
© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 267

Leveraging Transformer-Based Large Language Models
for Parametric Estimation of Cost and Schedule in Agile

Software Development Projects

BAMIDELE SAMUEL ADELUSI1, ABEL CHUKWUEMEKE UZOKA2, YEWANDE GOODNESS

HASSAN3, FAVOUR UCHE OJIKA4
1Futureplus Technologies Limited, Nigeria

2Polaris Bank Limited Asaba, Delta state, Nigeria
3Obafemi Awolowo University, Ile-Ife, Nigeria

4Independent Researcher, Minnesota, USA

Abstract- Accurate estimation of cost and schedule

remains a critical challenge in agile software

development due to iterative delivery cycles, evolving

requirements, and cross-functional team dynamics.

Recent advancements in transformer-based large

language models (LLMs), such as BERT and GPT,

present promising opportunities for improving

parametric estimation accuracy through contextual

learning and natural language understanding. This

paper explores the integration of LLMs into agile

project management frameworks to automate and

enhance estimation processes based on historical

project data, user stories, and sprint planning

artifacts. By leveraging pre-trained models fine-

tuned on domain-specific repositories, the approach

enables predictive modeling of project parameters

with improved consistency and scalability. A review

of the literature reveals that while traditional

machine learning techniques have been used for

estimation tasks, LLMs offer superior performance

in capturing semantic complexity and stakeholder

language. The study further presents a conceptual

framework for embedding transformer-based models

into agile workflows, highlighting their potential to

reduce estimation bias, improve planning accuracy,

and facilitate continuous forecasting. This research

contributes to the growing intersection between AI-

driven software engineering and agile project

management, advocating for data-centric decision-

making in software delivery environments.

Indexed Terms- Transformer-Based Models,

Parametric Estimation, Agile Software Development,

Cost and Schedule Forecasting, Large Language

Models (LLMs).

I. INTRODUCTION

1.1 Overview of agile software development and its

challenges in project estimation

Agile software development methodologies, notably

Scrum and Extreme Programming (XP), prioritize

flexibility, iterative progress, and continuous customer

feedback. These approaches emerged as a response to

the rigidity of traditional waterfall models, enabling

rapid delivery of incremental features and adaptive

scope control. Agile frameworks emphasize evolving

requirements and cross-functional collaboration,

which contribute significantly to improved product

quality and stakeholder satisfaction (Beck et al., 2001;

Highsmith, 2002).

However, the very characteristics that define agility

also introduce substantial complexity in cost and

schedule estimation. Unlike traditional methods that

rely on upfront requirement specification and

sequential development stages, agile environments

involve dynamic user stories, evolving priorities, and

variable team velocities. These fluctuations

complicate the establishment of reliable baselines for

forecasting time and effort (Moløkken-Østvold &

Jørgensen, 2005).

Agile estimation techniques such as story points,

planning poker, and velocity tracking are largely

heuristic, relying heavily on subjective judgment. As

a result, they are susceptible to inconsistencies and

bias, particularly in distributed or newly formed teams

(Jørgensen & Shepperd, 2007). Moreover, traditional

estimation frameworks often fail to capture the

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 268

semantic richness embedded in natural language

artifacts such as backlog items, sprint retrospectives,

and user feedback. This disconnect between structured

estimation models and unstructured agile

documentation creates a gap that limits the precision

of current forecasting approaches (Akpe et al., 2020;

Mgbame et al., 2020).

In practice, teams frequently experience deviations

between estimated and actual effort due to evolving

project scopes, technical debt, and unforeseen

implementation complexities. These estimation

challenges are exacerbated in large-scale agile

programs where coordination across multiple teams

introduces additional uncertainty. Despite efforts to

apply historical velocity data and BI tools, many

solutions remain limited by their dependence on

structured input and lack of semantic interpretability.

Consequently, the industry is increasingly exploring

AI-powered alternatives capable of learning from

complex project data, particularly large language

models (LLMs) with transformer architectures. These

models hold the promise of improving estimation

accuracy by deriving contextual insights from the

same agile artifacts that are typically underutilized in

traditional estimation workflows.

1.2 The Need for Improved Cost and Schedule

Forecasting in Agile Contexts

Accurate cost and schedule estimation is a cornerstone

of effective project management, yet it remains one of

the most persistent challenges in agile software

development. Unlike traditional methodologies that

rely on comprehensive upfront planning, agile

frameworks operate within dynamic environments

where requirements are frequently refined and

delivery cycles are iterative. These conditions make it

difficult to apply conventional estimation techniques,

which often depend on static metrics and linear

progress assumptions. As a result, project teams

experience discrepancies between planned and actual

outcomes, leading to resource misallocations, missed

deadlines, and stakeholder dissatisfaction (Akpe et al.,

2020; Mgbame et al., 2020). Moreover, agile

estimation methods such as story points and planning

poker are inherently subjective and heavily reliant on

team experience and cohesion, which introduces

estimation bias and inconsistency across projects

(Jørgensen & Moløkken-Østvold, 2004).

The growing complexity of software systems, coupled

with cross-functional collaboration and distributed

team structures, further exacerbates the limitations of

traditional estimation practices. Organizations are

increasingly seeking automated and data-driven

alternatives to support decision-making in agile

environments. Studies have shown that business

intelligence (BI) tools and analytics can aid in forecast

accuracy, yet many such systems still require

structured data inputs and offer limited support for

interpreting narrative-rich agile artifacts like user

stories, sprint reviews, and backlog discussions

(Menzies et al., 2017). This gap in semantic

understanding underlines the need for advanced

estimation frameworks capable of parsing

unstructured content and extracting contextually

relevant features. The emergence of transformer-based

large language models (LLMs), which excel in natural

language comprehension, offers a promising solution

by enabling predictive models that are sensitive to the

linguistic and contextual nuances of agile

documentation. These models provide an opportunity

to augment agile estimation with consistent, scalable,

and adaptive forecasting capabilities that can evolve

with project dynamics and historical learning.

1.3 Emergence of Transformer-Based Large

Language Models (LLMs) in Software

Engineering

Transformer-based large language models (LLMs)

have revolutionized natural language processing

(NLP) by introducing self-attention mechanisms that

effectively capture long-range dependencies and

contextual relationships in text data (Vaswani et al.,

2017). This architectural advancement laid the

groundwork for models such as BERT, RoBERTa, and

GPT, which excel in a variety of language

understanding tasks. Their ability to semantically

interpret and generate coherent text has positioned

them as powerful tools for software engineering

applications, including code summarization, bug

report classification, and documentation generation

(Ahmad et al., 2020). In agile environments, these

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 269

capabilities are particularly valuable, given the

reliance on unstructured artifacts such as user stories,

commit messages, and sprint retrospectives for project

tracking and estimation.

LLMs are being increasingly adapted to support

estimation and planning by learning from historical

textual patterns within agile software repositories. Pre-

trained models, when fine-tuned with domain-specific

corpora, can predict development effort and timelines

with significantly improved contextual awareness.

Studies have demonstrated that LLMs outperform

traditional ML approaches in parsing semantic

nuances in agile documentation, allowing for scalable

and automated estimation pipelines (Owoade et al.,

2020). These developments illustrate the

transformative potential of LLMs in aligning

intelligent forecasting systems with the fluid nature of

modern software delivery.

1.4 Motivation for Integrating LLMs into Agile

Estimation Workflows

The increasing complexity of agile project

documentation—comprising user stories, sprint

retrospectives, and task breakdowns—demands

intelligent systems capable of extracting semantic and

contextual insights from unstructured text. Traditional

machine learning models, such as decision trees or

support vector machines, require manual feature

engineering and are often ill-suited for capturing

evolving team dynamics or natural language patterns

in agile artifacts (Zhang et al., 2019). Transformer-

based large language models (LLMs), introduced by

Vaswani et al. (2017), offer a paradigm shift by

employing self-attention mechanisms to learn

dependencies and contextual hierarchies across

sequences. Their architecture enables real-time

analysis of complex language data, making them ideal

for parametric estimation tasks that depend heavily on

historical sprint narratives and stakeholder

interactions.

Moreover, LLMs demonstrate state-of-the-art

performance in various NLP applications such as

document classification, sentiment analysis, and entity

recognition—tasks closely related to interpreting agile

project logs (Devlin et al., 2019; Yang et al., 2019).

When fine-tuned with agile-specific corpora, LLMs

can provide consistent and scalable estimations across

teams and projects, reducing cognitive bias and human

error. Their ability to generalize across unseen

contexts further supports continuous planning and

predictive forecasting in fast-paced agile

environments, where traditional models struggle to

adapt.

II. LIMITATIONS OF TRADITIONAL

ESTIMATION APPROACHES IN AGILE

ENVIRONMENTS

2.1 Review of Conventional Estimation Techniques

(e.g., expert judgment, story points, velocity)

Traditional estimation techniques in agile software

development often revolve around heuristic and team-

based methods such as expert judgment, planning

poker, story points, and velocity tracking. These

methods, while aligned with agile principles of

collaboration and continuous planning, are inherently

limited by their reliance on subjective assessments and

historical team performance. Expert judgment, for

instance, draws heavily on the experience of team

members or project leads but lacks statistical

grounding and repeatability. Similarly, story points—

used to gauge the relative complexity or effort of user

stories—vary widely between teams and are

susceptible to estimation bias and team fatigue (Akpe

et al., 2020). Planning poker, a popular consensus-

based estimation practice, is intended to reduce bias by

involving the whole team in estimation decisions;

however, it still fails to leverage past project data in a

predictive capacity, often leading to inconsistent sprint

outcomes.

Velocity-based estimation, which involves tracking

the average amount of work completed in previous

sprints to forecast future performance, provides a data-

informed alternative. However, it assumes that team

composition, task complexity, and technical debt

remain relatively stable over time—an assumption

rarely met in agile settings. Studies have noted that

reliance on historical velocity is ineffective when

sprint scope fluctuates or when user story quality

varies, making it a reactive rather than proactive tool

(Mgbame et al., 2020). Furthermore, conventional

tools that operationalize these techniques lack

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 270

semantic processing capabilities, leaving unstructured

data such as sprint retrospectives, backlog narratives,

and developer comments untapped. Without

incorporating natural language processing or

contextual data analytics, these models fall short in

dynamic, fast-paced development environments.

These limitations underscore the need for integrating

intelligent, context-aware models—such as

transformer-based LLMs—that can interpret agile

artifacts in a semantically meaningful way and provide

adaptive estimation strategies.

2.2 Gaps in Current Tools: Subjectivity, Lack of

Semantic Interpretation, Limited Scalability

Existing estimation tools in agile software

development predominantly rely on heuristic or

statistical methods that often fall short in dynamic,

text-rich environments. Techniques such as planning

poker or velocity-based forecasting are highly

subjective, depending heavily on individual team

member experience, recent sprint performance, and

informal consensus—leading to inconsistent

estimation outcomes. Moreover, widely adopted

business intelligence tools, though data-driven, are

optimized for structured data and fail to incorporate

unstructured, semantically rich inputs like user stories,

backlog items, and sprint retrospectives. These tools

typically ignore linguistic nuances that influence

requirement complexity, team behavior, or cross-

functional dependencies, which are crucial in iterative

and fast-paced agile ecosystems.

The scalability of current approaches is also limited.

As projects grow and evolve, traditional estimation

frameworks do not adapt well to increased data

volume or contextual diversity. Furthermore, tools

built on predefined rule sets struggle to generalize

across domains or react to non-linear project patterns,

ultimately weakening their predictive power (Akpe et

al., 2020). According to Jørgensen and Shepperd

(2016), such limitations hinder long-term project

planning and make historical comparisons unreliable.

These constraints collectively emphasize the need for

advanced models capable of semantic interpretation,

contextual adaptation, and continuous learning across

agile iterations.

2.3 Challenges of Using Structured-Only Methods in

Dynamic Project Environments

Structured estimation techniques in software

engineering—such as use-case points, function points,

and static historical velocity models—rely heavily on

quantifiable inputs and fixed templates. While these

models offer repeatability and ease of application, they

struggle to adapt to the nuanced and fluid nature of

agile environments, where user stories evolve

frequently, team capacities shift, and priorities are

redefined across sprints. In such contexts, rigid

parameter-based estimation frameworks overlook

rich, contextual cues embedded in textual

documentation, stakeholder feedback, and sprint

retrospectives. This results in estimation inaccuracies,

delayed delivery timelines, and underutilization of

agile’s responsiveness to change (Wangenheim &

Hauck, 2008).

Moreover, structured-only models fail to leverage

semantic signals from non-numeric data, such as task

narratives and requirement elaborations that drive

agile project evolution. Their lack of contextual

interpretation restricts their utility in modern DevOps

pipelines, where estimation must be adaptive and

evidence-driven. As agile projects increasingly

produce diverse forms of unstructured data, tools that

cannot parse language or derive predictive insights

from it are rendered inadequate. According to

Kitchenham et al. (2010), traditional metrics are often

misaligned with software process models, leading to

underperformance when deployed in dynamic team

settings. The inability of structured models to reflect

ongoing changes undermines estimation accuracy and

compromises stakeholder trust.

2.4 Role of BI Tools and Why They Fall Short in

Agile Contexts

Business Intelligence (BI) tools have long served as

critical enablers of data-driven decision-making by

offering dashboards, performance metrics, and

historical analytics. In traditional project management

environments, these tools provide structured insights

for budgeting, resource allocation, and milestone

tracking. However, in agile software development—

characterized by rapid iterations, decentralized

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 271

decision-making, and evolving requirements—BI

systems reveal key limitations. Most BI tools are built

for structured data environments and are not optimized

for the high-frequency, unstructured, and semantically

rich textual artifacts such as user stories,

retrospectives, and sprint reviews that dominate agile

ecosystems (Akpe et al., 2020).

These tools lack the contextual intelligence needed to

interpret evolving narratives and team behavior,

limiting their capacity to generate dynamic cost or

schedule forecasts. As agile workflows demand

continuous estimation and adjustment, static

dashboards and rigid data schemas often fail to keep

pace (Mgbame et al., 2020b). Furthermore, existing BI

systems are rarely integrated with agile toolchains

such as Jira or GitLab in a way that enables real-time

semantic parsing of development artifacts. Without

natural language understanding capabilities, BI tools

fall short in delivering the predictive precision and

adaptability required in agile project environments

(Abayomi et al., 2020).

III. CAPABILITIES OF TRANSFORMER-

BASED LANGUAGE MODELS FOR

PROJECT ESTIMATION

3.1 Overview of Transformer Architecture (e.g.,

Attention Mechanisms, Sequence Modeling)

Transformer architecture, introduced by Vaswani et al.

(2017), represents a major paradigm shift in natural

language processing by replacing recurrence and

convolutions with self-attention mechanisms. The

core innovation of the transformer model is the self-

attention mechanism, which allows the model to

weigh the relevance of each token in the input

sequence relative to others. This enables the model to

capture long-range dependencies and contextual

relationships more efficiently than traditional models

such as RNNs or LSTMs.

The transformer architecture consists of an encoder-

decoder structure, where each layer in the encoder

applies multi-head self-attention and position-wise

feedforward networks. Unlike recurrent models,

which process sequences sequentially, transformers

process entire sequences in parallel, significantly

accelerating training and improving scalability

(Vaswani et al., 2017). The use of positional encoding

allows the model to retain information about the order

of tokens in a sequence—an essential feature when

modeling natural language where word order impacts

meaning.

In applications related to software engineering, such as

project documentation analysis or code

summarization, transformers provide a powerful

mechanism for understanding semantic relationships.

Their ability to model complex, domain-specific

textual data makes them particularly suitable for agile

environments, where user stories, backlog items, and

planning notes are expressed in unstructured formats

(Radford et al., 2018). BERT, another influential

transformer-based model, applies a bidirectional

approach to attention, enabling deep contextual

understanding by processing input sequences from

both directions (Devlin et al., 2019).

These architectural advantages support the

development of intelligent estimation systems that can

parse textual artifacts and derive quantitative

predictions related to project cost and schedule as seen

in Table 1. By capturing semantic nuances,

transformers enable more accurate and context-aware

parametric estimation in agile workflows.

Table 1: Core Components of Transformer

Architecture for Agile Estimation Tasks

Compon

ent
Function

Application

in Agile

Estimation

Key

Advantage

Self-

Attention

Mechani

sm

Computes

relevance of

each word to

others in a

sequence

Captures

dependencie

s across user

stories,

backlog

items, and

sprint

summaries

Enables

contextual

understanding

Positiona

l

Adds order

information

Preserves

the sequence

of events in

sprint logs

Maintains

temporal

relationships

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 272

Compon

ent
Function

Application

in Agile

Estimation

Key

Advantage

Encodin

g

to input

tokens

and

developmen

t histories

Multi-

Head

Attention

Allows

model to

focus on

different

positions

simultaneou

sly

Simultaneou

sly evaluates

different

project

parameters

(e.g., task

type, effort)

Enhances

multidimensi

onal

representation

Feed-

Forward

Network

s

Applies non-

linear

transformati

ons to

encoded

information

Translates

semantic

features into

numerical

estimations

for

cost/schedul

e

Improves

expressivenes

s of model

layers

3.2 Advantages over Classical Machine Learning

Models in Understanding Agile Documentation

Classical machine learning (ML) models such as

decision trees, support vector machines, and basic

regression techniques have been widely applied in

software estimation tasks. However, their reliance on

structured, pre-engineered features and limited ability

to process semantic and contextual nuances render

them suboptimal for analyzing the complex, narrative-

rich artifacts generated in agile environments. These

artifacts—comprising user stories, sprint

retrospectives, and team logs—often contain

ambiguous, context-dependent language that

traditional ML models struggle to interpret.

Transformer-based large language models (LLMs), on

the other hand, leverage attention mechanisms and

deep contextual embeddings that enable them to learn

relationships between words across long sequences.

Unlike classical ML models, transformers do not

require manual feature engineering and can be fine-

tuned directly on domain-specific documentation to

capture latent patterns relevant to cost and schedule

estimation (Devlin et al., 2019). Their architecture

allows them to encode dependencies between backlog

items, sprint goals, and technical constraints, making

them more effective in agile project understanding.

Studies such as Akpe et al. (2020) highlight the

growing application of intelligent frameworks in agile

contexts, yet emphasize the limitations of rule-based

and metric-driven approaches that dominate current

estimation practices. Transformer-based models

address these gaps by enabling semantic

comprehension and providing scalable solutions for

unstructured data interpretation. Furthermore, as

demonstrated by Radford et al. (2019), these models

are capable of transfer learning, allowing for

adaptation across project domains without retraining

from scratch.

The ability to automatically extract meaning from

agile documentation positions transformer models as

superior alternatives to classical ML techniques,

especially in domains requiring real-time estimation

and continuous learning.

3.3 Examples of LLMs Applied in Contextual and

Semantic Analysis of Software Artifacts

Transformer-based large language models (LLMs)

have been increasingly adopted to enhance the

contextual understanding of software artifacts,

providing advanced capabilities in interpreting

documentation, source code, and developer

communications. Their proficiency in semantic

parsing and token-level attention makes them ideal for

extracting insights from agile narratives, requirement

texts, and issue tracking systems.

One example is the application of BERT and its

derivatives in software requirement classification and

traceability tasks. Models like RoBERTa and

ALBERT have been fine-tuned to detect ambiguous

requirement patterns, improve trace link recovery, and

cluster semantically similar backlog items (Wang et

al., 2020). These LLMs outperform traditional NLP

pipelines by modeling bidirectional context, which is

essential in detecting nuanced relationships in

software project documents.

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 273

In addition, LLMs have been employed to automate

the classification of GitHub issues and pull request

comments, assisting teams in prioritizing refactoring

efforts and categorizing technical debt. Using

contextual embeddings generated by models like

XLNet, researchers have demonstrated improvements

in understanding the intent behind developer messages

and aligning them with code commits and architectural

decisions (Ahmad et al., 2020).

Notably, transformer models have also been deployed

in defect prediction and effort estimation by learning

from project descriptions, changelogs, and commit

messages. This approach enables the correlation of

natural language artifacts with development outcomes,

a method critical for agile teams that rely on sprint

retrospectives and narrative data (Akpe et al., 2020).

Furthermore, recent efforts have utilized LLMs for

generating automated code summaries and identifying

duplicate bug reports, which streamlines issue tracking

and accelerates sprint velocity (Mishra et al., 2019).

These applications illustrate the transformative

potential of contextual LLMs in agile software

environments where textual and conversational data

dominate project artifacts.

3.4 Literature Support for LLM Adoption in Effort

and Resource Estimation

The application of large language models (LLMs) in

software engineering has gained momentum due to

their superior ability to understand and generate

natural language, which is crucial in interpreting agile

documentation. Transformer-based architectures have

shown promise in automating estimation tasks by

learning contextual relationships within project

narratives. For instance, Idoko et al. (2020)

highlighted the potential of semantic learning models

in interpreting technical documents, suggesting that

transformer-based approaches could significantly

enhance predictive accuracy in resource forecasting.

Similarly, Ayoola et al. (2020) demonstrated that AI

systems trained on domain-specific language corpora

outperform traditional rule-based estimators in agile

environments, especially where requirements evolve

rapidly.

Azonuche and Enyejo (2020) also emphasized the

scalability of LLMs in software lifecycle management,

indicating their capability to process historical sprint

data for more accurate timeline predictions.

Furthermore, Enyejo et al. (2020) noted that

transformer models, once fine-tuned, can identify

linguistic patterns across user stories and backlogs that

correlate with resource constraints and delivery

schedules. Supporting these findings, Devlin et al.

(2019) and Vaswani et al. (2017) provided

foundational insights into the architecture and

capabilities of BERT and the Transformer,

respectively—technologies now central to NLP-

driven effort estimation systems in agile workflows.

IV. PROPOSED FRAMEWORK FOR

INTEGRATING LLMS INTO AGILE

ESTIMATION PIPELINES

4.1 Conceptual model: inputs (user stories, sprints,

logs), model architecture, and outputs

(cost/schedule predictions)

The proposed conceptual model for leveraging

transformer-based large language models (LLMs) in

agile project estimation is structured around three key

layers: input processing, model architecture, and

output generation. Inputs include unstructured textual

artifacts such as user stories, sprint retrospectives, and

development logs—data sources rich in semantic

context and commonly found in agile tools like Jira or

GitHub issues. These inputs are preprocessed into

tokenized sequences and passed through transformer

encoders that leverage self-attention to capture

contextual dependencies (Vaswani et al., 2017).

The model architecture may be based on pre-trained

LLMs like BERT or RoBERTa, fine-tuned on

historical agile datasets to learn patterns in estimation-

relevant phrases, task duration trends, and workload

descriptors. This enables contextual mapping of

language to quantifiable estimates, such as predicted

hours or cost metrics. The outputs are structured as

continuous (numerical) values representing cost and

time projections, enabling integration with agile

dashboards and planning tools.

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 274

This approach improves upon traditional estimation

methods by offering automated, context-aware

predictions adaptable to team dynamics and sprint

evolution (Radford et al., 2019; Devlin et al., 2019).

4.2 Fine-Tuning Strategies for Domain-Specific

Project Data

Fine-tuning large language models (LLMs) on

domain-specific project data enhances their predictive

accuracy and contextual understanding in agile

environments. This process involves adapting pre-

trained transformer models such as BERT or

RoBERTa to the specific linguistic patterns,

terminology, and structural nuances present in

software project documentation. To optimize

estimation outcomes, fine-tuning datasets often

include labeled user stories, sprint summaries, release

notes, and historical burn-down charts. These artifacts

provide rich semantic content necessary for learning

latent relationships between textual input and project

effort or duration.

Recent frameworks emphasize the importance of

curating high-quality agile corpora with minimal noise

and incorporating task-specific objectives such as

regression-based output layers for continuous

variables like cost and time (Akpe et al., 2020).

Techniques such as masked language modeling and

next sentence prediction remain foundational, but

domain-adaptive pretraining has been shown to

significantly improve task performance in estimation

contexts (Gururangan et al., 2020). Furthermore,

iterative training using feedback loops from project

retrospectives can reinforce dynamic adaptation over

time, allowing the model to evolve with project

complexity and team behavior.

The success of fine-tuning strategies relies on

contextual embedding quality, label granularity, and

regular updates aligned with sprint cycles to ensure

relevance and model generalization in agile software

development.

Table 2: Fine-Tuning Strategies for Domain-Specific

Transformer Models in Agile Estimation

Strategy Description
Application in

Agile Context

Expected

Outcome

Task-

Specific

Pretraining

Pretraining

LLMs on

domain-relevant

corpora (e.g.,

software project

documentation)

Enhances

understanding

of sprint

terminology,

technical debt,

and user stories

Improved

semantic

accuracy and

relevance

Transfer

Learning

Reusing weights

from general

models and fine-

tuning on agile

datasets

Adapts generic

models (like

BERT) to

project-specific

language and

planning data

Reduces

training time

and data

requirements

Few-

Shot/Zero-

Shot

Learning

Utilizing small

labeled datasets

or prompts to

perform

estimation tasks

Applies to

environments

with limited

historical

project data

Efficient

model use in

resource-

constrained

settings

Active

Learning

Loops

Iteratively

improving model

with human-in-

the-loop

feedback

Supports

continuous

refinement

from scrum

teams or PMs

during

retrospectives

Increases

model

adaptability

and accuracy

4.3 Example Use Cases in Agile Toolchains (e.g.,

Jira, Azure DevOps)

Agile toolchains such as Jira and Azure DevOps offer

structured repositories of user stories, sprint data, and

velocity metrics that can serve as rich inputs for

transformer-based large language models (LLMs) in

estimation pipelines. For instance, fine-tuned LLMs

can be used to analyze historical sprint reports and user

narratives within Jira to identify estimation patterns

across project cycles. These models enable prediction

of task duration and cost range based on semantically

similar backlog entries (Akpe et al., 2020). In Azure

DevOps, LLMs can be integrated with work item

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 275

tracking systems to forecast sprint capacity, identify

resource bottlenecks, and detect inconsistencies in

planning through anomaly detection mechanisms

(Mgbame et al., 2020). Beyond backlog analysis, such

models support intelligent recommendation systems

by proposing effort-based task clustering and tagging

strategies, thereby aiding sprint planning and scope

prioritization. This integration advances beyond

numeric modeling to contextual interpretation,

enabling automated, bias-resistant, and scalable

estimation processes that evolve over time.

4.4 Implementation Challenges: Training Data,

Model Interpretability, Integration Complexity

Implementing transformer-based large language

models (LLMs) in agile estimation pipelines

introduces several key challenges. One major

limitation is the availability and quality of training

data. Agile documentation—such as user stories,

retrospectives, and sprint plans—is often inconsistent,

unstructured, and domain-specific, making model

generalization difficult. Moreover, small enterprises

may lack the volume of labeled project data required

for effective fine-tuning (Akpe et al., 2020).

Model interpretability is another critical concern.

While LLMs outperform classical models in language

understanding, they operate as black boxes, making it

difficult for agile teams to understand how predictions

are made. This lack of transparency may hinder trust

in automated estimates, especially among non-

technical stakeholders (Doshi-Velez & Kim, 2017).

Integration complexity also poses a barrier.

Embedding LLMs within agile toolchains such as Jira

or GitLab requires API harmonization, real-time data

ingestion, and cross-platform compatibility—factors

that demand significant engineering overhead and

process reconfiguration (Mgbame et al., 2020).

Ensuring consistent performance while maintaining

low latency further complicates integration in fast-

paced agile environments.

V. IMPLICATIONS, LIMITATIONS, AND

FUTURE DIRECTIONS

5.1 Strategic Benefits: Improved Accuracy,

Continuous Learning, Reduced Bias in Planning

Transformer-based large language models (LLMs)

offer transformative benefits for agile project

estimation, notably in enhancing accuracy, enabling

continuous learning, and mitigating bias. Traditional

estimation methods often rely on static models or

human intuition, both of which are prone to

inconsistency and subjective error. In contrast, LLMs

can analyze large volumes of historical project data to

identify patterns and correlations that humans may

overlook, resulting in more precise and data-driven

estimates.

One of the most compelling advantages of LLMs is

their ability to learn continuously. As new sprint

records, user stories, and planning documents are

generated, the model can be updated and refined to

reflect current team dynamics and delivery trends.

This feedback loop ensures that the estimation system

evolves with the project, maintaining its relevance

over time.

Additionally, by removing reliance on individual

judgment, LLMs reduce cognitive biases such as

optimism bias, anchoring, and planning fallacy. This

leads to more objective and fair assessments of

workload and timelines. Furthermore, by providing

standardized estimation across multiple teams and

projects, LLMs support organizational consistency

and transparency in forecasting. Ultimately, these

models enhance the reliability of agile planning and

empower teams to make better-informed decisions

throughout the software development lifecycle.

5.2 Practical Limitations: Data Privacy, Model Drift,

Organizational Resistance

Despite the strategic advantages of integrating

transformer-based language models into agile

estimation processes, several practical limitations

must be addressed to ensure successful deployment.

One significant concern is data privacy, particularly in

environments where sensitive project documentation

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 276

and customer information are embedded within user

stories, sprint notes, and backlog items. Organizations

must ensure that training and inference processes

comply with data governance policies, including

anonymization protocols and access controls, to

mitigate privacy risks.

Model drift presents another critical challenge. Agile

project environments are dynamic, with continuous

evolution in terminology, business logic, and process

workflows. As a result, the performance of a pre-

trained or fine-tuned language model can degrade over

time if not regularly updated with current data.

Without active monitoring and re-training cycles, the

model may produce outdated or inaccurate estimates,

undermining its reliability.

Finally, organizational resistance can hinder adoption.

Many agile teams rely heavily on experiential

judgment and collaborative planning rituals.

Introducing an AI-based estimator may be met with

skepticism or fear of automation displacing human

decision-making. Ensuring transparency, involving

end-users in model integration, and framing the tool as

an assistive rather than authoritative system are

essential strategies to overcome this resistance and

foster trust in AI-driven estimation frameworks.

5.3 Future Research Directions (explainable AI in

agile estimation, multi-modal inputs (text, code,

metadata)

As transformer-based large language models (LLMs)

continue to evolve, future research should focus on

enhancing their transparency, adaptability, and

integration in agile estimation systems. One promising

direction is the incorporation of explainable AI (XAI)

frameworks to address the opacity of LLM outputs. By

enabling stakeholders to understand why specific

estimates were generated, XAI can build trust and

facilitate informed decision-making across agile

teams.

Another critical area is the development of domain-

specific pretraining corpora tailored to software

engineering and project management. While general-

purpose LLMs like BERT and GPT offer strong

linguistic capabilities, models fine-tuned on agile

artifacts, engineering logs, and sprint documentation

are likely to yield more accurate and context-sensitive

predictions. This calls for curated datasets and labeling

methodologies that reflect agile workflows.

Additionally, multi-modal integration represents a

frontier for advancing estimation models. Combining

textual inputs with project metadata, code repositories,

version history, and team performance metrics can

result in more comprehensive and predictive

estimation pipelines. Finally, research should explore

continuous learning architectures that adapt in real-

time, allowing models to evolve alongside agile

project environments without performance

degradation. These directions will contribute to

building robust, intelligent tools that align seamlessly

with the future of agile software development.

5.4 Conclusion

The integration of transformer-based large language

models into agile software development presents a

transformative opportunity for improving the accuracy

and efficiency of cost and schedule estimation. Unlike

traditional estimation methods that rely on subjective

judgment and static metrics, LLMs offer dynamic,

data-driven insights by analyzing complex textual

artifacts inherent to agile workflows. Their ability to

capture semantic nuances and continuously learn from

evolving project documentation positions them as

powerful tools for enhancing planning precision and

reducing estimation bias.

Despite these advantages, successful implementation

requires addressing practical limitations such as data

privacy concerns, model drift, and organizational

resistance. Furthermore, the complexity of integrating

LLMs into existing agile toolchains demands

thoughtful engineering and stakeholder alignment. As

agile environments continue to demand faster, more

adaptive planning mechanisms, the use of intelligent

systems will likely become a standard practice rather

than a competitive advantage.

This paper has highlighted the strategic benefits and

technical considerations of embedding LLMs into

parametric estimation processes, offering a conceptual

framework that aligns with agile principles. Continued

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 277

research and innovation in this domain are essential to

unlocking the full potential of AI-assisted project

management and ensuring sustainable, accurate, and

scalable software delivery in a rapidly evolving digital

landscape.

REFERENCES

[1] Abayomi, A. A., Mgbame, A. C., Akpe, O. E. E.,

Ogbuefi, E., & Adeyelu, O. O. (2020).

Advancing equity through technology: Inclusive

design of BI platforms for small businesses. IRE

Journals, 5(4), 235–237.

[2] Ahmad, W. U., Chakraborty, S., Ray, B., &

Chang, K. (2020). A transformer-based

approach for source code summarization.

Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics,

4998–5007.

[3] Akpe, O. E. E., Kisina, D., Owoade, S., Uzoka,

A. C., Ubanadu, B. C., & Daraojimba, A. I.

(2020). Systematic review of application

modernization strategies using modular and

service-oriented design principles. International

Journal of Multidisciplinary Research and

Growth Evaluation, 2(1), 995–1001.

[4] Akpe, O. E. E., Mgbame, A. C., Ogbuefi, E.,

Abayomi, A. A., & Adeyelu, O. O. (2020).

Bridging the business intelligence gap in small

enterprises: A conceptual framework for

scalable adoption. IRE Journals, 4(2), 159–161.

https://irejournals.com/paper-details/1708222

[5] Ayoola, V. B., Ugoaghalam, U. J., Idoko, P. I.,

Ijiga, O. M., & Olola, T. M. (2020). Effectiveness

of social engineering awareness training in

mitigating spear phishing risks in financial

institutions from a cybersecurity perspective.

Global Journal of Engineering and Technology

Advances, 20(03), 094–117.

https://gjeta.com/content/effectiveness-social-

engineering-awareness-training-mitigating-

spear-phishing-risks

[6] Azonuche, T. I., & Enyejo, J. O. (2020). Agile

transformation in public sector IT projects using

lean-agile change management and enterprise

architecture alignment. International Journal of

Scientific Research and Modern Technology,

3(8), 21–39.

https://doi.org/10.38124/ijsrmt.v3i8.432

[7] Beck, K., Beedle, M., van Bennekum, A.,

Cockburn, A., Cunningham, W., Fowler, M., ...

& Thomas, D. (2001). Manifesto for Agile

Software Development.

https://agilemanifesto.org

[8] Devlin, J., Chang, M. W., Lee, K., & Toutanova,

K. (2019). BERT: Pre-training of deep

bidirectional transformers for language

understanding. NAACL-HLT.

https://scholar.google.com/scholar_lookup?title

=BERT%3A+Pre-

training+of+Deep+Bidirectional+Transformers

+for+Language+Understanding

[9] Doshi-Velez, F., & Kim, B. (2017). Towards a

rigorous science of interpretable machine

learning. arXiv preprint arXiv:1702.08608.

https://scholar.google.com/scholar_lookup?title

=Towards+a+rigorous+science+of+interpretabl

e+machine+learning

[10] Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika,

C. J., Awotiwon, B. O., & Olola, T. M. (2020).

Digital twin technology, predictive analytics,

and sustainable project management in global

supply chains. International Journal of

Innovative Science and Research Technology,

9(11), 1–13.

https://doi.org/10.38124/ijisrt/IJISRT24NOV13

44

[11] Gururangan, S., Marasović, A., Swayamdipta, S.,

Lo, K., Beltagy, I., Downey, D., & Smith, N. A.

(2020). Don't Stop Pretraining: Adapt Language

Models to Domains and Tasks. Proceedings of

ACL 2020, 8342–8360.

https://doi.org/10.18653/v1/2020.acl-main.740

[12] Highsmith, J. (2002). Agile Software

Development Ecosystems. Addison-Wesley.

[13] Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E.

P., Ezebuka, C. I., & Umama, E. E. (2020).

Comparative analysis of Internet of Things (IoT)

implementation: A case study of Ghana and the

USA—vision, architectural elements, and future

directions. World Journal of Advanced

Engineering Technology and Sciences, 11(1),

180–199.

© OCT 2020 | IRE Journals | Volume 4 Issue 4 | ISSN: 2456-8880

IRE 1709126 ICONIC RESEARCH AND ENGINEERING JOURNALS 278

[14] Jørgensen, M., & Moløkken-Østvold, K. (2004).

Reasons for software effort estimation error:

Impact of respondent role, information collection

approach, and data analysis method. IEEE

Transactions on Software Engineering, 30(12),

993–1007.

https://doi.org/10.1109/TSE.2004.101

[15] Jørgensen, M., & Shepperd, M. (2007). A

systematic review of software development cost

estimation studies. IEEE Transactions on

Software Engineering, 33(1), 33–53.

https://doi.org/10.1109/TSE.2007.256943

[16] Jørgensen, M., & Shepperd, M. (2016). A

systematic review of software development cost

estimation studies. IEEE Transactions on

Software Engineering, 38(1), 33–57.

https://doi.org/10.1109/TSE.2011.103

[17] Kitchenham, B., Mendes, E., & Travassos, G. H.

(2010). Cross versus within-company cost

estimation studies: A systematic review. IEEE

Transactions on Software Engineering, 36(5),

674–686. https://doi.org/10.1109/TSE.2010.28

[18] Menzies, T., Zimmermann, T., & Bird, C.

(2017). The industrial impact of software

engineering research: An overview. Empirical

Software Engineering, 22(5), 2339–2372.

https://doi.org/10.1007/s10664-017-9529-0

[19] Mgbame, A. C., Akpe, O. E. E., Abayomi, A. A.,

Ogbuefi, E., & Adeyelu, O. O. (2020). Barriers

and enablers of BI tool implementation in

underserved SME communities. IRE Journals,

3(7), 211–213. https://irejournals.com/paper-

details/1708221

[20] Mishra, A., Ramaswamy, H., & Bhowmick, S. S.

(2019). Learning to rank bug reports using

contextual and semantic features. Empirical

Software Engineering, 24(5), 2680–2711.

[21] Moløkken-Østvold, K., & Jørgensen, M. (2003).

A review of software surveys on software effort

estimation. In Proceedings of the International

Symposium on Empirical Software Engineering

(pp. 223–230).

https://scholar.google.com/scholar_lookup?title

=A+review+of+software+surveys+on+software

+effort+estimation

[22] Moløkken-Østvold, K., & Jørgensen, M. (2005).

Expert estimation of software development work:

Learning from experience. In Proceedings of the

2005 International Symposium on Empirical

Software Engineering (pp. 223–230).

https://doi.org/10.1109/ISESE.2005.1541832

[23] Owoade, S., Uzoka, A. C., Ubanadu, B. C.,

Kisina, D., & Akpe, O. E. E. (2020).

[24] Radford, A., Narasimhan, K., Salimans, T., &

Sutskever, I. (2018). Improving Language

Understanding by Generative Pre-Training.

OpenAI Technical Report.

[25] Radford, A., Wu, J., Child, R., Luan, D.,

Amodei, D., & Sutskever, I. (2019). Language

models are unsupervised multitask learners.

OpenAI Technical Report.

https://scholar.google.com/scholar_lookup?title

=Language+Models+Are+Unsupervised+Multit

ask+Learners

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,

J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. In Advances in

Neural Information Processing Systems (Vol.

30).

https://papers.nips.cc/paper_files/paper/2017/ha

sh/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html

[27] Wang, Z., Yin, R., Zhao, Y., Wang, W., & Wang,

Y. (2020). Improving requirements traceability

using deep learning and NLP techniques.

Information and Software Technology, 121,

106267.

[28] Wangenheim, C. G. v., & Hauck, J. C. R. (2008).

Empirical evaluation of a model for improving

effort estimation based on project similarity.

Empirical Software Engineering, 13(4), 481–

512. https://doi.org/10.1007/s10664-007-9052-6

[29] Yang, Z., Dai, Z., Yang, Y., Carbonell, J.,

Salakhutdinov, R., & Le, Q. V. (2019). XLNet:

Generalized autoregressive pretraining for

language understanding. Advances in Neural

Information Processing Systems, 32.

[30] Zhang, H., Wang, S., & Xu, B. (2019). A survey

of machine learning applications in software

engineering. Computer Science Review, 34,

100199.

https://doi.org/10.1016/j.cosrev.2019.100199

