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Abstract- This paper presents a novel approach to 

deriving the Black-Scholes differential equation by 

incorporating dividend yielding logistic Brownian 

motion with jump diffusion processes. Traditional 

Black-Scholes models assume constant volatility and 

neglect dividend payments and price discontinuities, 

which are prevalent in real financial markets. We 

extend the logistic Brownian motion framework to 

include both continuous dividend yields and jump 

diffusion components, creating a more realistic 

model for asset price dynamics. Using Itô's lemma 

and stochastic calculus, we derive the modified 

Black-Scholes partial differential equation that 

captures market complexities including price jumps 

and dividend distributions. The derived model 

demonstrates enhanced capability in describing asset 

price behavior under volatile market conditions, 

particularly during periods of economic uncertainty. 

Our theoretical framework provides a foundation for 

more accurate option pricing and risk management 

strategies in modern financial markets. 

 

Indexed Terms- Black-Scholes equation, logistic 

Brownian motion, jump diffusion, dividend yield, 

option pricing, stochastic processes 

 

I. INTRODUCTION 

 

The Black-Scholes model, introduced by Black and 

Scholes (1973), revolutionized option pricing theory 

by providing a mathematical framework for valuing 

European options. However, the original model makes 

several restrictive assumptions that limit its practical 

applicability, including constant volatility, continuous 

trading, and the absence of dividends during the 

option's lifetime (Black & Scholes, 1973). These 

assumptions often fail to capture the complexity of 

real financial markets, where asset prices exhibit 

sudden jumps, volatility clusters, and companies 

regularly distribute dividends to shareholders (Kou, 

2002). 

Recent empirical studies have shown that daily 

logarithmic returns of individual stocks are not 

normally distributed, particularly in short-term 

intervals, as stock prices exhibit leptokurtic features 

and produce volatility smiles (Mulambula et al., 

2020). Jump diffusion processes have been recognized 

as essential components for capturing discontinuous 

behavior in asset pricing, while dividend payments 

represent a fundamental reality in stock market 

operations (Oduor, 2022). 

Logistic Brownian motion models have emerged as an 

alternative to geometric Brownian motion, offering 

more realistic asset price dynamics by incorporating 

natural bounds that prevent indefinite exponential 

growth (Andanje, 2021). The logistic approach 

acknowledges that asset prices are influenced by 

supply and demand equilibrium mechanisms that 

naturally regulate price movements (Mulambula et al., 

2019). 

Modern financial crises have highlighted the need for 

models that can capture sudden market disruptions and 

extreme volatility events (Kwait, 2024). Traditional 

models fail to adequately price options during periods 

of high market stress, when jump events become more 

frequent and correlation structures break down (Friz et 

al., 2014). 

This paper addresses the gap in existing literature by 

developing a comprehensive framework that combines 
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dividend yielding logistic Brownian motion with jump 

diffusion processes. Our approach extends the work of 

previous researchers who have explored logistic 

Brownian motion with jump diffusion (Mulambula et 

al., 2019) and extensions of Dupire's formula for 

stochastic dividend yields (Ogetbil & Hientzsch, 

2022). 

II. LITERATURE REVIEW 

2.1 Black-Scholes Model Extensions 

The classical Black-Scholes equation governs the 

price evolution of derivatives under specific 

assumptions, including geometric Brownian motion 

for the underlying asset (Black & Scholes, 1973). 

Modern extensions of the Black-Scholes model have 

addressed various limitations, including dynamic 

interest rates, transaction costs, and dividend payouts 

(Merton, 1976). 

Merton's jump-diffusion model represented a 

significant advancement by incorporating 

discontinuous price movements, addressing the 

leptokurtic features observed in asset returns (Merton, 

1976). This model introduces a Poisson process to 

capture sudden price jumps that cannot be explained 

by continuous diffusion processes alone (Kou, 2002). 

2.2 Logistic Brownian Motion 

Logistic Brownian motion provides a more realistic 

framework for modeling asset prices by incorporating 

natural bounds that prevent unlimited growth 

(Mulambula et al., 2019). This approach recognizes 

that asset prices are subject to economic fundamentals 

and market mechanisms that create natural resistance 

levels (Oduor et al., 2018). 

The logistic model addresses limitations of geometric 

Brownian motion by incorporating excess demand 

functions and applying them within the Walrasian-

Samuelson price adjustment mechanism (Andanje, 

2021). This theoretical foundation connects asset 

pricing to fundamental economic principles of supply 

and demand, providing a more economically grounded 

approach to modeling price dynamics (Mulambula et 

al., 2020). 

Recent studies have shown that logistic Brownian 

motion can better capture the bounded nature of asset 

prices and provide more accurate volatility estimates 

compared to traditional geometric Brownian motion 

models (Andanje, 2021). 

2.3 Dividend Incorporation and Jump Processes 

Recent research has extended Dupire's formula to 

handle stochastic dividend yields, particularly in 

equity contexts where dividend rates vary over time 

(Ogetbil & Hientzsch, 2022). The treatment of cash 

dividends in local volatility models presents unique 

challenges, as traditional Dupire equations assume 

martingale properties that are violated by dividend 

payments (Dupire, 1994). 

Studies have explored methods to make Dupire's local 

volatility framework compatible with jump processes, 

proposing regularization procedures for option data to 

accommodate manifest jump presence (Friz et al., 

2014). The combination of dividend yields and jump 

diffusion creates additional complexity in option 

pricing models, requiring sophisticated mathematical 

treatments (Oduor, 2022). 

2.4 Recent Developments 

Contemporary research has focused on joint 

estimation of volatility and jump activity parameters 

in stable stochastic processes, addressing the 

superposition of diffusion components with jumps of 

infinite variation. Bayraktar and Clément (2024) have 

developed novel approaches for parametric estimation 

in stable Cox-Ingersoll-Ross models, proving that 

proposed estimators achieve rate optimality up to 

logarithmic factors when dealing with high-frequency 

observations of processes driven by non-symmetric 

stable Lévy processes.  

Empirical studies have demonstrated that jump 

diffusion models can outperform geometric Brownian 

motion in forecasting financial returns, particularly in 

foreign exchange markets, with Kwait (2024) showing 

superior performance in BRIC currency carry trading 

strategies when incorporating discontinuous price 

movements.  
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Advanced theoretical developments have emerged in 

extending classical option pricing frameworks to 

accommodate stochastic interest rates and local 

volatility structures. Ogetbil and Hientzsch (2022) 

have provided significant contributions by deriving 

generalizations of the Dupire formula for cases 

involving general stochastic drift and stochastic local 

volatility, particularly relevant for foreign exchange 

contexts where drift represents differences between 

stochastic short rates of different currencies.  

The integration of machine learning techniques with 

traditional stochastic calculus approaches has opened 

new avenues for model calibration and parameter 

estimation in jump diffusion frameworks. Recent 

computational advances have focused on developing 

efficient numerical methods for solving complex 

partial integro-differential equations that arise in 

models combining continuous and discontinuous price 

dynamics. 

Market microstructure research has increasingly 

recognized the importance of incorporating realistic 

market features such as dividend payments and jump 

discontinuities in option pricing models. The growing 

availability of high-frequency financial data has 

enabled more sophisticated empirical testing of 

theoretical models, leading to better understanding of 

the limitations of classical geometric Brownian 

motion assumptions and the superior performance of 

more complex stochastic processes in capturing real 

market behavior. 

III. METHODOLOGY 

3.1 Model Setup 

We consider an asset whose price S(t) follows a 

dividend yielding logistic Brownian motion with jump 

diffusion process. This formulation builds upon the 

established framework of logistic growth models in 

finance while incorporating the realistic features of 

dividend payments and discontinuous price 

movements that characterize modern financial 

markets. 

The fundamental stochastic differential equation for 

our model is expressed as: 

dS(t) = (μ - γ - λk)S(t)(S* - S(t))dt + σS(t)(S* - 

S(t))dW(t) + S(t)(S* - S(t))(q - 1)dN(t) 

where the parameters are defined as follows: 

• S(t) represents the asset price at time t 

• S* denotes the equilibrium price, representing the 

natural upper bound toward which the asset price 

gravitates 

• μ is the expected growth rate parameter 

• γ is the continuous dividend yield, capturing the 

income stream generated by the asset 

• λ represents the jump intensity, indicating the 

frequency of discontinuous price movements 

• k denotes the average jump size, measured as the 

expected proportional change in asset price during 

jump events 

• σ is the volatility parameter governing the 

continuous stochastic component 

• W(t) is a standard Wiener process under the 

physical probability measure 

• N(t) represents a Poisson process with intensity λ, 

generating the timing of jump events 

• q represents the jump magnitude factor, where a 

jump event transforms the price from S to qS 

The logistic structure S(S* - S) in each component of 

the equation serves multiple important purposes. First, 

it ensures that the asset price remains bounded 

between 0 and S*, preventing the unrealistic scenario 

of infinite price growth that can occur with geometric 

Brownian motion. Second, this structure creates 

natural resistance levels as prices approach either 

boundary, with volatility and drift effects diminishing 

as S approaches S*. Third, the logistic framework 

incorporates economic intuition about supply and 

demand equilibrium mechanisms that naturally 

regulate asset price movements. 

The dividend component γ appears as a drift 

adjustment (μ - γ - λk), reflecting the standard financial 

principle that dividend-paying assets should have 

lower expected capital appreciation to compensate 

investors for the income received. The jump correction 

term λk accounts for the expected impact of 

discontinuous movements on the overall drift under 

the risk-neutral measure. 
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The jump component S(t)(S* - S(t))(q - 1)dN(t) 

ensures that jump effects are also modulated by the 

logistic structure. When a jump occurs, the price 

moves from S to qS, but the magnitude of this effect 

on the overall price process is proportional to S(S* - 

S), ensuring that jumps have maximum impact when 

prices are near the midpoint S*/2 and minimal impact 

when approaching the boundaries. 

3.2 Portfolio Construction 

Following the standard approach established by Black 

and Scholes (1973) and extended for jump diffusion 

models by Merton (1976), we construct a portfolio π 

containing one long option position and Δ units of the 

underlying asset: 

π = f(S,t) - ΔS 

where f(S,t) represents the option value as a function 

of asset price and time. This hedging strategy must 

account for the additional complexities introduced by 

the logistic growth term and jump components (Friz et 

al., 2014). 

3.3 Application of Itô's Lemma 

Applying Itô's lemma to the option value function 

under our extended model, following the methodology 

outlined in Mulambula et al. (2019) and adapted for 

dividend-paying assets (Oduor, 2022): 

df(S,t) = [∂f/∂t + (μ - γ - λk)S(S* - S)∂f/∂S + 

(1/2)σ²S²(S* - S)²∂²f/∂S²]dt  

         + σS(S* - S)∂f/∂S dW(t) + [f(qS,t) - f(S,t)]dN(t) 

This formulation incorporates the stochastic 

differential equation structure for logistic Brownian 

motion with jumps, as developed in the theoretical 

framework of Andanje (2021) and extended for 

practical applications by recent studies (Mulambula et 

al., 2020). 

3.4 Risk-Neutral Valuation 

By choosing Δ = ∂f/∂S and applying the risk-neutral 

valuation principle, following the approach 

established by Dupire (1994) and extended for jump 

processes by Friz et al. (2014), we eliminate the 

stochastic components. The portfolio evolution 

becomes: 

dπ = [∂f/∂t + (1/2)σ²S²(S* - S)²∂²f/∂S² - γS(S* - 

S)∂f/∂S]dt  

     + λE[f(qS,t) - f(S,t) - S(S* - S)(q-1)∂f/∂S]dt 

This methodology extends the classical no-arbitrage 

approach to accommodate the complexities of logistic 

growth dynamics, dividend payments, and jump 

discontinuities, as suggested by recent developments 

in stochastic finance theory (Ogetbil & Hientzsch, 

2022). 

IV. RESULTS 

4.1 Derived Black-Scholes Equation 

Through the application of no-arbitrage arguments and 

risk-neutral valuation, we derive the modified Black-

Scholes partial differential equation: 

∂f/∂t + (1/2)σ²S²(S* - S)²∂²f/∂S² + (r - γ)S(S* - S)∂f/∂S 

- rf  

+ λE[f(qS,t) - f(S,t) - S(S* - S)(q-1)∂f/∂S] = 0 

This equation represents a significant extension of the 

classical Black-Scholes equation, incorporating: 

1. Logistic Growth Term: S(S* - S) replaces the 

simple S term, reflecting natural price bounds 

2. Dividend Yield: The (r - γ) term accounts for 

continuous dividend payments 

3. Jump Component: The λE[...] term captures 

discontinuous price movements 

4.2 Mathematical Properties and Analysis 

The derived equation exhibits several fundamental 

mathematical properties that distinguish it from 

traditional option pricing models and provide 

enhanced capability for modeling realistic asset price 

dynamics. 
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4.2.1 Bounded Asset Price Evolution 

The presence of the logistic term S(S* - S) introduces 

a crucial non-linearity that ensures bounded asset price 

evolution, addressing a fundamental limitation of 

geometric Brownian motion models. Unlike 

traditional frameworks that permit unlimited 

exponential growth, our model naturally incorporates 

resistance levels through the multiplicative factor (S* 

- S). This factor approaches zero as S approaches the 

equilibrium value S*, effectively reducing both 

volatility and drift near the upper bound. 

Mathematically, this bounded behavior can be 

expressed through the variance structure: 

Var[dS/S] = σ²(S* - S)²dt + λE[(q-1)²](S* - S)²dt 

This formulation demonstrates that relative volatility 

decreases quadratically as prices approach S*, creating 

natural dampening effects that prevent unrealistic 

price trajectories. The economic interpretation aligns 

with market observations where extremely high asset 

prices face increased resistance due to fundamental 

valuation constraints and profit-taking behavior. 

4.2.2 Jump Integration and Martingale Properties 

The jump component λE[f(qS,t) - f(S,t) - S(S* - S)(q-

1)∂f/∂S] represents a sophisticated integration of 

discontinuous price movements within the logistic 

framework. The expectation operator E[•] accounts for 

the distribution of jump sizes while maintaining 

analytical tractability. 

The correction term S(S* - S)(q-1)∂f/∂S ensures 

proper hedge adjustment for jump events under the 

risk-neutral measure. This term is crucial for 

preserving the martingale property of discounted 

option values, as it compensates for the non-hedgeable 

component of jump risk. Without this correction, the 

model would violate fundamental no-arbitrage 

conditions. 

The mathematical structure ensures that: 

E^Q[e^(-rt)f(S_t,t) | F_0] = f(S_0,0) 

where Q denotes the risk-neutral measure and F_0 

represents the initial information set. This martingale 

property is essential for consistent option pricing 

across different strikes and maturities. 

4.2.3 Dividend Integration and Risk-Neutral 

Dynamics 

The dividend term (r - γ) in the drift component creates 

a natural linkage between dividend policy and option 

valuation that extends beyond simple present value 

adjustments. Under the risk-neutral measure, the 

modified drift reflects the opportunity cost of holding 

a dividend-paying asset versus a risk-free investment. 

The mathematical relationship can be expressed as: 

μ^Q = r - γ - λk 

where μ^Q represents the risk-neutral drift. This 

formulation demonstrates that higher dividend yields 

reduce the risk-neutral growth rate, consistent with the 

economic principle that investors accept lower capital 

appreciation in exchange for dividend income. 

4.2.4 Volatility Surface Properties 

The local volatility function derived from our model 

exhibits distinct characteristics that better capture 

empirical volatility surface features: 

σ²_local(S,t) = σ²(S* - S)² + λE[(q-1)²](S* - S)² 

This structure generates a volatility surface with 

several desirable properties: 

1. Maximum volatility occurs at S = S*/2, where the 

logistic factor (S* - S) is optimized 

2. Volatility approaches zero as S approaches either 

boundary (0 or S*) 

3. Jump contributions are naturally modulated by 

distance from equilibrium 

4. Term structure effects emerge through the 

interaction of continuous and jump components 
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4.2.5 Boundary Conditions and Solution Existence 

The partial differential equation admits well-posed 

solutions under appropriate boundary conditions. As S 

→ 0, the equation simplifies to standard risk-free 

dynamics due to the vanishing logistic terms. As S → 

S*, all stochastic components diminish, creating 

natural absorption properties. 

The mathematical analysis reveals that solutions exist 

and are unique under the following regularity 

conditions: 

1. Lipschitz continuity of the payoff function at 

maturity 

2. Bounded variation of the jump size distribution 

3. Positive definiteness of the diffusion coefficient 

matrix 

4.2.6 Asymptotic Behavior and Limiting Cases 

Several important limiting cases emerge from our 

general framework: 

Classical Black-Scholes Limit: As S* → ∞, the 

logistic terms approach linear behavior, and with λ = 

0, γ = 0, the equation reduces to the standard Black-

Scholes formulation. 

Pure Jump Limit: Setting σ = 0 yields a pure jump 

model with logistic constraints, providing insights into 

markets dominated by news-driven discontinuous 

movements. 

Dividend-Free Limit: With γ = 0, the model reduces to 

logistic Brownian motion with jumps, maintaining the 

bounded price behavior while eliminating dividend 

effects. 

These limiting behaviors demonstrate the 

mathematical coherence of our framework and its 

ability to nest established models as special cases, 

while providing enhanced flexibility for capturing 

complex market dynamics. 

 

 

4.3 Boundary Conditions and Solution Properties 

The equation is subject to comprehensive boundary 

conditions that ensure well-posed solutions: 

Terminal Condition: 

f(S,T) = max(S - K, 0) for a call option 

f(S,T) = max(K - S, 0) for a put option 

Spatial Boundary Conditions: 

• As S → 0: f(0,t) = 0 for call options, f(0,t) = Ke^(-

r(T-t)) for put options 

• As S → S*: The option value approaches intrinsic 

value modified by the logistic structure 

Asymptotic Behavior: Near the equilibrium price S*, 

the equation simplifies as the logistic factor (S* - S) 

approaches zero, creating a natural dampening effect 

on both volatility and drift terms. 

4.4 Volatility Estimation Framework 

Using Dupire's approach adapted for our model, the 

local volatility function becomes: 

σ²(S,t) = 2{∂f/∂t + (r - γ)S(S* - S)∂f/∂S + γf + λE[jump 

terms]} / [S²(S* - S)²∂²f/∂S²] 

This volatility estimation framework incorporates 

several novel features: 

1. The denominator S²(S* - S)² creates a volatility 

surface that exhibits maximum values when S = 

S*/2 and approaches zero as prices near either 

boundary (S → 0 or S → S*). This behavior 

reflects the economic intuition that volatility is 

highest during periods of maximum uncertainty 

and lower near natural bounds. 

2. The numerator includes jump correction terms that 

account for the contribution of discontinuous 

movements to total volatility. This separation 

allows for more accurate decomposition of 

continuous and jump components in volatility 

estimation. 
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3. The presence of γf in the numerator creates a direct 

link between dividend yield and implied volatility, 

reflecting the economic reality that dividend 

announcements and payments affect option values 

and implied volatility surfaces. 

4.5 Comparative Analysis with Traditional Models 

Our derived model demonstrates several advantages 

over existing frameworks: 

1. Compared to geometric Brownian motion, the 

logistic structure provides more realistic price 

bounds, preventing the mathematical possibility of 

infinite asset values while maintaining analytical 

tractability. 

2. Unlike pure jump-diffusion models that overlay 

jumps on geometric Brownian motion, our 

approach integrates jumps within the logistic 

framework, creating more coherent price dynamics 

where jump impacts are naturally modulated by 

distance from equilibrium. 

3. The model provides seamless integration of 

dividend yields without requiring separate 

adjustments or approximations, offering a unified 

framework for dividend-paying assets. 

 

V. DISCUSSION 

5.1 Model Advantages 

Our derived model offers several advantages over 

traditional approaches: 

1. The logistic component prevents unrealistic 

infinite growth 

2. Explicit treatment of continuous dividend yields 

3. Capture of market discontinuities and extreme 

events 

4. More accurate volatility modeling under complex 

market conditions 

5.2 Practical Implications 

The model has significant implications for: 

1. More accurate valuation under realistic market 

conditions 

2. Better assessment of tail risks and extreme market 

events 

3. Enhanced understanding of dividend-paying assets 

with jump risks 

5.3 Computational Considerations 

Implementation requires: 

1. Numerical solution techniques for the modified 

PDE 

2. Monte Carlo simulation methods for jump 

processes 

3. Calibration procedures for multiple parameters (σ, 

λ, k, γ) 

CONCLUSION 

We have successfully derived a comprehensive Black-

Scholes differential equation that incorporates 

dividend yielding logistic Brownian motion with jump 

diffusion processes. This theoretical framework 

addresses critical limitations of classical models by 

providing a more realistic representation of asset price 

dynamics. 

The derived equation offers practitioners a robust tool 

for option pricing and risk management in markets 

characterized by dividend payments, price 

discontinuities, and natural growth constraints. Future 

research directions include empirical validation of the 

model, development of efficient numerical solution 

methods, and exploration of calibration techniques for 

practical implementation. 

The integration of logistic growth dynamics, dividend 

yields, and jump processes represents a significant 

advancement in option pricing theory, providing a 

foundation for more sophisticated financial modeling 

in contemporary markets. 
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