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Abstract- CNNs have made it possible for remote 

sensing to process data more accurately and without 

manual effort which is especially beneficial for 

satellite images. Rather than manually including 

handmade features, CNNs find patterns in the raw 

data and perform better and more easily on large 

and complicated data. It is especially helpful in 

spotting changes in land use, deforestation, new 

urban growth and harm to the environment. Many 

remote sensing applications, include land cover 

classification, detecting objects, examining plants 

and finding change over time, have shown that 

CNNs perform very well. Tasks like urban planning 

and precision farming depend on spatial precision 

which is offered by advanced CNN architectures 

like U-Net, ResNet and DeepLab. They can handle 

data gathered with various approaches, including 

optical, SAR and LiDAR sensors, giving a broader 

view of the environment. Even though CNNs work 

well, they also have some limitations. Labels on a 

large dataset are still quite hard to get, making it 

difficult for supervised learning. Making these 

datasets needs lots of resources, mainly in places 

that are seldom observed. In order to resolve this, 

researchers rely on transfer learning by using 

ImageNet trained models and adjusting them for 

their particular tasks. Some are investigating self-

supervised and weakly supervised learning to 

require less labeling data. A further issue is that 

deep CNN models require a lot of computing 

resources for both training and deployment. It 

prevents some smaller institutions from using AI 

solutions. Therefore, new approaches and 

techniques to make models as lightweight as 

possible are being developed. In addition, 

explainability is still a main problem since CNNs 

are often difficult to explain how they work. Using 

tools such as Grad-CAM and saliency maps can 

explain why a model made certain decisions which 

builds confidence.  Right now, CNNs have many 

uses in environmental monitoring, though ongoing 

efforts are needed to deal with existing issues. 

 

Indexed Terms- Convolutional Neural Networks, 

Remote Sensing, Satellite Imagery, Image 

Classification, Deep Learning, Object Detection, 

Semantic Segmentation, Transfer Learning, Data 

Fusion, Environmental Monitoring 

  

I. INTRODUCTION 

• How Remote Sensing has Changed in the Field of 

Observing the Earth 

 

Remote sensing is now necessary to observe Earth 

and provides plenty of recent and thorough data 

about the planet’s surface. First developed using 

large-scale satellites, the field saw fast progress once 

Landsat, Sentinel, WorldView and PlanetScope 

constellations were introduced. Many of these 

platforms can collect images in different wavelength 

ranges: optical, multispectral, hyperspectral and 

SAR, at shorter intervals each time they fly over a 

region. With the help of datasets, scientists can 

observe large and inaccessible locations which 

supports international efforts to stop deforestation, 

fight climate change, contain urban development, 

supply food to all and cope with disasters. Because of 

these technological improvements, it is now possible 

to use complex analytical methods to study and learn 

from geospatial data. 

 

 
 

• Problems with Conventional Remote Sensing 

While traditional remote sensing techniques played a 

big role, today a range of factors makes them less 

effective for analyzing large amounts of new 

geospatial data. Methods in the classical approach are 
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centered on manually defining features such as 

spectral indices, texture signs and form descriptors, 

as well as object-based image analysis (OBIA). Even 

though the approaches aren’t difficult to grasp, they 

beat the odds in heterogeneous circumstances and 

often lack the ability to adapt to different sensors, 

various periods and different areas. This means that, 

since such tools are not fully automatic and need 

careful settings, they take more effort, are not very 

scalable and do not perform well on the very large 

and constantly changing datasets now seen in Earth 

observation. 

 

• AI-based Deep Learning and CNNs are becoming 

more used in Remote Sensing. 

The limitations of the classic ways of working have 

pushed remote sensing to embrace machine learning 

which has now led to deep learning and notably, the 

integration of Convolutional Neural Networks 

(CNNs). CNNs have a complete structure that can 

learn how to detect features from images on their 

own without having to design them by hand. 

According to the human visual system, CNNs look 

for patterns from easy ones such as straight edges or 

shapes up to complex meanings. Because of their 

architecture, they can capture both nearby and 

faraway data which helps them classify images, 

detect objects and perform segmentation in numerous 

environmental environments. 

 

• CNNs are used in Geospatial Intelligence. 

There are many areas where CNNs are effective, 

including land use and land cover (LULC) 

classification, change detection, mapping urban 

infrastructure, checking the overall condition of 

plants, detecting clouds and measuring damage from 

disasters. Being able to work with many datasets 

ensures they can be used in different areas, with 

various sensors and in several lighting situations. 

CNN models are being put into real-time monitoring 

systems to help make decisions in wildfire 

identification, dealing with floods, crop monitoring 

and illegal deforestation tracking. Because of their 

flexibility, satellites have turned static Earth 

observation into an always-changing source of 

current environmental details. 

 

• Problems and Advances with CNN-Based 

Remote Sensing 

 

Even with many positives, there are several problems 

when CNNs are used in remote sensing. Collecting 

labeled data in large quantities is costly and 

challenging which becomes more difficult for places 

without enough resources. Besides, it takes powerful 

technology for CNNs to work and this may be hard 

for institutions in regions where resources are scarce. 

CNNs can have trouble working well in areas or with 

sensors that are not the same as those used in 

training. To solve these issues, researchers have been 

studying ways to use 3D-CNNs (with hyperspectral 

images), mix SAR and optical data for classification 

and apply attention techniques. CNNs working in 

conjunction with RNNs or Transformers are being 

created, making it possible to better manage 

sequential and contextual data. In addition, 

development of explainable AI helps people read the 

predictions made by the model, making it easier to 

trust the results.  

 

Feature Traditional 

Methods 

CNN-Based 

Methods 

Feature 

Extraction 

Manual, 

domain-

specific 

Automatic, 

data-driven 

Scalability Limited to 

small-scale 

tasks 

High, 

suitable for 

large-scale 

mapping 

Accuracy Moderate, 

context-

dependent 

High, excels 

with complex 

spatial 

patterns 

Adaptability Low, 

requires 

manual 

redesign 

High, 

transferable 

via transfer 

learning 

Computational 

Demand 

Low to 

moderate 

High, 

requires GPU 

acceleration 

 

II. METHODOLOGY 

 

Using Convolutional Neural Networks (CNNs) in 

remote sensing and satellite image analysis requires a 
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well-constructed approach. Part of this is getting the 

data, preparing it, selecting a CNN structure, training 

the network and properly evaluating it. Every step 

helps make the outcomes of land cover classification, 

change detection and object recognition more 

accurate, effective and easy to apply in other cases. 

 

• Data Preprocessing 

 

No CNN-based remote sensing pipeline can succeed 

without the important task of preprocessing. Though 

satellite images contain a lot of valuable data, several 

issues with noise, alignment and distortion make it 

necessary to fix these issues before analysis. Let me 

explain how each step plays a part in explaining: 

• This method is used to make brightness values in 

one scene or time similar to those in other scenes 

or times, by correcting for effects in the air and 

any problems with the sensor. 

• Using Geometric Correction prevents 

inaccuracies by correcting errors from the camera 

angle, the planet rotation and differences in the 

landscape. This is necessary to find changes and 

to study sequences of data. 

• So much data is collected in hyperspectral or 

multispectral images that it becomes hard to 

analyze it. PCA or band selection makes data 

easier to compute by lowering size and still 

keeping the main information. 

• Setting up normalization (like min-max scaling or 

z-score normalization) ensures that all the pixel 

values are on the same scale, making the CNN 

training more steady and speeding up 

convergence. 

 

Methods such as rotating, flipping, cropping, 

brightness adjustment and adding random noise to the 

data make it more diverse, helping models handle 

situations they have not been trained on (such as 

different times of year or light levels). 

 

 
 

• Why CNNs and How the Architecture Is Chosen 

Because each architecture has its strengths, it is 

important to pick the right one depending on what 

tasks and kinds of data are involved. A 

straightforward and deeper network called VGGNet 

that uses 3×3 convolution filters. It does well for 

classifying standard images but struggles with many 

images. 

 

ResNet: Adds skip connections (residual blocks) to 

prevent the problem of vanishing gradients in deep 

networks which is ideal for accurate object detection 

and recognizing things in complex situations. 

 

U-Net was developed for health images but it also 

became popular in satellite image analysis for 

separating different pixels. Its architecture with 

encoder and decoder and skip connections makes it 

possible for it to focus on the entire structure as well 

as small details. 

 

DenseNet makes use of dense interconnections to 

make different layers in the network benefit each 

other. Because of its ability to capture detailed 

spectra, it is apt for obtaining hyperspectral images. 

Having multi-scale convolutions (1x1, 3x3, 5x5) 

together each module in Inception helps the model 

recognize complex details that can occur at any 

scale—a good approach for finding different land 

covers in an image. 
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• How the Model Training Process Works  

Here, CNNs are trained to tell apart different features 

and respond with the right categorization. 

 

Loss Functions are ways to determine the difference 

between the predictions and the actual labels. Most 

often, categorical cross-entropy is used to classify 

things during training. For regression (e.g., 

estimation of vegetation indexes), the MSE metric is 

used. 

 

Adam and SGD are Optimization Algorithms 

designed to adjust model weights so that loss is 

reduced. Adam mixes momentum with a learning rate 

that changes automatically, so it can work well in 

challenging gradient situations 

 

Regularization plays a role in statistics by stopping 

overfitting by doing the following: 

 

• Dropout: Randomly cuts off some neurons during 

training to make sure the network doesn’t totally 

rely on any one neuron. 

• L2 Regularization (Weight Decay) is a way of 

preventing large weights from developing. 

• Validation performance is checked at each step 

and training ends when it fails to improve. 

• The CNN is pretrained on ImageNet, then used 

for training again, this time with a few extra 

layers trained on satellite imagery. It cuts back on 

the demand for thousands of labeled data and 

helps the system learn faster. 

 

Create realistic synthetic data with methods like 

GANs or image simulation to overcome the problem 

of a lack of annotations, useful for remote or rarely 

seen land types. 

 

• How to Monitor and Evaluate Models  

 

Well-defined metrics mean that the CNN will do well 

both when training and when applied to real 

problems.  Overall correctness is measured as 

accuracy, but it may not be true when data is not 

balanced (for example, with forested and deforested 

areas). 

• Mathematically, Precision, Recall, F1-score help 

• The number of correct positive predictions is 

called precision. 

• How many actual cases did the test discover? 

• F1-score: Average of precision and recall, so it 

makes sure both are equally considered. 

• IoU (Intersection over Union) is used extensively 

in segmentation work to measure how much an 

estimated region matches the true annotation 

region. 

• The Kappa Coefficient takes random agreement 

into account when measuring how accurate 

someone is. 

 

Confusion Matrix: Lists each type of prediction (true 

positive, false positive, etc.), so we can see what 

challenges the model has. 

 

• Cross-Validation: 

 

• K-Fold: Takes your data and breaks it into k 

groups to check how it will generalize. 

• Spatial Stratified Sampling: Samples extensions 

in such a way that training and testing extend 

across different regions to prevent spatial bias. 

To assess applications for real-time use (such as 

wildfire alerts and drone surveillance), we examine 

inference time, memory consumption and how robust 

the models are to image noise. 

 

• Overview of the Entire Product Development 

Process 

 

The system connects the process from taking 

captured images all the way to using them in the form 

of geospatial outputs: 

• Should begin with making sure the data used is 

reliable and correct. 

• Designs models and picks the appropriate 

architectures for the designated task’s difficulty 

and type of available data. 

• Still relies on training, along with using 

augmentation, transfer learning and fine-tuning, 

to figure out much from little data. 

• Concludes with a detailed evalulation, testing the 

model at all stages (in space, with images and in 

time). 
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Because of these steps, CNNs are effective in tasks 

like precision agriculture, observation of forest loss, 

control of land usage and modeling of urbanization.  

 

III. RESULTS 

 

• Accurate Results in Land Cover Classification 

 

Land cover classification is still very important in the 

field of remote sensing, necessary for checking 

changes in use of land, handling natural resources and 

aiding environmental policies. For decades, Support 

Vector Machines (SVM), Random Forests (RF) and 

Decision Trees were popular for classifying land types, 

though they find it hard to deal with environments that 

include many different types of land, especially with 

high-resolution or multispectral data. This type of 

networks overcomes traditional algorithms by 

automatically learning from pixels and using both 

hierarchical and spatial features which usually requires 

manual work in other models. Being built up in layers, 

they are able to capture fine variations in how textured, 

shaped or reflectant certain surfaces are which makes it 

possible to separate similar categories (e.g., between 

urban land and barren soil or between water and 

shadows). Classifying land into urban, forest, 

agriculture and water classes, a study with Sentinel-2 

imagery and a VGGNet was more accurate (92%) than 

one using RF (78%). Changes such as noise reduction, 

contrast and edge improvement are more noticeable 

when objects in the environment are varied. Also, 

CNNs are flexible enough to be adopted in different 

parts of the world and to respond to seasonal shifts 

which makes them ideal for big, multi-seasonal land 

cover tracking. 
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• Powerful Object Detection when Background 

Conditions Are Difficult 

 

Detection of objects in satellite images is difficult 

because of low object definition, a lot of background 

information, changes in weather and sometimes 

coverings due to cloud or shadow. In spite of this, 

CNN-driven frameworks such as Faster R-CNN, 

YOLO and the SSD (Single Shot Multibox Detector) 

have performed excellently when it comes to locating 

and classifying cars, roads, ships and buildings. As 

compared to traditional methods, CNNs depend on 

region proposal networks and anchor boxes to detect 

objects that vary in size and form within the same 

process. Therefore, objects are found more accurately 

and quickly in high-resolution images. CNNs have 

shown in earthquake zones that their models can 

identify over 85% of collapsed buildings which is 

better than the accuracy of manual inspections or 

standard methods. With the use of YOLO models, 

officials in urban development studies can quickly 

see illegal settlements and need for extra roads, 

helping them take action sooner. They can manage 

different image qualities and can be modified to 

match regional features or image types (including 

RGB, multispectral or SAR). 

 

• Detailed Semantic Segmentation for Urban and 

OpenSpaces Mapping 

 

This process sorts out all the pixels in an image 

which helps understand spaces and land-use patterns 

in a detailed way. U-Net, DeepLab and SegNet which 

are common CNN architectures, are used specifically 

for this task as they have encoder-decoder structures 

that help preserve resolution. It is necessary for 

anything that must be done with accuracy in space 

such as zoning, looking at green spaces in cities or 

determining where wetlands are. When used on 

WorldView-3 satellite images, a U-Net model got an 

IoU value of 0.82 for identifying locations with urban 

vegetation, proving its ability to recognize small 

areas of vegetation within a city. In addition, 

semantic segmentation is important in agriculture for 

marking the crops, land areas and irrigation points 

with exact borders. They do better than OBIA in this 

context since CNNs handle unusual patterns in fields, 

mixed pixels and plants at different growth stages. 

Because of these models, environmental 

segmentation can happen quickly, allowing for 

ongoing checks on the health of the environment. 

 

• Classifying Scenes Accurately with Deep 

Learning Neural Networks 

 

The process of scene classification is to sort entire 

satellite patches according to their main cover or 

purpose (e.g., residential, commercial, agricultural 

and aquatic). People find it most valuable to organize 

large sets of satellite data, as it makes indexing and 

thematic mapping very easy. PyTorch-based models, 

for example, DenseNet and Inception, have been 

applied on NWPU-RESISC45 and EuroSAT datasets 

and have reached classification accuracies above 

95%. Such models use different scales of features and 

connect them to understand patterns from a scene, 

even if the images are varied. DenseNet has achieved 

strong results in separating scenes such as suburban 

areas from industrial zones which most human 

annotators have trouble with. CNNs boost scene 

recognition by analyzing both RGB and multispectral 

data which supports the automatic sorting of these 

satellite images for applications related to 

infrastructure, ecology and property ownership. 
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• Successful monitoring for changes and fusion of 

types of data 

 

Monitoring landscape changes through time with 

change detection can reveal incidents such as 

increasing cities, loss of forests, drying out water 

bodies or the impact of disasters. These kinds of 

methods often show noise and react too easily to 

different radiometric conditions. CNNs such as 

Siamese Networks and 3D-CNNs, learn detailed 

time-related patterns in photos which makes them 

very suitable for recognizing minor changes in land 

cover or usage over time. An up-to-date example is 

finding illegal gold mining in tropical forests using 

Landsat imagery and a three-dimensional 

Convolutional Neural Network with over 88% 

accuracy and almost no false alarms. In addition, 

CNNs play a key role in joining data from multiple 

sensors (e.g., optical, SAR, LiDAR, hyperspectral). 

Together, multi-branch CNNs and modules that focus 

attention help include different types of information, 

solving issues with cloud cover or changes in 

lighting. Here, it helps a lot in regions that often have 

clouds or large seasonal changes, where relying only 

on optical information could be questionable. Fusion 

techniques are used to study glaciers, forests and 

coastal areas which supplies precise observations in 

many environmental and atmospheric conditions. 

 

IV. DISCUSSION 

 

• Problems like limited data access and annotation 

challenge Remote Sensing. 

 

In spite of having lots of satellite images, using 

CNNs for remote sensing is still mostly hindered by 

the absence of proper labeled data. Images taken by 

Sentinel-2 or WorldView are very clear and detailed, 

but they need to be expertly labeled which costs a lot 

of time and money. This becomes a big issue with 

specialized tasks such as mapping after a wildfire, 

illegal mining or rare ways land is being used, since 

there may be no annotated data available. Therefore, 

the use of transfer learning is common—by using 

CNNs trained on big data (ImageNet) and applying 

them to datasets in remote sensing (like BigEarthNet 

and EuroSAT). It means the models can make use of 

learned details like edges or textures and apply them 

to their special tasks. Today, methods like pseudo-

labeling and consistency regularization are becoming 

more popular as they make use of a lot of unlabeled 

data to help performance. Expanding training datasets 

with crowdsourcing and data labeled automatically is 

a much cheaper option than hiring trained experts. 

 

• Applying computer resources and the ability of 

the model 

 

When CNNs are used on images from satellites with 

high, wide and time-series spectrum, they need a lot 

of computing power. The models are trained best 

with GPUs that offer a lot of memory and fast 

processing, but also often take much time to be 

properly trained. Because of these hardware limits, 

people in low resource areas or smaller firms may 

find it difficult to adopt these technologies. Special 

techniques are being developed to handle this, for 

example, pruning out redundant parts to save 

memory, using fewer numbers in calculations and 

using big models to train smaller ones. They lower 

the amount of memory space needed and make 

calculations faster, without much effect on how 

accurate the results are. Neural Architecture Search 

(NAS) is another way to improve network design 

since it lets machines find architectures that are 

accurate and use fewer resources. Some models are 

now being built and used on Google Earth Engine 

and cloud-based AI platforms, so they can work 

without the need for local setups. 

 

• Generalization, Domain Adaptation and 

Overfitting are main problems with AI systems. 

 

It is hard for CNNs to adjust for differences in data 

across space, time and frequency. When imagery is 

drawn from different regions or cameras, there are 

often differences in resolution, light, interference 

from the environment and seasons which can cause 

the model to be less accurate—this is called domain 

shift. Researchers are using techniques such as 

adversarial learning which helps models become 

insensitive to changes between different domains. 

Work is starting for methods that can teach from and 

even combine data from different domains. Meta-

learning ensures models learn how to learn so they 

can react to variations in data rapidly without much 

information which makes them suited to dynamic or 

unpredictable environments. There is a chance of 
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overfitting if the data is limited. CNNs tend to store 

specific examples rather than figuring out universal 

patterns. Examples of solutions are data 

augmentation (flipping, rotating, adjusting 

brightness), regularization (L2, dropout), stopping 

training early and using data created by simulation or 

GANs to improve training and generalization. 

 

 

• Interpreting results, handling various forms of 

data and maintaining ethics 

 

Since CNNs are difficult to explain, people are 

concerned about using them in situations such as 

disasters, environmental policy or military 

surveillance, where their decisions need to be 

understood and justified. Because of this, Explainable 

AI (XAI) has started to be used in the remote sensing 

field. Tools like Grad-CAM, saliency maps and 

Layer-wise Relevance Propagation (LRP) make it 

possible for analysts to see which parts of an image 

influence the model’s outcome, increasing the 

model’s trustworthiness. To boost model 

performance in places with frequently changing light 

and weather, data scientists now integrate many types 

of data, for example by bringing together optical, 

SAR, LiDAR and hyperspectral information. To 

address this, CNNs are commonly connected to 

RNNs (in time series analysis) and Transformers (for 

multi-modal awareness) today. Even so, they create 

several new difficulties regarding data merging, 

cleaning and optimizing their structure. People may 

be concerned about privacy, surveillance and who 

controls the data when CNNs are used to find small 

human activities in satellite images. Training deep 

neural networks, especially large CNNs, is associated 

with adding to carbon emissions. To deal with this 

issue, people are looking into green AI methods, 

more energy-saving computer architectures, training 

models with federated learning on edge devices and 

responsible and fair frameworks for using geospatial 

AI. 

CONCLUSION 

With CNNs, remote sensing now relies on new and 

improved ways to process and make sense of satellite 

images. With CNNs, features and rules are not 

designed by hand like traditional methods, instead, 

they are found using the sample data automatically. 

Because CNNs automatically identify important 

features, they have been able to create models strong 

enough to deal with an increase in satellite image 

complexity, diversity and size. Classical techniques 

cannot usually see the specific, contextual details that 

CNNs can when labeling land cover data. With 

CNNs, cities can identify individual buildings, 

roadways and utilities by comparing aerial photos of 

their areas which supports planning initiatives. Crop 

classification, estimates of yields and detection of 

diseases are achieved with CNNs in agriculture 

which help improve food security. CNNs are used in 

environmental science to closely track deforestation, 

map wetlands and survey biodiversity across many 

different datasets, improving the accuracy and detail 

of such data. NASA’s Landsat, Sentinel missions 

from the European Space Agency and commercial 

constellations like PlanetScope gather and process an 

enormous amount of high-detailed images 

continuously. With CNNs being supported by digital 

and cloud platforms, analysis of data can be done 

quickly across regions, continents and worldwide. 

This ability is especially important for forecasting 

natural disasters like wildfires, floods, landslides and 

hurricanes.At the same moment, adopting CNNs in 

remote sensing is still obstructed by a number of 

serious obstacles. The main problem is still the need 

for big collections of labeled data. Making good 

satellite imagery with thorough annotations is tricky 

and takes time, especially in areas that are 

environmentally or politically risky. Training and 

using deep CNNs also requires a lot of computation. 

Although problems are helped by the use of GPUs 

and cloud computing, access to supercomputers is 

still not equal everywhere. Still, issue three is 
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important: when trained on specific data, CNNs 

usually cannot perform well in new data unless they 

are retrained, showing that effective domain 

adaptation is essential. Not being able to show how a 

CNN arrives at its judgments may lead stakeholders 

to question its decisions, mainly in matters related to 

the environment, health and security. To address this 

issue, research involving XAI, attention mechanisms, 

saliency maps and LIME is becoming more important 

for the growth of CNN-based remote sensing 

systems. Transfer learning, self-supervised learning 

and semi-supervised learning can play a key role in 

avoiding the shortage of labeled information. 

Federated learning and edge computing could let 

processing take place where computers are less 

powerful, dealing with fewer resources. The 

contribution of Recurrent Neural Networks (RNNs) 

with CNNs allows for timely analysis of geospatial 

data, Transformers introduce attention-based fusion 

of different feature types and using Graph Neural 

Networks (GNNs) together supports understanding 

relationships in geospatial data in more detail. 

Thanks to movements such as those for open data 

like Copernicus and Landsat and open-source AI 

frameworks TensorFlow, PyTorch and Keras, anyone 

can access and work with both data and tools. 

Collaborative software like Google Earth Engine and 

Sentinel Hub are making it easier for anyone to use 

deep learning models in real-world situations which 

helps with sustainability, making things more 

resilient in the face of climate change and digital 

governance. CNNs make it easier to observe changes 

in the environment which is essential for reaching 

international development goals, including the United 

Nations Sustainable Development Goals (SDGs), the 

Paris Agreement on Climate Change and the 

Convention on Biological Diversity. CNNs are aiding 

in understanding and managing the biggest problems 

Earth is facing at the moment. When AI and satellite 

photos unite, CNNs will support the next phases of 

remote sensing, aiding faster, smarter and more 

responsible ways of making decisions. Despite 

challenges in technology, ethics and rules, 

advancements in CNNs highlight that they will lead 

to new developments in using satellite images. 

Investing in research, education and teamwork will 

ensure CNNs help make the future for our world 

better, safer and more sustainable 
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