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Abstract- Traditional Black-Scholes models assume 

frictionless markets with continuous price 

movements, limiting their applicability in emerging 

economies where transaction costs and sudden 

market shocks significantly influence asset pricing 

dynamics. These limitations became particularly 

evident during the COVID-19 pandemic when 

markets experienced unprecedented volatility and 

liquidity constraints. This study derives a novel 

Black-Scholes differential equation that 

incorporates mean reversion, jump diffusion 

processes, and transaction costs within a European 

logistic option pricing framework to address real-

world market complexities. We extend geometric 

Brownian motion by integrating Vasicek mean 

reversion dynamics, Poisson jump processes for 

market discontinuities, and explicit transaction cost 

modeling. The enhanced stochastic differential 

equation is: dS(t) = (α - λk - τ)(S̄ - ln S(t))S(t)(S* - 

S(t))dt + σS(t)(S* - S(t))dZt + S(t)dq, where α 

represents mean reversion speed, λ is jump intensity, 

τ denotes transaction costs, and dq captures Poisson 

jumps. Parameters are estimated using maximum 

likelihood methods with conditional density 

functions. Empirical validation using four major 

Nairobi Securities Exchange companies (2020-2022) 

demonstrates superior performance. Our model 

produces consistently lower, more realistic volatility 

estimates compared to five benchmark models. For 

Equity Bank, volatility estimates were 0.97 (2020) 

versus 1.36-1.68 from traditional models. ANOVA 

analysis confirms statistical significance of 

transaction cost effects (F = 1690.54, p < 2.8E-276). 

The model effectively captured crisis-period 

dynamics while maintaining stability through mean 

reversion mechanisms. The enhanced framework 

provides more accurate asset pricing for emerging 

markets by simultaneously accounting for bounded 

growth, price reversions, jump risks, and trading 

frictions. This offers substantial improvements for 

portfolio optimization, risk management, and 

derivative pricing in volatile market environments. 

 

Indexed Terms- Black-Scholes equation, mean 

reversion, jump diffusion, transaction costs, logistic 

Brownian motion, emerging markets, volatility 

estimation 

 

I. INTRODUCTION 

 

The Black-Scholes-Merton model, introduced by 

Black and Scholes (1973) and extended by Merton 

(1973), fundamentally transformed option pricing 

theory by providing the first closed-form solution for 

European options. However, the model's restrictive 

assumptions—including constant volatility, 

continuous price movements, zero transaction costs, 

and perfect market liquidity—have proven 

increasingly problematic in contemporary financial 

markets, particularly in emerging economies where 

these assumptions are routinely violated. 

Classical Black-Scholes models assume that asset 

prices follow geometric Brownian motion (GBM), 

characterized by continuous price paths and constant 

parameters. This assumption implies unlimited 

exponential growth, contradicting empirical evidence 

of mean reversion documented by Poterba and 

Summers (2020) and Balvers et al. (2020). 

Furthermore, the frictionless market assumption 

ignores substantial transaction costs that can range 

from 0.5% to 5% in emerging markets (Lesmond, 
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2019). The 2008 financial crisis and COVID-19 

pandemic further exposed these limitations, as markets 

experienced extreme volatility clusters, sudden price 

jumps, and severe liquidity constraints that traditional 

models failed to capture. 

Empirical research has documented several stylized 

facts challenging traditional assumptions. Asset prices 

exhibit mean reversion over longer horizons, with 

Fama and French (2018) showing negative serial 

correlation in stock returns over 3-5 year periods. 

Financial markets experience sudden price 

discontinuities, with Cont and Tankov (2016) 

demonstrating that 10-15% of price variation stems 

from jumps, increasing to 25-30% during crisis 

periods. Transaction costs in emerging markets are 

typically 3-5 times higher than developed markets 

(Bekaert & Harvey, 2017), creating substantial 

arbitrage barriers and affecting price discovery. 

The COVID-19 pandemic provided a natural 

experiment highlighting model inadequacy. During 

March 2020, the Nairobi Securities Exchange 

experienced unprecedented volatility, with the NSE 20 

index declining over 35% within three weeks. 

Traditional Black-Scholes models severely 

underestimated option prices, failing to account for 

extreme volatility clustering and jump risks. 

Transaction costs increased significantly as bid-ask 

spreads widened and liquidity dried up, creating 

feedback loops that amplified price volatility. 

This study addresses these challenges by developing 

an enhanced Black-Scholes framework integrating 

four critical features: (1) Vasicek-type mean reversion 

modeling price tendency toward long-term 

equilibrium, (2) Poisson jump processes capturing 

sudden discontinuities, (3) explicit transaction cost 

modeling reflecting trading frictions, and (4) logistic 

growth constraints imposing realistic bounds on price 

evolution. The primary objective is to derive a 

comprehensive Black-Scholes differential equation 

incorporating these elements within a European 

logistic option pricing framework. 

This research contributes theoretically by extending 

option pricing theory through a unified framework 

addressing multiple empirical regularities 

simultaneously. Methodologically, the integration of 

mean reversion, jump diffusion, and transaction costs 

within logistic growth represents a novel approach 

balancing mathematical tractability with empirical 

realism. Practically, the enhanced model provides 

more accurate volatility estimates and option prices for 

emerging market applications, with direct implications 

for portfolio management and risk assessment. 

II. LITERATURE REVIEW 

2.1 Evolution of Option Pricing Theory 

The Black-Scholes-Merton framework established by 

Black and Scholes (1973) and Merton (1973) provided 

the theoretical foundation for modern option pricing 

under geometric Brownian motion assumptions. 

However, empirical studies consistently documented 

systematic biases, leading to numerous extensions. 

Hull and White (1987) introduced stochastic volatility 

models to address constant volatility assumptions, 

while Heston (1993) developed the widely-used model 

allowing volatility correlation with underlying assets. 

These advances highlighted the trade-off between 

model flexibility and computational tractability that 

continues to challenge option pricing research. 

2.2 Mean Reversion in Financial Markets 

Mean reversion in asset pricing has substantial 

theoretical and empirical support. Poterba and 

summers (1988) provided pioneering evidence of 

mean reversion in U.S. stock markets, documenting 

significant negative serial correlation over 3-5 year 

horizons. Fama and French (1988) extended this 

research across different portfolio formations, finding 

stronger mean reversion for smaller firms and growth 

stocks, attributed to market inefficiencies and 

behavioral biases. International evidence from Balvers 

et al. (2000) using 18 OECD countries confirmed 

robust mean reversion with approximately 3.5-year 

half-life, particularly strong in emerging markets 

where informational inefficiencies create greater 

mispricing opportunities. 

The Vasicek (1977) model provided the mathematical 

framework for incorporating mean reversion, 

originally for interest rates but subsequently adapted 
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for equity applications. The model describes financial 

variables reverting toward long-term means at speeds 

determined by mean reversion parameters, offering 

more realistic price dynamics than exponential growth 

models. 

2.3 Jump Diffusion Models 

Merton (1976) pioneered jump process incorporation 

into option pricing, recognizing that asset prices 

experience sudden, large movements unexplainable by 

continuous diffusion. His jump-diffusion model 

combines geometric Brownian motion with compound 

Poisson processes, where jumps arrive according to 

Poisson distributions with specified size distributions. 

Economic motivation stems from discontinuous price 

movements coinciding with earnings announcements, 

macroeconomic surprises, or geopolitical events. 

Empirical studies consistently document jump 

presence in financial data. Andersen et al. (2007) using 

high-frequency data found jumps contribute 20-30% 

of return variation during volatile periods. Recent 

developments include Kou's (2002) double 

exponential jump models allowing asymmetric 

distributions, and Carr and Wu's (2004) time-changed 

Lévy models combining jumps with stochastic 

volatility. 

2.4 Transaction Costs and Market Frictions 

Transaction costs represent fundamental market 

frictions significantly affecting trading strategies and 

option pricing. Leland (1985) provided the first 

rigorous treatment, demonstrating that optimal 

hedging under transaction costs differs fundamentally 

from continuous rebalancing strategies of frictionless 

models. His analysis showed transaction costs lead to 

wider hedging bands and less frequent rebalancing. 

Empirical evidence documents substantial cross-

sectional and temporal variation in transaction costs. 

Lesmond et al. (1999) found emerging market 

transaction costs 3-5 times higher than developed 

markets, reflecting lower liquidity and wider spreads. 

Bekaert et al. (2007) showed costs are particularly 

high during crisis periods when liquidity providers 

withdraw and spreads widen dramatically. Amihud 

and Mendelson (1986) demonstrated that higher 

transaction cost assets require higher expected returns, 

establishing the liquidity premium as an important 

pricing factor. 

2.5 Logistic Growth Models and Integrated 

Approaches 

Logistic growth models provide frameworks for 

bounded asset price evolution, addressing geometric 

Brownian motion's unlimited growth limitation. 

Onyango (2003) introduced logistic Brownian motion 

to financial modeling, incorporating carrying capacity 

constraints that create natural price bounds. Oduor 

(2016) extended this to option pricing, developing 

closed-form solutions for European options under 

logistic dynamics. 

Recent developments focus on integrated models 

combining multiple empirical regularities. Bates 

(1996) combined stochastic volatility with jumps for 

exchange rates, while Eraker et al. (2003) extended 

this to equity markets. Schwartz (1997) developed 

mean-reverting jump-diffusion models for 

commodities. Mulambula et al. (2020) integrated 

logistic growth with jump diffusion, demonstrating 

superior empirical fit compared to individual 

components. These integrated approaches aim to 

capture complex market feature interactions while 

maintaining mathematical tractability. 

III. METHODOLOGY 

3.1 Model Framework 

Our approach begins with the standard logistic 

Brownian motion and progressively incorporates 

mean reversion, jump diffusion, and transaction costs. 

The base logistic model is given by: 

dS(t) = αS(t)(S* - S(t))dt + σS(t)(S* - S(t))dZ_t 

where S(t) is the asset price, S* is the market 

equilibrium, α is the growth parameter, σ is volatility, 

and dZ_t is a Wiener process. 
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3.2 Mean Reversion Integration 

We incorporate mean reversion by modifying the drift 

term to include the difference between the long-term 

mean and current log price: 

dS(t) = α(S̄ - ln S(t))S(t)(S* - S(t))dt + σS(t)(S* - 

S(t))dZ_t 

where S̄ represents the long-term equilibrium log 

price. 

3.3 Jump Diffusion and Transaction Costs 

The complete model incorporates jump diffusion 

through a Poisson process and transaction costs as a 

drift adjustment: 

dS(t) = (α - λk - τ)(S̄ - ln S(t))S(t)(S* - S(t))dt + 

σS(t)(S* - S(t))dZ_t + S(t)dq 

where λ is the jump intensity, k is the average jump 

size, τ represents transaction costs, and dq is the 

Poisson jump process. 

3.4 Solution Methodology 

Using the transformation y_t = ln S(t) and applying 

Itô's lemma, we derive the stochastic differential 

equation for the log price. The solution is obtained 

through integration and involves: 

1. Exponential transformation: Converting the SDE 

to a more tractable form 

2. Integration by parts: Solving the resulting integral 

equation 

3. Maximum likelihood estimation: Estimating 

model parameters 

4. Variance calculation: Deriving the conditional 

variance structure 

3.5 Parameter Estimation 

Parameters are estimated using maximum likelihood 

methods with the conditional density function: 

f(y_t) = (2π)^(-0.5) * [σ²/2(α-λk-τ) * (1-e^(-2(α-λk-

τ)t))]^(-0.5) *  

         exp[-(y_t - mean)² / (2 * variance)] 

3.6 Empirical Validation 

We test the model using data from four major 

companies listed on the Nairobi Securities Exchange: 

 Equity Group Holdings 

 KCB Bank 

 East African Breweries Limited (EABL) 

 Kenya Power and Lighting Company (KPLC) 

The sample period covers 2020-2022, capturing the 

market volatility during the COVID-19 pandemic. 

IV. RESULTS 

4.1 Parameter Estimation Results 

Maximum likelihood estimation of the enhanced 

model yields the following parameter estimates for the 

four NSE companies over 2020-2022. The mean 

reversion speed (α) ranges from 0.85 to 1.24 across 

companies, indicating moderate to strong reversion 

tendencies. Jump intensity (λ) varies from 0.12 to 0.28, 

suggesting 12-28 jumps per year on average. 

Transaction cost estimates (τ) range from 0.008 to 

0.035, reflecting 0.8% to 3.5% trading frictions. All 

parameters are statistically significant at the 1% level, 

with robust standard errors accounting for 

heteroskedasticity. 

Company α̂ (s.e.) λ̂ (s.e.) k̂ (s.e.) τ̂ (s.e.) σ ̂(s.e.) Log-likelihood 

Equity 1.14(0.08) 0.18(0.03) 0.045(0.01) 0.012(0.003) 1.29(0.05) -892.4 

KCB 0.96(0.07) 0.15(0.02) 0.038(0.01) 0.010(0.002) 1.28(0.04) -886.7 

EABL 1.24(0.11) 0.28(0.05) 0.062(0.02) 0.025(0.006) 4.02(0.18) -1156.3 
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KPLC 0.85(0.09) 0.22(0.04) 0.071(0.02) 0.035(0.008) 3.78(0.21) -1189.6 

4.2 Volatility Estimation Comparison 

Our enhanced model (Model 5) consistently produces 

more conservative and realistic volatility estimates 

compared to benchmark models. The comparison 

across five models for 2020-2022 demonstrates 

systematic reductions in volatility estimates, 

particularly during crisis periods. 

Company Year Craine(2000) Oduor(2022) Mulambula(2021) Opondo(2021) Our Model 

Equity 2020 1.36 1.68 1.48 1.15 0.97 

Equity 2021 1.64 2.22 1.92 1.50 1.29 

Equity 2022 2.28 1.96 1.61 1.20 1.05 

KCB 2020 1.71 1.68 1.48 1.15 0.94 

KCB 2021 2.26 2.22 1.92 1.50 1.28 

KCB 2022 1.98 1.96 1.61 1.20 1.01 

EABL 2020 4.01 4.15 4.21 3.93 3.68 

EABL 2021 4.46 4.28 4.62 4.30 4.02 

EABL 2022 2.98 2.42 2.12 2.81 1.95 

KPLC 2020 6.18 6.79 6.45 6.03 5.61 

KPLC 2021 4.27 5.01 4.68 4.15 3.78 

KPLC 2022 3.82 4.42 3.98 3.47 3.12 

The results show our model reduces overestimation by 

10-30% compared to traditional approaches, with 

larger reductions during volatile periods. For EABL in 

2022, our model estimated volatility at 1.95 compared 

to 2.12-2.98 from other models, demonstrating 

superior crisis-period normalization. 

4.3 Statistical Validation 

ANOVA analysis confirms the statistical significance 

of transaction cost effects on asset price behavior. For 

Equity Bank 2020 data, the F-statistic of 1690.54 with 

p-value of 2.8E-276 strongly rejects the null 

hypothesis that transaction costs have no effect on 

price dynamics. Similar results hold across all 

companies and years. 

ANOVA Results - Equity Bank 2020: 

Sourc

e 

SS df MS F p-

val

ue 

F-

criti

cal 
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Likelihood ratio tests comparing our enhanced model 

against restricted versions (without mean reversion, 

jumps, or transaction costs) yield test statistics 

exceeding critical values at 1% significance levels, 

confirming that all model components contribute 

significantly to explanatory power. 

4.4 Mean Reversion Evidence 

Unit root tests (Augmented Dickey-Fuller) on log 

price series reject the null hypothesis of unit roots for 

all companies, with test statistics ranging from -3.45 

to -4.82 (critical value: -2.86 at 5% level). This 

provides strong evidence for mean reversion in NSE 

equity prices, supporting our modeling approach. 

Mean Reversion Test Results: 

Compan

y 

ADF 

Statisti

c 

p-

valu

e 

Half-

life 

(months

) 

Reversio

n Speed 

Equity -4.12 0.00

1 

7.3 1.14 

KCB -3.89 0.00

2 

8.7 0.96 

EABL -4.82 0.00

0 

6.7 1.24 

KPLC -3.45 0.00

9 

9.8 0.85 

Half-lives range from 6.7 to 9.8 months, indicating 

relatively fast mean reversion consistent with 

emerging market characteristics where informational 

inefficiencies create temporary mispricing that 

corrects relatively quickly. 

4.5 Jump Detection and Analysis 

Jump detection using the Barndorff-Nielsen and 

Shephard (2006) test identifies significant jump 

components in all series. EABL and KPLC exhibit 

higher jump frequencies during 2020-2021, 

corresponding to COVID-19 market stress. Jump 

contributions to total return variation range from 15% 

(banks) to 35% (KPLC), validating the inclusion of 

jump processes. 

Jump Analysis Summary: 

Compan

y 

Jum

p 

Days 

(%) 

Avg 

Jum

p 

Size 

Jump 

Contributio

n (%) 

Larges

t Jump 

Equity 8.2 4.1% 18.3 -12.4% 

KCB 7.6 3.8% 15.7 -11.8% 

EABL 12.4 5.8% 28.9 -18.7% 

KPLC 14.1 6.9% 34.6 -22.3% 

4.6 Transaction Cost Impact 

The empirical results demonstrate that transaction 

costs significantly dampen the positive effects of 

volatility on asset prices. Scenarios with 5% 

transaction costs show 25-40% lower price growth 

compared to 0.5% cost scenarios, even under identical 

volatility conditions. This validates the explicit 

modeling of trading frictions in emerging markets 

where such costs are substantial. 

Model-implied bid-ask spreads, derived from 

transaction cost parameters, range from 1.6% to 7.0%, 

consistent with observed NSE spreads during the 

sample period. The correlation between estimated 

transaction costs and observed market liquidity 
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measures is 0.73, providing external validation of our 

cost estimates. 

4.7 Model Performance during COVID-19 

The enhanced model's superior performance is 

particularly evident during the COVID-19 crisis 

period (March-May 2020). While traditional models 

failed to capture the rapid volatility changes and 

subsequent normalization, our model's mean reversion 

and transaction cost components provided stability. 

During the peak crisis week (March 16-20, 2020), our 

model's volatility estimates averaged 15% below 

benchmark models while maintaining predictive 

accuracy, as measured by option pricing errors on 

NSE-listed derivatives. 

Out-of-sample forecasting tests for the post-COVID 

recovery period (June 2020-December 2020) show our 

model achieves 23% lower mean absolute percentage 

error compared to the best-performing benchmark 

model, demonstrating practical superiority for risk 

management applications. 

CONCLUSION 

This research contributes to both academic 

understanding and practical application of option 

pricing theory, offering a more realistic and 

empirically validated framework for emerging market 

financial modeling. The integration of multiple market 

features within a coherent mathematical structure 

represents a meaningful advance in quantitative 

finance research with direct practical benefits for 

market participants and policymakers. 
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