Evaluation of The Effects of Natural Lighting and Ventilation on Children Cognitive Development and Academic Performance: A Literature Review

FAVOUR I. ILESANMI¹, OBAFEMI A. IBITOYE², GBEMIGA O. KUKOYI³, OLUFUNMILOLA O. ADENUBI⁴

^{1, 2, 3, 4}Department of Architecture, College of postgraduate Studies, Caleb University, imota, Lagos state

Abstract- This study looks at the effects of natural lighting and ventilation on children's cognitive development and academic achievement. Recent study has shown that exposure to natural light improves cognitive skills such as memory recall, attention span, and information processing, all of which lead to better academic achievement. Furthermore, proper ventilation is vital in maintaining indoor air quality, which is necessary for students' alertness, attention, and overall wellbeing. The study examined diverse classroom settings to determine how differing levels of natural light and airflow affect students' learning experiences. According to the findings, classrooms constructed with enough of natural light and efficient ventilation not only produce a more conducive learning environment, but also contribute to better student health outcomes by lowering fatigue and stress. This study emphasizes the necessity of optimizing classroom surroundings to improve educational experiences, recommending that educational officials and school administrators prioritize the inclusion of natural lighting and sufficient ventilation in school designs.

Indexed Terms- Natural Lighting, Ventilation, Cognitive Development, Academic Performance, Classroom Environment

I. INTRODUCTION

Children's academic achievement and cognitive development are strongly affected by their school environment. Of all environmental factors, natural air and light influences learning outcomes the most. Studies have shown that exposure to natural light makes children more cheerful, focused and cognitively active. Improvement in the air quality of a classroom with enhanced ventilation is associated with better academic performance, as reported by (Bakó-Biró et al. 2012) that higher ventilation rates in schools are associated with better student performance. Daylight is extra special because it sets the body's circadian rhythms, which you need to stay awake and attentive during school time. (Bajwa and Dogar 2024) considered the direct effect of classroom lighting quality on years' learning potential, and found a positive effect of daylight in well-lit classrooms on the academic achievement of students. This is in line with (Sadrizadeh et al. 2022) conclusion emphasizing the significance of indoor environmental quality (IEQ) in schools, that good lighting and ventilation lead to healthier children and subsequently better cognitive development. What is more, creating learning environments that incorporate nature fosters greater well-being as well as learning. According to Vakalis et al. (2021), green schools which apply natural lighting and ventilation are found to contribute in the improvement of academic performance by increasing the interest of the students and reducing the level of stress. The implementation of these factors in school buildings points however, towards an increased understanding about the necessity of a designed environment for academic achievement and general upbringing.

Natural lighting and ventilation have been proven to enhance students' cognitive growth and academic performance for many years. When educational authorities and governments decide to focus on these elements they will enhance educational experiences and achieve superior academic results for future students.

1.1 Research Aim and Objectives

Research Aim:

This study aims to evaluate the impact of natural lighting and ventilation on children's cognitive development and academic performance, and to highlight the importance of optimizing classroom environments for enhanced learning outcomes.

Research Objectives:

- 1. To assess the impact of natural lighting on the cognitive development and academic performance of children in classroom environments.
- 2. To examine the role of proper ventilation in enhancing air quality and its correlation with Improved student performance and well-being.
- 3. To explore the integration of natural light and ventilation in school architecture as a holistic approach to creating optimal learning environments.

II. LITERATURE REVIEW

The association between natural light, ventilation and children's cognitive performance and academic achievement is an important field for research work. Several studies have investigated how the environment factors are associated with students' well-being and learning, underscoring the important part they play in creating the perfect educational conditions.

• Natural light and Academic performance

Sunlight is one of the most beneficial environmental factors on children's cognitive development. According to research, exposure to natural light in the classroom promotes focus, Alertness, and mood all of which are important components of effective learning. (Vakalis et al.2021) found that pupils exposed to natural light performed much better on standardized tests, improving reading and arithmetic scores by up to 26% over a year when compared to students in artificially lit classes. Furthermore, kids in well-lit classrooms were more engaged, retaining their focus throughout the school day, which is critical for academic success.

Beyond academic success, natural light improves children's physical and mental well-being. Natural light exposure has been demonstrated in studies to control sleep cycles, improve attention, and reduce behavioral disorders in schools (Sadrizadeh et al., 2022). Research suggests that windows with natural light and outdoor views can improve pupils' emotional health and reduce stress (Díaz-Martínez et al., 2023).

• Ventilation and Cognitive Development

Good ventilation is really important for healthy indoor air quality and children's thinking skills and health are closely related to a healthy space inside. If the air inside is not good enough, students might find it hard to focus, be away from school a lot, and have more health problems.

Proper ventilation in schools is very important for improving cognitive skills and ensuring good health results. Ventilation lowers the concentration of pollutants in indoor air, and it can assist in protecting a healthy zoning environment. As an example, schools using increased natural ventilation have indicated that student absence is lower and breathing problems are reduced (Fernandes et al. , 2023). In addition, fresh air enhances brain function and also how much energy someone has, and these things really help students do well in school.

• Combined effects of natural lighting and ventilation

We can see that the best places for learning, which truly boost how kids' brains develop, happen when natural light and fresh air work together. Classrooms that are well-ventilated and have a lot of natural light, studies show, enable students to have better focus and be more capable when they switch between tasks. For example, when paired with good airflow, dynamic lights that adjust with the time of day may improve students' thinking skills (Vestfal & Seduikyte, 2024). Furthermore, adding green spaces to school grounds, which of course provide light and ventilation, has been tied to improved brain development in children. Exposure to green spaces has been linked to improved focus and better emotional regulation (Díaz-Martínez et al. , 2023). Research generally and strongly backs up the idea that good lighting and enough fresh air are key parts of places that help kids learn and do well in school. When schools make these things a key part of how they design their buildings, they can really help students do better in school and have a more positive time learning.

III. METHODOLOGY

This study employs a qualitative research method, relying on a complete literature review, to evaluate how natural light and airflow affect kids' thinking skills and school success. To do this, we carefully reviewed research papers and documents that study the connection between things in the classroom, like light and fresh air, and how well children learn. The base of the research is the literature review and it sums up past studies on how environmental designs like natural light and airflow affect kids' learning, thinking, and health. The research reviews school papers and documents from subjects like environmental psychology, teaching, and building design, and it finds key plans and results on how natural light and airflow change how well kids learn. In addition, this process includes evaluating different studies.

The studies were done in many climate situations to find out if the plans worked well in those different places. Through literature analysis, this study intends to comprehensively understand how natural lighting and ventilation impact cognitive development and academic achievement. Looking at what works in design and how it helps students in a measurable way, the study looks forward to helping plan and create better learning spaces, so kids have the best environment for learning. The data gathered from the literature review will be merged so we can understand more clearly how parts of the environment like natural light and airflow can be changed in schools to help children's minds grow and help them do better in their studies.

IV. RESULT AND DISCUSSIONS

The research looks into ten studies regarding how natural light and airflow impact children's thinking and learning in school, mainly looking at what they wanted to achieve, how they did it, and what they found out. The study checks out how the design of school environments, mainly natural light and air that is clean, helps students learn and get better grades. The review looks into various answers and includes making the most of classroom design for natural light, adding natural air systems, and pushing for a healthier inside space. The discoveries explain how passive design techniques improve thinking ability, school performance, and complete student health. This study gives thoughts on how to build supportive and durable educational settings, and these settings encourage children's thinking growth and school success.

S/N	Title of article	Name of author(s)	Aim and objectives	Methodology	Result
		and year it	objectives		
		was			
		published			
1.	Investigating the	Abdolreza	To assess the	A systematic	This review
	impact of	Gilavand	impact of	literature review	discovered that
	environmental	(2016)	environmental	was conducted	natural lighting
	factors on learning		factors, mainly	by using data	significantly
	and academic		natural lighting	from major	improves the
	achievement of		on student	databases (e.g,	students'
	elementary		cognitive	PubMed,	academic
	students: review		performance	Scopus, SID,	performance and

4.1 Summary of reviewed literature

	I		1 1 .	1 ~ ·	· · · · · · · · · · · · · · · · · · ·
			and academic	and Google	learning.
			achievement.	Scholar). Out of	Adequate lighting
			The objective	252 articles	enhances visual
			was to guide	initially found,	comfort, it also
			educational	39 of them were	reduces stress,
			planners and	selected based	improves focus
			designers in	on expert	and
			considering	evaluation. The	concentration,
			lighting as an	review covered	and contributes to
			important	studies from	better cognitive
			element in	2000 onward,	development
			creating	and data	
			effective	extraction and	
			learning	quality	
			environments	assessment were	
				done	
				independently	
				by two	
				investigators	
2.	A field Study of the	Qiang Liu,	To investigate	A field	Lighting
	Impact of Indoor	Zheng	on how	experiment was	considerably
	Lighting on Visual	Huang,	different types	conducted with	influenced skin
	Perception and	Zhijiang Li,	of indoor LED	79 college	tone perception
	Cognitive	Michael R.	lighting in	students in a	and atmospheric
	Performance in	Pointer,	classrooms	classroom under	comfort.
	Classroom	Geng Zhang,	affect students	two types of	However, no
		Zhen Liu,	visual	lighting (tubular	significant impact
		Hanwen	perception and	LED and LED	was found on
		Gong, Zhen	cognitive	panel). Six tests	attention
		Hou (2020)	performance.	were conducted	(Anfimoy test),
		× ,	The objective	before and after	alertness (KSS),
			was to get a	a 2-hour study	or reading
			better	session,	comfort.
			understanding	including color	Paper color
			on the roles of	preference,	seemed to have a
			light quality	atmosphere	stronger effect on
			and visual	perception, the	their reading
			fatique on	Anfimov	comfort than
			reading	attention test,	lighting. Also,
			comfort,	Karolinska	there was no
			attention and	Sleepiness Scale	major viausl
			alertness in real	(KSS), and	fatique effect that
			classroom	reading comfort	was detected
			settings.	using three	after 2 hour study
			seemige.	different paper	
				colors.	
				201010.	
-	Influence of the	Lucas	To analyze	Field study was	Lighting levels
3.				I I I I I I I I I I I I I I I I I I I	

thermal and lighting Arangohow thermal made in 40 had a weak but performance in Díaz, Olga and lighting classrooms statistically classrooms on the Lucía conditions in across 14 public significant effect cognitive Montoya classrooms schools in on cognitive productivity of Flórez, influence Bogotá, Cali, outcomes, students in Laura and Medellín cognitive especially in Colombia Rendón performance (2017 - 2018).semantic fluidity Gaviria, Luz tasks. Students (attention and Used cognitive Magnolia executive performance performed better Tilano Vega, functions) of tests (e.g., letter in attention tests Carla Maria cancellation and 5th and 6thunder optimal Zapata grade students fluidity tasks), operative Rueda in public thermal and temperature (2021)schools in visual conditions. Colombia. The perception However, objective was surveys, and relations were not to assess physical always strong, environmental measurements possibly due to comfort factors (illuminance, adaptation to and their temperature, local climate. correlation humidity). Data Lighting effects with learning analyzed with varied by city and efficiency. correlational light type and hierarchical (horizontal vs. regression vertical). methods. 4. Effects of lighting Wonyoung The study For six Lighting and sound factors Yang & Jin sought to experimental elements had a environmental sessions, 60 big impact on on Yong Jeon examine how sensation. (2023)lighting and students from thinking skills, perception, and sound aspects the university even more than cognitive influence were in a real noise did. performance in a environmental classroom. Environmental classroom feeling, insight, Different perception and thinking lighting showed crossskills inside of conditions modal effects, but classrooms. included sensation did not changes in show them. It illuminance, turns out that specifically at classrooms 650 lx and 1050 considered lx, as well as perfect spots related color might not temperatures of actually boost 3000 K, 4000 K, thinking skills. and 5700 K. Sound

© JUN 2025 | IRE Journals | Volume 8 Issue 12 | ISSN: 2456-8880

				conditions were	
				also	
				manipulated. To	
				assess cognitive	
				performance,	
				researchers used	
				a working	
				memory test and	
				it was based on	
				the Korean	
				Wechsler Adult	
				Intelligence	
				Scale-IV.	
5.	Indoor	Oluyemi	The goal was	Obtained data	Not enough
	Environmental	Olagoke	to check the	from elementary	ventilation was
	Quality, Pupil's	Toyinbo	inside	schools that are	tied to poor air,
	Health and	(2017)	environmental	in Finland, the	more breathing
	Academic		quality, mainly	USA, and also	problems for
	Performance		the ventilation,	Nigeria. The	students, a rise in
			of primary	temperature	school absences,
			schools and	inside was	and also worse
			how it connects	measured, as	results in class.
			to student	well as CO ₂ ,	When ventilation
			health and	CO, moisture	systems were
			school results.	levels, how air	better, thermal
				moves, and	comfort and
				details about the	thinking results
				buildings. The	improved too. As
				surveys were	more students
				given to	occupied a
				students and	classroom, the
				principals and	ventilation
				furthermore, the	available to each
				health records	student was
				and academic	reduced.
				performance	
				information	
				were carefully	
6	Internetion la tor	Lin D.:: T	The1 ' '	analyzed.	Good ventilation
6.	Interaction between	Lin-Rui Jia,	The goal is to	The study	
	Thermal Comfort,	Jie Han, Xi	examine how	featured a	really improves
	Indoor Air Quality	Chen, Qing-	thermal	thorough review	indoor air
	and Ventilation	Yun Li, Chi-	comfort, indoor	of published	quality; it also
	Energy	Chung Lee,	air quality, and	work, looking at	lowers carbon dioxide and
	Consumption of Educational	and Yat-Hei	ventilation	148 papers from	
		Fung (2021)	energy use	sources such as	pollution, which
	Buildings: A		work together	Scopus, Web of	helps students do

© JUN 2025 | IRE Journals | Volume 8 Issue 12 | ISSN: 2456-8880

	Comprehensive		in school	Science, and	better and feel
	Review		buildings,	also	healthier. When it
			mainly to find	ScienceDirect; it	comes to
			ways of	covered	ventilation,
			making air	different	mechanical and
			quality and	ventilation	hybrid setups do
			how well	styles like	a better job
			students do	natural,	compared to only
			better.	mechanical, and	using natural
				mixed systems,	methods. Bad air
				IAQ	inside is related
				measurements	to lower thinking
				like CO2, PM,	skills and also
				VOCs, plus	more missed
				what all this	days.
				means for well-	
				being and	
				grades.	
7.	The Role of	Ballerini,		Over a school	Mechanical
	Mechanical	V.;		year, a	ventilation
	Ventilation in	Coccagna,		controlled study	decreased CO ₂
	Indoor Air Quality	M.; Bisi, M.;		in Ferrara, Italy,	levels by 62% on
	in Schools: An	Volta, A.;		made a	average, going
	Experimental	Droghetti,		comparison of	from 2500 ppm
	Comprehensive	L.; Rossi di		mechanical and	to roughly 1000
	Analysis	Schio, E.;	In a high	natural	ppm; this helped
		Valdiserri,	school	ventilation in	students be more
		P.;	classroom, the	one classroom.	comfortable and
		Mazzacane,	effect of a	The sensors	pay attention
		S. (2025)	mechanical	took readings of	better. Still, not
			ventilation	CO ₂ ,	much of a difference was
			system on air	temperature,	
			quality was	humidity, PM2. 5, VOCs, and	found for PM2. 5, VOCs, and
			tested, and the	also radon both	radon. When
			focus was on	before and after	using natural
			measuring CO ₂ ,	the installation	airflow, CO ₂
			PM2. 5, VOCs,	of MVHR or	levels would rise
			and radon.	Mechanical	above 4500 ppm;
				Ventilation with	however, MVHR
				Heat Recovery.	maintained levels
					below 1500 ppm.
					Steady indoor
					temperature and
					humidity made
					well-being better
					well-being better

8.	Enhancing Learning with Nature- Inspired Design in Schools	Ritika Omar, Deepti Pande Rana, Ar. Smriti Rastogi (2024)	The study looks at how including natural aspects like sunlight and fresh air in school construction might support the mental, emotional, and social growth of children.	The approach used different methods like a full review of existing writings, detailed looks at specific examples such as Nandanam Kindergarten and Fuji Kindergarten, surveys, watching what happened, and studying themes in things like light, airflow, and room layout.	When natural light and air flow are used together, the air inside is better, stress goes down, and it is easier to pay attention, be creative, and get along with people. The results of the study indicated a definite relationship between environmentally friendly design and superior areas for education. For sustainability and also for student well-being, mechanical systems that included natural features were shown to be the
9.	Architectural Indoor Analysis: A Holistic Approach to Understand the Relation of Higher Education Classrooms and Academic Performance	Vicente López-Chao, Antonio Amado Lorenzo, Jorge Martin- Gutiérrez (2019)	We aim to examine how elements inside buildings, like sunlight and airflow, affect grades in college classrooms from a complete point of view.	Using mixed methods, 796 undergraduates were surveyed with the iPEP scale; classroom elements were assessed through statistical techniques; interviews with teachers offered helpful observations.	most effective. Ventilation and also natural lighting were found to significantly predict a student's grade point average. Sunlight and scenery helped students focus in active classrooms, but in lecture halls where students were more passive, too much sunlight was a distraction. Good

© JUN 2025 | IRE Journals | Volume 8 Issue 12 | ISSN: 2456-8880

10.	Biophilic Design for Restorative University Learning Environments: A Critical Review of Literature and Design Recommendations	Terri Peters & Kristen D'Penna (2020)	The purpose is to discover and assess biophilic design elements, including things like natural light and airflow, that help boost health and thinking skills in university study areas.	A review of literature that was semi- structured and multi- disciplinary spanned across engineering, environmental psychology, and architecture. The studies were arranged by biophilic elements such as daylight entry, airflow, and natural resources and linked to how students did and felt.	handlingofnaturalairflowhadahelpfuleffectoperformance.Thedatasupportsdatasupportsacompletemixoflightandairflowreallydoesimprovelearning results.Usingnaturallightandgoodairflowboosthowwellstudentslearn,theirgoodfeelings.Proposedideasare windowsthatuserscanofdaylight, goodairflowforcomfort,andspaces planned tohelpwith"prospectandrefuge."Completebiophilicbiophilicplansare very effectivewhen creating thebestlearningplaces.
-----	--	--	--	---	--

Table 4.1: Summary of reviewed literature

4.2 Discussion of reviewed literature

From the literature reviewed, it is evident that environmental elements especially daylighting and natural ventilation, play a crucial role in students' learning, comfort, and well-being.

In real-life, daylighting has been proven to have a positive effect on the cognitive performance, visual comfort, and mental health. (Gilavand 2016) states that sufficient natural light decreases stress levels

increases concentration and enhances educational achievement, and that healthy learning depends more on natural light, especially for the younger generation. (Yang and Jeon 2023) also reported the same in a university when existing light level and CCT had a direct relationship with the score of cognitive performance.

Some research, though, provides more complicated findings. (Liu et al. 2020), for example, reported that LED lighting types had a small effect on attention

and alertness, which may indicate that lighting can be context-dependent and be affected by other variables, such as material contrast or visual fatigue. Ventilation and indoor air quality (IAQ) is just as important. Findings by (Toyinbo 2017) and (Jia et al. 2021) concluded that poor air quality and respiratory symptoms occur indoors, and inadequate ventilation results in lower air quality and higher absenteeism, as well as decreased academic performance. Mechanical and hybrid ventilation systems have been proven to be superior to natural ventilation. According to a study by (Ballerini et al., in 2025), the introduction of these mechanical systems notably diminished CO2 levels while simultaneously stabilizing temperature and humidity. This change not only improved comfort but also enhanced students' attention span.

Multiple studies underscore the collective advantages of incorporating natural light and ventilation in school architecture. (Omar et al. 2024) and (López-Chao et al. 2019) have confirmed that a comprehensive design approach, which includes access to daylight, cross-ventilation, and views of nature strongly correlates with improved attention span, emotional stability and academic performance among students. These findings align with biophilic design principles discussed by (Peters and D'Penna 2020), who advocate for multi-sensory environmental features such as operable windows, varied daylight, and airflow variability to create restorative, productive learning spaces.

It was observed by (Arango-Díaz et al. 2021) that regional variables and accommodation processes could have an effect on how lighting and thermal comfort interact with a student's learning performance. It is clear that putting solutions in place that consider the situation is important when building or improving schools. To summarize, the research shows a definite pattern: schools using natural light and good airflow, mainly with complete building designs, usually help students be healthier, think better, and do better in school.

CONCLUSION

This research looked at how natural light and airflow affect how kids grow mentally and do in school

within classrooms. Looking at lots of studies, it becomes obvious that these outside things are key to helping kids pay attention, keep information, and succeed in their studies. It is clear that natural light makes seeing easier, helps keep your sleep cycle regular, and also lowers stress, which are all things that help you learn better. In the same way, good ventilation helps to make the air inside cleaner, which can lead to better focus, less absence from school, and a greater sense of well-being.

The article emphasizes the importance of integrating natural light and ventilation in school design for creating optimal learning environments. These elements do not only boost academic performance but also foster emotional and physical health when incorporated effectively into educational spaces. The findings reinforce the importance of biophilic and sustainable design in educational architecture and highlight the need for educational stakeholders, planners, architects, and policymakers, to prioritize these elements in future school development and renovation projects.

REFERENCES

- [1] Al-Jokhadar, A., et al. (2023). The impact of indoor environmental quality (IEQ) in design studios on the comfort and academic performance of architecture students.
- [2] Bakó-Biró, Z., Clements-Croome, D. J., Kochhar, N., Awbi, H. B., & Williams, M. J. (2012). Ventilation rates in schools and pupils' performance. Building and Environment, 48, 215-223.
- [3] Bajwa, M. J., & Dogar, S. R. (2024). Examining the Direct Influence of Classroom LightingQuality on Students' Learning Abilities and Academic Achievement. Pakistan Languagesand Humanities Review, 8(4), 197-210.
- [4] Díaz-Martínez, F., et al. (2023). Systematic review: neurodevelopmental benefits of active/passive
- [5] school exposure to green and/or blue spaces in children and adolescents.

- [6] Fernandes, A., et al. (2023). School-based interventions to support healthy indoor and outdoor environments for children: a systematic review.
- [7] Fisher, K. (2024). The Biophilic School: A Critical Synthesis of Evidence-Based Systematic Literature Reviews. Architecture, 4(3), 457-478.
- [8] Higgins, S., Hall, E., Wall, K., Woolner, P., & McCaughey, C. (2005). The impact of school environments: A literature review. London: Design Council.
- [9] Hoang, P. N., et al. (2022). The Influence of Lighting, Noise, and Temperature on the Academic Performance of Students during the COVID-19 Pandemic.
- [10] Kalantari, S., & Shepley, M. (2021). Psychological and social impacts of high-rise buildings: A review of the post-occupancy evaluation literature. Housing Studies, 36(8), 1147-1176.
- [11] Manca, S., Cerina, V., Tobia, V., Sacchi, S., & Fornara, F. (2020). The effect of school design on users' responses: a systematic review (2008– 2017). Sustainability, 12(8), 3453.
- [12] McNeill, V. Faye, et al. Room level ventilation in schools.Ndimako, O., Babalola, O., & Ugah, U. (2024). Students' Wellness and Mindfulness in School Designs.
- [13] Sadrizadeh, S., Yao, R., Yuan, F., Awbi, H., Bahnfleth, W., Bi, Y., ... & Li, B. (2022). Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 57, 104908.
- [14] Vakalis, D., et al. (2021). "Can green schools influence academic performance?" Critical Reviews in Environmental Science and Technology, 51(13), 1354-1396.
- [15] Whittem, V., Roetzel, A., Sadick, A. M., & Kidd, A. N. (2022). How comprehensive is post-occupancy feedback on school buildings for architects? A conceptual review based upon Integral Sustainable Design principles. Building and Environment, 218, 109109.

[16] Zaniboni, L., & Albatici, R. (2022). Natural and mechanical ventilation concepts for indoor comfort and well-being with a sustainable design perspective: a systematic review. Buildings, 12(11), 1983.