown et al., “Language Models are Few-Shot 

Learners,” in Advances in Neural Information 

Processing Systems, vol. 33, 2020. [Online]. 

Available: https://arxiv.org/abs/2005.14165 

[3] OpenAI, “GPT-4 Technical Report,” 2023. 

[Online]. Available: 

https://openai.com/research/gpt-4 

[4] Google AI, “PaLM: Scaling Language Modeling 

with Pathways,” 2022. [Online]. Available: 

https://ai.googleblog.com/2022/04/pathways-

language-model-palm-scaling-to.html 

[5] Meta AI, “Introducing LLaMA: Open and 

Efficient Foundation Language Models,” 2023. 

[Online]. Available: 

https://ai.facebook.com/blog/large-language-

model-llama-meta-ai/ 

[6] Anthropic, “Claude: Constitutional AI,” 2023. 

[Online]. Available: 

https://www.anthropic.com/index/claude 

[7] N. Stiennon et al., “Learning to Summarize with 

Human Feedback,” in Advances in Neural 

Information Processing Systems, vol. 34, 2020. 

[Online]. Available: 

https://arxiv.org/abs/2009.01325 

[8] J. Wei et al., “Emergent Abilities of Large 

Language Models,” Transactions on Machine 

Learning Research, 2022. [Online]. Available: 

https://arxiv.org/abs/2206.07682 

[9] L. Reynolds and K. McDonell, “Prompt 

Programming for Large Language Models: 

Beyond the Few-Shot Paradigm,” 2021. 

[Online]. Available: 

https://arxiv.org/abs/2102.07350 

[10] P. Liu et al., “Pre-train Prompt Tune: A Survey,” 

in Proceedings of the 2023 Conference of the 

North American Chapter of the Association for 

Computational Linguistics, 2023. [Online]. 

Available: https://arxiv.org/abs/2107.13586 

[11] P. Lewis et al., “Retrieval-Augmented 

Generation for Knowledge-Intensive NLP 

Tasks,” in Advances in Neural Information 

Processing Systems, vol. 33, 2020. [Online]. 

Available: https://arxiv.org/abs/2005.11401 

[12] E. Wallace et al., “Universal Adversarial 

Triggers for Attacking and Analyzing NLP,” in 

Proceedings of the 2019 Conference on 

Empirical Methods in Natural Language 

Processing, 2019. [Online]. Available: 

https://arxiv.org/abs/1908.07125 

[13] M. Zellers et al., “Defending Against Neural 

Fake News,” in Advances in Neural Information 

Processing Systems, vol. 32, 2019. [Online]. 

Available: https://arxiv.org/abs/1905.12616 

[14] B. Liu et al., “Designing Human-Centered 

Conversational Interfaces for Generative AI,” in 

Proceedings of the 2023 CHI Conference on 

Human Factors in Computing Systems, 2023. 

[Online]. Available: 

https://dl.acm.org/doi/10.1145/3544548.358150

6 

[15] M. Riegler et al., “UX Considerations for AI-

Powered Interfaces,” UXPA Journal, vol. 12, no. 

3, 2022. 

[16] J. D. Weisz et al., “Design Principles for 

Generative AI Applications,” 2024. [Online]. 

Available: https://arxiv.org/abs/2401.14484 

[17] K. J. Feng, M. J. Coppock, and D. W. McDonald, 

“How Do UX Practitioners Communicate AI as 

a Design Material? Artifacts, Conceptions, and 

Propositions,” 2023. [Online]. Available: 

https://arxiv.org/abs/2305.17389 

[18] H. Chase et al., “LangChain: Building LLM 

Applications,” 2023. [Online]. Available: 

https://docs.langchain.com/docs/ 

[19] Microsoft, “Semantic Kernel: Open-Source SDK 

to Integrate AI Large Language Models with 

Conventional Programming Languages,” 2023. 

[Online]. Available: 

https://github.com/microsoft/semantic-kernel 

[20] deepset, “Haystack: An Open Source NLP 

Framework to Build Production-Ready Question 

Answering Systems,” 2023. [Online]. Available: 

https://haystack.deepset.ai/ 

[21] OpenAI, “Moderation API,” 2023. [Online]. 

Available: 



© JAN 2023 | IRE Journals | Volume 6 Issue 7 | ISSN: 2456-8880 

IRE 1708883          ICONIC RESEARCH AND ENGINEERING JOURNALS 585 

https://platform.openai.com/docs/guides/modera

tion 

[22] C. Hymel, “The AI-Native Software 

Development Lifecycle: A Theoretical and 

Practical New Methodology,” 2024. [Online]. 

Available: https://arxiv.org/pdf/2408.03416 

[23] R. K. E. Bellamy et al., “AI Fairness 360: An 

Extensible Toolkit for Detecting, Understanding, 

and Mitigating Unwanted Algorithmic Bias,” 

IBM Research, 2019. [Online]. Available: 

https://arxiv.org/abs/1810.01943 

[24] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why 

Should I Trust You? Explaining the Predictions 

of Any Classifier,” in Proceedings of the 22nd 

ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 2016. 

[Online]. Available: 

https://arxiv.org/abs/1602.04938 

[25] A. Mittelstadt et al., “The Ethics of Algorithms: 

Mapping the Debate,” Big Data & Society, vol. 

3, no. 2, 2016. [Online]. Available: 

https://journals.sagepub.com/doi/10.1177/20539

51716679679 

[26] S. MacNeil et al., “Prompt Middleware: 

Mapping Prompts for Large Language Models to 

UI Affordances,” 2023. [Online]. Available: 

https://arxiv.org/abs/2307.01142 

[27] J. D. Weisz et al., “Design Principles for 

Generative AI Applications,” 2024. [Online]. 

Available: https://arxiv.org/abs/2401.14484 

[28] A. Bender and E. Friedman, “Data Statements for 

Natural Language Processing: Toward 

Mitigating System Bias and Enabling Better 

Science,” Transactions of the Association for 

Computational Linguistics, vol. 6, pp. 587–604, 

2018. 

[29] S. Ji et al., “Survey of Hallucination in Natural 

Language Generation,” 2023. [Online]. 

Available: https://arxiv.org/abs/2305.05701 

[30] N. Carlini et al., “Extracting Training Data from 

Large Language Models,” in Proceedings of the 

30th USENIX Security Symposium, 2021. 

[Online]. Available: 

https://arxiv.org/abs/2012.07805 


