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Abstract- Accurate estimation of cost and schedule 

remains a critical challenge in agile software 

development due to iterative delivery cycles, evolving 

requirements, and cross-functional team dynamics. 

Recent advancements in transformer-based large 

language models (LLMs), such as BERT and GPT, 

present promising opportunities for improving 

parametric estimation accuracy through contextual 

learning and natural language understanding. This 

paper explores the integration of LLMs into agile 

project management frameworks to automate and 

enhance estimation processes based on historical 

project data, user stories, and sprint planning 

artifacts. By leveraging pre-trained models fine-

tuned on domain-specific repositories, the approach 

enables predictive modeling of project parameters 

with improved consistency and scalability. A review 

of the literature reveals that while traditional 

machine learning techniques have been used for 

estimation tasks, LLMs offer superior performance 

in capturing semantic complexity and stakeholder 

language. The study further presents a conceptual 

framework for embedding transformer-based models 

into agile workflows, highlighting their potential to 

reduce estimation bias, improve planning accuracy, 

and facilitate continuous forecasting. This research 

contributes to the growing intersection between AI-

driven software engineering and agile project 

management, advocating for data-centric decision-

making in software delivery environments. 

 

Indexed Terms- Transformer-Based Models, 

Parametric Estimation, Agile Software Development, 

Cost and Schedule Forecasting, Large Language 

Models (LLMs). 

I. INTRODUCTION 

 

1.1 Overview of agile software development and its 

challenges in project estimation 

Agile software development methodologies, notably 

Scrum and Extreme Programming (XP), prioritize 

flexibility, iterative progress, and continuous customer 

feedback. These approaches emerged as a response to 

the rigidity of traditional waterfall models, enabling 

rapid delivery of incremental features and adaptive 

scope control. Agile frameworks emphasize evolving 

requirements and cross-functional collaboration, 

which contribute significantly to improved product 

quality and stakeholder satisfaction (Beck et al., 2001; 

Highsmith, 2002). 

However, the very characteristics that define agility 

also introduce substantial complexity in cost and 

schedule estimation. Unlike traditional methods that 

rely on upfront requirement specification and 

sequential development stages, agile environments 

involve dynamic user stories, evolving priorities, and 

variable team velocities. These fluctuations 

complicate the establishment of reliable baselines for 

forecasting time and effort (Moløkken-Østvold & 

Jørgensen, 2005). 

Agile estimation techniques such as story points, 

planning poker, and velocity tracking are largely 

heuristic, relying heavily on subjective judgment. As 

a result, they are susceptible to inconsistencies and 

bias, particularly in distributed or newly formed teams 

(Jørgensen & Shepperd, 2007). Moreover, traditional 

estimation frameworks often fail to capture the 
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semantic richness embedded in natural language 

artifacts such as backlog items, sprint retrospectives, 

and user feedback. This disconnect between structured 

estimation models and unstructured agile 

documentation creates a gap that limits the precision 

of current forecasting approaches (Akpe et al., 2020; 

Mgbame et al., 2020). 

In practice, teams frequently experience deviations 

between estimated and actual effort due to evolving 

project scopes, technical debt, and unforeseen 

implementation complexities. These estimation 

challenges are exacerbated in large-scale agile 

programs where coordination across multiple teams 

introduces additional uncertainty. Despite efforts to 

apply historical velocity data and BI tools, many 

solutions remain limited by their dependence on 

structured input and lack of semantic interpretability. 

Consequently, the industry is increasingly exploring 

AI-powered alternatives capable of learning from 

complex project data, particularly large language 

models (LLMs) with transformer architectures. These 

models hold the promise of improving estimation 

accuracy by deriving contextual insights from the 

same agile artifacts that are typically underutilized in 

traditional estimation workflows. 

1.2 The Need for Improved Cost and Schedule 

Forecasting in Agile Contexts 

Accurate cost and schedule estimation is a cornerstone 

of effective project management, yet it remains one of 

the most persistent challenges in agile software 

development. Unlike traditional methodologies that 

rely on comprehensive upfront planning, agile 

frameworks operate within dynamic environments 

where requirements are frequently refined and 

delivery cycles are iterative. These conditions make it 

difficult to apply conventional estimation techniques, 

which often depend on static metrics and linear 

progress assumptions. As a result, project teams 

experience discrepancies between planned and actual 

outcomes, leading to resource misallocations, missed 

deadlines, and stakeholder dissatisfaction (Akpe et al., 

2020; Mgbame et al., 2020). Moreover, agile 

estimation methods such as story points and planning 

poker are inherently subjective and heavily reliant on 

team experience and cohesion, which introduces 

estimation bias and inconsistency across projects 

(Jørgensen & Moløkken-Østvold, 2004). 

The growing complexity of software systems, coupled 

with cross-functional collaboration and distributed 

team structures, further exacerbates the limitations of 

traditional estimation practices. Organizations are 

increasingly seeking automated and data-driven 

alternatives to support decision-making in agile 

environments. Studies have shown that business 

intelligence (BI) tools and analytics can aid in forecast 

accuracy, yet many such systems still require 

structured data inputs and offer limited support for 

interpreting narrative-rich agile artifacts like user 

stories, sprint reviews, and backlog discussions 

(Menzies et al., 2017). This gap in semantic 

understanding underlines the need for advanced 

estimation frameworks capable of parsing 

unstructured content and extracting contextually 

relevant features. The emergence of transformer-based 

large language models (LLMs), which excel in natural 

language comprehension, offers a promising solution 

by enabling predictive models that are sensitive to the 

linguistic and contextual nuances of agile 

documentation. These models provide an opportunity 

to augment agile estimation with consistent, scalable, 

and adaptive forecasting capabilities that can evolve 

with project dynamics and historical learning. 

1.3 Emergence of Transformer-Based Large 

Language Models (LLMs) in Software 

Engineering 

Transformer-based large language models (LLMs) 

have revolutionized natural language processing 

(NLP) by introducing self-attention mechanisms that 

effectively capture long-range dependencies and 

contextual relationships in text data (Vaswani et al., 

2017). This architectural advancement laid the 

groundwork for models such as BERT, RoBERTa, and 

GPT, which excel in a variety of language 

understanding tasks. Their ability to semantically 

interpret and generate coherent text has positioned 

them as powerful tools for software engineering 

applications, including code summarization, bug 

report classification, and documentation generation 

(Ahmad et al., 2020). In agile environments, these 
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capabilities are particularly valuable, given the 

reliance on unstructured artifacts such as user stories, 

commit messages, and sprint retrospectives for project 

tracking and estimation. 

LLMs are being increasingly adapted to support 

estimation and planning by learning from historical 

textual patterns within agile software repositories. Pre-

trained models, when fine-tuned with domain-specific 

corpora, can predict development effort and timelines 

with significantly improved contextual awareness. 

Studies have demonstrated that LLMs outperform 

traditional ML approaches in parsing semantic 

nuances in agile documentation, allowing for scalable 

and automated estimation pipelines (Owoade et al., 

2020). These developments illustrate the 

transformative potential of LLMs in aligning 

intelligent forecasting systems with the fluid nature of 

modern software delivery. 

1.4 Motivation for Integrating LLMs into Agile 

Estimation Workflows 

The increasing complexity of agile project 

documentation—comprising user stories, sprint 

retrospectives, and task breakdowns—demands 

intelligent systems capable of extracting semantic and 

contextual insights from unstructured text. Traditional 

machine learning models, such as decision trees or 

support vector machines, require manual feature 

engineering and are often ill-suited for capturing 

evolving team dynamics or natural language patterns 

in agile artifacts (Zhang et al., 2019). Transformer-

based large language models (LLMs), introduced by 

Vaswani et al. (2017), offer a paradigm shift by 

employing self-attention mechanisms to learn 

dependencies and contextual hierarchies across 

sequences. Their architecture enables real-time 

analysis of complex language data, making them ideal 

for parametric estimation tasks that depend heavily on 

historical sprint narratives and stakeholder 

interactions. 

Moreover, LLMs demonstrate state-of-the-art 

performance in various NLP applications such as 

document classification, sentiment analysis, and entity 

recognition—tasks closely related to interpreting agile 

project logs (Devlin et al., 2019; Yang et al., 2019). 

When fine-tuned with agile-specific corpora, LLMs 

can provide consistent and scalable estimations across 

teams and projects, reducing cognitive bias and human 

error. Their ability to generalize across unseen 

contexts further supports continuous planning and 

predictive forecasting in fast-paced agile 

environments, where traditional models struggle to 

adapt. 

II. LIMITATIONS OF TRADITIONAL 

ESTIMATION APPROACHES IN AGILE 

ENVIRONMENTS 

2.1 Review of Conventional Estimation Techniques 

(e.g., expert judgment, story points, velocity) 

Traditional estimation techniques in agile software 

development often revolve around heuristic and team-

based methods such as expert judgment, planning 

poker, story points, and velocity tracking. These 

methods, while aligned with agile principles of 

collaboration and continuous planning, are inherently 

limited by their reliance on subjective assessments and 

historical team performance. Expert judgment, for 

instance, draws heavily on the experience of team 

members or project leads but lacks statistical 

grounding and repeatability. Similarly, story points—

used to gauge the relative complexity or effort of user 

stories—vary widely between teams and are 

susceptible to estimation bias and team fatigue (Akpe 

et al., 2020). Planning poker, a popular consensus-

based estimation practice, is intended to reduce bias by 

involving the whole team in estimation decisions; 

however, it still fails to leverage past project data in a 

predictive capacity, often leading to inconsistent sprint 

outcomes. 

Velocity-based estimation, which involves tracking 

the average amount of work completed in previous 

sprints to forecast future performance, provides a data-

informed alternative. However, it assumes that team 

composition, task complexity, and technical debt 

remain relatively stable over time—an assumption 

rarely met in agile settings. Studies have noted that 

reliance on historical velocity is ineffective when 

sprint scope fluctuates or when user story quality 

varies, making it a reactive rather than proactive tool 

(Mgbame et al., 2020). Furthermore, conventional 

tools that operationalize these techniques lack 
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semantic processing capabilities, leaving unstructured 

data such as sprint retrospectives, backlog narratives, 

and developer comments untapped. Without 

incorporating natural language processing or 

contextual data analytics, these models fall short in 

dynamic, fast-paced development environments. 

These limitations underscore the need for integrating 

intelligent, context-aware models—such as 

transformer-based LLMs—that can interpret agile 

artifacts in a semantically meaningful way and provide 

adaptive estimation strategies. 

2.2 Gaps in Current Tools: Subjectivity, Lack of 

Semantic Interpretation, Limited Scalability 

Existing estimation tools in agile software 

development predominantly rely on heuristic or 

statistical methods that often fall short in dynamic, 

text-rich environments. Techniques such as planning 

poker or velocity-based forecasting are highly 

subjective, depending heavily on individual team 

member experience, recent sprint performance, and 

informal consensus—leading to inconsistent 

estimation outcomes. Moreover, widely adopted 

business intelligence tools, though data-driven, are 

optimized for structured data and fail to incorporate 

unstructured, semantically rich inputs like user stories, 

backlog items, and sprint retrospectives. These tools 

typically ignore linguistic nuances that influence 

requirement complexity, team behavior, or cross-

functional dependencies, which are crucial in iterative 

and fast-paced agile ecosystems. 

The scalability of current approaches is also limited. 

As projects grow and evolve, traditional estimation 

frameworks do not adapt well to increased data 

volume or contextual diversity. Furthermore, tools 

built on predefined rule sets struggle to generalize 

across domains or react to non-linear project patterns, 

ultimately weakening their predictive power (Akpe et 

al., 2020). According to Jørgensen and Shepperd 

(2016), such limitations hinder long-term project 

planning and make historical comparisons unreliable. 

These constraints collectively emphasize the need for 

advanced models capable of semantic interpretation, 

contextual adaptation, and continuous learning across 

agile iterations. 

2.3 Challenges of Using Structured-Only Methods in 

Dynamic Project Environments 

Structured estimation techniques in software 

engineering—such as use-case points, function points, 

and static historical velocity models—rely heavily on 

quantifiable inputs and fixed templates. While these 

models offer repeatability and ease of application, they 

struggle to adapt to the nuanced and fluid nature of 

agile environments, where user stories evolve 

frequently, team capacities shift, and priorities are 

redefined across sprints. In such contexts, rigid 

parameter-based estimation frameworks overlook 

rich, contextual cues embedded in textual 

documentation, stakeholder feedback, and sprint 

retrospectives. This results in estimation inaccuracies, 

delayed delivery timelines, and underutilization of 

agile’s responsiveness to change (Wangenheim & 

Hauck, 2008). 

Moreover, structured-only models fail to leverage 

semantic signals from non-numeric data, such as task 

narratives and requirement elaborations that drive 

agile project evolution. Their lack of contextual 

interpretation restricts their utility in modern DevOps 

pipelines, where estimation must be adaptive and 

evidence-driven. As agile projects increasingly 

produce diverse forms of unstructured data, tools that 

cannot parse language or derive predictive insights 

from it are rendered inadequate. According to 

Kitchenham et al. (2010), traditional metrics are often 

misaligned with software process models, leading to 

underperformance when deployed in dynamic team 

settings. The inability of structured models to reflect 

ongoing changes undermines estimation accuracy and 

compromises stakeholder trust. 

2.4 Role of BI Tools and Why They Fall Short in 

Agile Contexts 

Business Intelligence (BI) tools have long served as 

critical enablers of data-driven decision-making by 

offering dashboards, performance metrics, and 

historical analytics. In traditional project management 

environments, these tools provide structured insights 

for budgeting, resource allocation, and milestone 

tracking. However, in agile software development—

characterized by rapid iterations, decentralized 
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decision-making, and evolving requirements—BI 

systems reveal key limitations. Most BI tools are built 

for structured data environments and are not optimized 

for the high-frequency, unstructured, and semantically 

rich textual artifacts such as user stories, 

retrospectives, and sprint reviews that dominate agile 

ecosystems (Akpe et al., 2020). 

These tools lack the contextual intelligence needed to 

interpret evolving narratives and team behavior, 

limiting their capacity to generate dynamic cost or 

schedule forecasts. As agile workflows demand 

continuous estimation and adjustment, static 

dashboards and rigid data schemas often fail to keep 

pace (Mgbame et al., 2020b). Furthermore, existing BI 

systems are rarely integrated with agile toolchains 

such as Jira or GitLab in a way that enables real-time 

semantic parsing of development artifacts. Without 

natural language understanding capabilities, BI tools 

fall short in delivering the predictive precision and 

adaptability required in agile project environments 

(Abayomi et al., 2020). 

III. CAPABILITIES OF TRANSFORMER-

BASED LANGUAGE MODELS FOR 

PROJECT ESTIMATION 

3.1 Overview of Transformer Architecture (e.g., 

Attention Mechanisms, Sequence Modeling) 

Transformer architecture, introduced by Vaswani et al. 

(2017), represents a major paradigm shift in natural 

language processing by replacing recurrence and 

convolutions with self-attention mechanisms. The 

core innovation of the transformer model is the self-

attention mechanism, which allows the model to 

weigh the relevance of each token in the input 

sequence relative to others. This enables the model to 

capture long-range dependencies and contextual 

relationships more efficiently than traditional models 

such as RNNs or LSTMs. 

The transformer architecture consists of an encoder-

decoder structure, where each layer in the encoder 

applies multi-head self-attention and position-wise 

feedforward networks. Unlike recurrent models, 

which process sequences sequentially, transformers 

process entire sequences in parallel, significantly 

accelerating training and improving scalability 

(Vaswani et al., 2017). The use of positional encoding 

allows the model to retain information about the order 

of tokens in a sequence—an essential feature when 

modeling natural language where word order impacts 

meaning. 

In applications related to software engineering, such as 

project documentation analysis or code 

summarization, transformers provide a powerful 

mechanism for understanding semantic relationships. 

Their ability to model complex, domain-specific 

textual data makes them particularly suitable for agile 

environments, where user stories, backlog items, and 

planning notes are expressed in unstructured formats 

(Radford et al., 2018). BERT, another influential 

transformer-based model, applies a bidirectional 

approach to attention, enabling deep contextual 

understanding by processing input sequences from 

both directions (Devlin et al., 2019). 

These architectural advantages support the 

development of intelligent estimation systems that can 

parse textual artifacts and derive quantitative 

predictions related to project cost and schedule as seen 

in Table 1. By capturing semantic nuances, 

transformers enable more accurate and context-aware 

parametric estimation in agile workflows. 

Table 1: Core Components of Transformer 

Architecture for Agile Estimation Tasks 

Compon

ent 
Function 

Application 

in Agile 

Estimation 

Key 

Advantage 

Self-

Attention 

Mechani

sm 

Computes 

relevance of 

each word to 

others in a 

sequence 

Captures 

dependencie

s across user 

stories, 

backlog 

items, and 

sprint 

summaries 

Enables 

contextual 

understanding 

Positiona

l 

Adds order 

information 

Preserves 

the sequence 

of events in 

sprint logs 

Maintains 

temporal 

relationships 
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Compon

ent 
Function 

Application 

in Agile 

Estimation 

Key 

Advantage 

Encodin

g 

to input 

tokens 

and 

developmen

t histories 

Multi-

Head 

Attention 

Allows 

model to 

focus on 

different 

positions 

simultaneou

sly 

Simultaneou

sly evaluates 

different 

project 

parameters 

(e.g., task 

type, effort) 

Enhances 

multidimensi

onal 

representation 

Feed-

Forward 

Network

s 

Applies non-

linear 

transformati

ons to 

encoded 

information 

Translates 

semantic 

features into 

numerical 

estimations 

for 

cost/schedul

e 

Improves 

expressivenes

s of model 

layers 

 

3.2 Advantages over Classical Machine Learning 

Models in Understanding Agile Documentation 

Classical machine learning (ML) models such as 

decision trees, support vector machines, and basic 

regression techniques have been widely applied in 

software estimation tasks. However, their reliance on 

structured, pre-engineered features and limited ability 

to process semantic and contextual nuances render 

them suboptimal for analyzing the complex, narrative-

rich artifacts generated in agile environments. These 

artifacts—comprising user stories, sprint 

retrospectives, and team logs—often contain 

ambiguous, context-dependent language that 

traditional ML models struggle to interpret. 

Transformer-based large language models (LLMs), on 

the other hand, leverage attention mechanisms and 

deep contextual embeddings that enable them to learn 

relationships between words across long sequences. 

Unlike classical ML models, transformers do not 

require manual feature engineering and can be fine-

tuned directly on domain-specific documentation to 

capture latent patterns relevant to cost and schedule 

estimation (Devlin et al., 2019). Their architecture 

allows them to encode dependencies between backlog 

items, sprint goals, and technical constraints, making 

them more effective in agile project understanding. 

Studies such as Akpe et al. (2020) highlight the 

growing application of intelligent frameworks in agile 

contexts, yet emphasize the limitations of rule-based 

and metric-driven approaches that dominate current 

estimation practices. Transformer-based models 

address these gaps by enabling semantic 

comprehension and providing scalable solutions for 

unstructured data interpretation. Furthermore, as 

demonstrated by Radford et al. (2019), these models 

are capable of transfer learning, allowing for 

adaptation across project domains without retraining 

from scratch. 

The ability to automatically extract meaning from 

agile documentation positions transformer models as 

superior alternatives to classical ML techniques, 

especially in domains requiring real-time estimation 

and continuous learning. 

3.3 Examples of LLMs Applied in Contextual and 

Semantic Analysis of Software Artifacts 

Transformer-based large language models (LLMs) 

have been increasingly adopted to enhance the 

contextual understanding of software artifacts, 

providing advanced capabilities in interpreting 

documentation, source code, and developer 

communications. Their proficiency in semantic 

parsing and token-level attention makes them ideal for 

extracting insights from agile narratives, requirement 

texts, and issue tracking systems. 

One example is the application of BERT and its 

derivatives in software requirement classification and 

traceability tasks. Models like RoBERTa and 

ALBERT have been fine-tuned to detect ambiguous 

requirement patterns, improve trace link recovery, and 

cluster semantically similar backlog items (Wang et 

al., 2020). These LLMs outperform traditional NLP 

pipelines by modeling bidirectional context, which is 

essential in detecting nuanced relationships in 

software project documents. 
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In addition, LLMs have been employed to automate 

the classification of GitHub issues and pull request 

comments, assisting teams in prioritizing refactoring 

efforts and categorizing technical debt. Using 

contextual embeddings generated by models like 

XLNet, researchers have demonstrated improvements 

in understanding the intent behind developer messages 

and aligning them with code commits and architectural 

decisions (Ahmad et al., 2020). 

Notably, transformer models have also been deployed 

in defect prediction and effort estimation by learning 

from project descriptions, changelogs, and commit 

messages. This approach enables the correlation of 

natural language artifacts with development outcomes, 

a method critical for agile teams that rely on sprint 

retrospectives and narrative data (Akpe et al., 2020). 

Furthermore, recent efforts have utilized LLMs for 

generating automated code summaries and identifying 

duplicate bug reports, which streamlines issue tracking 

and accelerates sprint velocity (Mishra et al., 2019). 

These applications illustrate the transformative 

potential of contextual LLMs in agile software 

environments where textual and conversational data 

dominate project artifacts. 

3.4 Literature Support for LLM Adoption in Effort 

and Resource Estimation 

The application of large language models (LLMs) in 

software engineering has gained momentum due to 

their superior ability to understand and generate 

natural language, which is crucial in interpreting agile 

documentation. Transformer-based architectures have 

shown promise in automating estimation tasks by 

learning contextual relationships within project 

narratives. For instance, Idoko et al. (2020) 

highlighted the potential of semantic learning models 

in interpreting technical documents, suggesting that 

transformer-based approaches could significantly 

enhance predictive accuracy in resource forecasting. 

Similarly, Ayoola et al. (2020) demonstrated that AI 

systems trained on domain-specific language corpora 

outperform traditional rule-based estimators in agile 

environments, especially where requirements evolve 

rapidly. 

Azonuche and Enyejo (2020) also emphasized the 

scalability of LLMs in software lifecycle management, 

indicating their capability to process historical sprint 

data for more accurate timeline predictions. 

Furthermore, Enyejo et al. (2020) noted that 

transformer models, once fine-tuned, can identify 

linguistic patterns across user stories and backlogs that 

correlate with resource constraints and delivery 

schedules. Supporting these findings, Devlin et al. 

(2019) and Vaswani et al. (2017) provided 

foundational insights into the architecture and 

capabilities of BERT and the Transformer, 

respectively—technologies now central to NLP-

driven effort estimation systems in agile workflows. 

IV. PROPOSED FRAMEWORK FOR 

INTEGRATING LLMS INTO AGILE 

ESTIMATION PIPELINES 

4.1 Conceptual model: inputs (user stories, sprints, 

logs), model architecture, and outputs 

(cost/schedule predictions) 

The proposed conceptual model for leveraging 

transformer-based large language models (LLMs) in 

agile project estimation is structured around three key 

layers: input processing, model architecture, and 

output generation. Inputs include unstructured textual 

artifacts such as user stories, sprint retrospectives, and 

development logs—data sources rich in semantic 

context and commonly found in agile tools like Jira or 

GitHub issues. These inputs are preprocessed into 

tokenized sequences and passed through transformer 

encoders that leverage self-attention to capture 

contextual dependencies (Vaswani et al., 2017). 

The model architecture may be based on pre-trained 

LLMs like BERT or RoBERTa, fine-tuned on 

historical agile datasets to learn patterns in estimation-

relevant phrases, task duration trends, and workload 

descriptors. This enables contextual mapping of 

language to quantifiable estimates, such as predicted 

hours or cost metrics. The outputs are structured as 

continuous (numerical) values representing cost and 

time projections, enabling integration with agile 

dashboards and planning tools. 
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This approach improves upon traditional estimation 

methods by offering automated, context-aware 

predictions adaptable to team dynamics and sprint 

evolution (Radford et al., 2019; Devlin et al., 2019). 

4.2 Fine-Tuning Strategies for Domain-Specific 

Project Data 

Fine-tuning large language models (LLMs) on 

domain-specific project data enhances their predictive 

accuracy and contextual understanding in agile 

environments. This process involves adapting pre-

trained transformer models such as BERT or 

RoBERTa to the specific linguistic patterns, 

terminology, and structural nuances present in 

software project documentation. To optimize 

estimation outcomes, fine-tuning datasets often 

include labeled user stories, sprint summaries, release 

notes, and historical burn-down charts. These artifacts 

provide rich semantic content necessary for learning 

latent relationships between textual input and project 

effort or duration. 

Recent frameworks emphasize the importance of 

curating high-quality agile corpora with minimal noise 

and incorporating task-specific objectives such as 

regression-based output layers for continuous 

variables like cost and time (Akpe et al., 2020). 

Techniques such as masked language modeling and 

next sentence prediction remain foundational, but 

domain-adaptive pretraining has been shown to 

significantly improve task performance in estimation 

contexts (Gururangan et al., 2020). Furthermore, 

iterative training using feedback loops from project 

retrospectives can reinforce dynamic adaptation over 

time, allowing the model to evolve with project 

complexity and team behavior. 

The success of fine-tuning strategies relies on 

contextual embedding quality, label granularity, and 

regular updates aligned with sprint cycles to ensure 

relevance and model generalization in agile software 

development. 

 

 

Table 2: Fine-Tuning Strategies for Domain-Specific 

Transformer Models in Agile Estimation 

Strategy Description 
Application in 

Agile Context 

Expected 

Outcome 

Task-

Specific 

Pretraining 

Pretraining 

LLMs on 

domain-relevant 

corpora (e.g., 

software project 

documentation) 

Enhances 

understanding 

of sprint 

terminology, 

technical debt, 

and user stories 

Improved 

semantic 

accuracy and 

relevance 

Transfer 

Learning 

Reusing weights 

from general 

models and fine-

tuning on agile 

datasets 

Adapts generic 

models (like 

BERT) to 

project-specific 

language and 

planning data 

Reduces 

training time 

and data 

requirements 

Few-

Shot/Zero-

Shot 

Learning 

Utilizing small 

labeled datasets 

or prompts to 

perform 

estimation tasks 

Applies to 

environments 

with limited 

historical 

project data 

Efficient 

model use in 

resource-

constrained 

settings 

Active 

Learning 

Loops 

Iteratively 

improving model 

with human-in-

the-loop 

feedback 

Supports 

continuous 

refinement 

from scrum 

teams or PMs 

during 

retrospectives 

Increases 

model 

adaptability 

and accuracy 

 

 

4.3 Example Use Cases in Agile Toolchains (e.g., 

Jira, Azure DevOps) 

Agile toolchains such as Jira and Azure DevOps offer 

structured repositories of user stories, sprint data, and 

velocity metrics that can serve as rich inputs for 

transformer-based large language models (LLMs) in 

estimation pipelines. For instance, fine-tuned LLMs 

can be used to analyze historical sprint reports and user 

narratives within Jira to identify estimation patterns 

across project cycles. These models enable prediction 

of task duration and cost range based on semantically 

similar backlog entries (Akpe et al., 2020). In Azure 

DevOps, LLMs can be integrated with work item 
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tracking systems to forecast sprint capacity, identify 

resource bottlenecks, and detect inconsistencies in 

planning through anomaly detection mechanisms 

(Mgbame et al., 2020). Beyond backlog analysis, such 

models support intelligent recommendation systems 

by proposing effort-based task clustering and tagging 

strategies, thereby aiding sprint planning and scope 

prioritization. This integration advances beyond 

numeric modeling to contextual interpretation, 

enabling automated, bias-resistant, and scalable 

estimation processes that evolve over time. 

4.4 Implementation Challenges: Training Data, 

Model Interpretability, Integration Complexity 

Implementing transformer-based large language 

models (LLMs) in agile estimation pipelines 

introduces several key challenges. One major 

limitation is the availability and quality of training 

data. Agile documentation—such as user stories, 

retrospectives, and sprint plans—is often inconsistent, 

unstructured, and domain-specific, making model 

generalization difficult. Moreover, small enterprises 

may lack the volume of labeled project data required 

for effective fine-tuning (Akpe et al., 2020). 

Model interpretability is another critical concern. 

While LLMs outperform classical models in language 

understanding, they operate as black boxes, making it 

difficult for agile teams to understand how predictions 

are made. This lack of transparency may hinder trust 

in automated estimates, especially among non-

technical stakeholders (Doshi-Velez & Kim, 2017). 

Integration complexity also poses a barrier. 

Embedding LLMs within agile toolchains such as Jira 

or GitLab requires API harmonization, real-time data 

ingestion, and cross-platform compatibility—factors 

that demand significant engineering overhead and 

process reconfiguration (Mgbame et al., 2020). 

Ensuring consistent performance while maintaining 

low latency further complicates integration in fast-

paced agile environments. 

 

 

V. IMPLICATIONS, LIMITATIONS, AND 

FUTURE DIRECTIONS 

5.1 Strategic Benefits: Improved Accuracy, 

Continuous Learning, Reduced Bias in Planning 

Transformer-based large language models (LLMs) 

offer transformative benefits for agile project 

estimation, notably in enhancing accuracy, enabling 

continuous learning, and mitigating bias. Traditional 

estimation methods often rely on static models or 

human intuition, both of which are prone to 

inconsistency and subjective error. In contrast, LLMs 

can analyze large volumes of historical project data to 

identify patterns and correlations that humans may 

overlook, resulting in more precise and data-driven 

estimates. 

One of the most compelling advantages of LLMs is 

their ability to learn continuously. As new sprint 

records, user stories, and planning documents are 

generated, the model can be updated and refined to 

reflect current team dynamics and delivery trends. 

This feedback loop ensures that the estimation system 

evolves with the project, maintaining its relevance 

over time. 

Additionally, by removing reliance on individual 

judgment, LLMs reduce cognitive biases such as 

optimism bias, anchoring, and planning fallacy. This 

leads to more objective and fair assessments of 

workload and timelines. Furthermore, by providing 

standardized estimation across multiple teams and 

projects, LLMs support organizational consistency 

and transparency in forecasting. Ultimately, these 

models enhance the reliability of agile planning and 

empower teams to make better-informed decisions 

throughout the software development lifecycle. 

5.2 Practical Limitations: Data Privacy, Model Drift, 

Organizational Resistance 

Despite the strategic advantages of integrating 

transformer-based language models into agile 

estimation processes, several practical limitations 

must be addressed to ensure successful deployment. 

One significant concern is data privacy, particularly in 

environments where sensitive project documentation 
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and customer information are embedded within user 

stories, sprint notes, and backlog items. Organizations 

must ensure that training and inference processes 

comply with data governance policies, including 

anonymization protocols and access controls, to 

mitigate privacy risks. 

Model drift presents another critical challenge. Agile 

project environments are dynamic, with continuous 

evolution in terminology, business logic, and process 

workflows. As a result, the performance of a pre-

trained or fine-tuned language model can degrade over 

time if not regularly updated with current data. 

Without active monitoring and re-training cycles, the 

model may produce outdated or inaccurate estimates, 

undermining its reliability. 

Finally, organizational resistance can hinder adoption. 

Many agile teams rely heavily on experiential 

judgment and collaborative planning rituals. 

Introducing an AI-based estimator may be met with 

skepticism or fear of automation displacing human 

decision-making. Ensuring transparency, involving 

end-users in model integration, and framing the tool as 

an assistive rather than authoritative system are 

essential strategies to overcome this resistance and 

foster trust in AI-driven estimation frameworks. 

5.3 Future Research Directions (explainable AI in 

agile estimation, multi-modal inputs (text, code, 

metadata) 

As transformer-based large language models (LLMs) 

continue to evolve, future research should focus on 

enhancing their transparency, adaptability, and 

integration in agile estimation systems. One promising 

direction is the incorporation of explainable AI (XAI) 

frameworks to address the opacity of LLM outputs. By 

enabling stakeholders to understand why specific 

estimates were generated, XAI can build trust and 

facilitate informed decision-making across agile 

teams. 

Another critical area is the development of domain-

specific pretraining corpora tailored to software 

engineering and project management. While general-

purpose LLMs like BERT and GPT offer strong 

linguistic capabilities, models fine-tuned on agile 

artifacts, engineering logs, and sprint documentation 

are likely to yield more accurate and context-sensitive 

predictions. This calls for curated datasets and labeling 

methodologies that reflect agile workflows. 

Additionally, multi-modal integration represents a 

frontier for advancing estimation models. Combining 

textual inputs with project metadata, code repositories, 

version history, and team performance metrics can 

result in more comprehensive and predictive 

estimation pipelines. Finally, research should explore 

continuous learning architectures that adapt in real-

time, allowing models to evolve alongside agile 

project environments without performance 

degradation. These directions will contribute to 

building robust, intelligent tools that align seamlessly 

with the future of agile software development. 

5.4 Conclusion 

The integration of transformer-based large language 

models into agile software development presents a 

transformative opportunity for improving the accuracy 

and efficiency of cost and schedule estimation. Unlike 

traditional estimation methods that rely on subjective 

judgment and static metrics, LLMs offer dynamic, 

data-driven insights by analyzing complex textual 

artifacts inherent to agile workflows. Their ability to 

capture semantic nuances and continuously learn from 

evolving project documentation positions them as 

powerful tools for enhancing planning precision and 

reducing estimation bias. 

Despite these advantages, successful implementation 

requires addressing practical limitations such as data 

privacy concerns, model drift, and organizational 

resistance. Furthermore, the complexity of integrating 

LLMs into existing agile toolchains demands 

thoughtful engineering and stakeholder alignment. As 

agile environments continue to demand faster, more 

adaptive planning mechanisms, the use of intelligent 

systems will likely become a standard practice rather 

than a competitive advantage. 

This paper has highlighted the strategic benefits and 

technical considerations of embedding LLMs into 

parametric estimation processes, offering a conceptual 

framework that aligns with agile principles. Continued 
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research and innovation in this domain are essential to 

unlocking the full potential of AI-assisted project 

management and ensuring sustainable, accurate, and 

scalable software delivery in a rapidly evolving digital 

landscape. 
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