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Abstract- Promptly locating and clearing faults is key 

to maintaining the reliability of the power grid. The 

traditional way of locating faults on the grid cannot 

be relied upon due to the high costs involved with 

dispatching repair crew to search for the location of 

the fault and the time involved in achieving that. 

While the installation of protective devices such as 

reclosers and Sectionalisers help in protecting the 

network and preventing blanket outage of the 

network when a permanent fault occurs, they by 

themselves cannot locate the point on the network 

where the fault has occurred. However, the 

transients launched by the inception of a fault on the 

line contain features that could be used to trace the 

location of the fault. The main aim of this study is to 

employ artificial neural networks in locating faults 

in a distribution system involving reclosers and 

Sectionalisers. The data for training the artificial 

neural network is to be obtained by simulating 

various fault scenarios in MATLAB/Simulink and 

the features of the data are extracted by processing 

the data using the discrete wavelet transform (DWT). 

The modelling and simulation of the fault location 

system is done in MATLAB/Simulink on a 15 bus 

IEEE distribution network with a grid supply and a 

distributed generator connected to the system. 

Twenty (20) random trials were conducted on 

different lines of the network and the fault location 

system was able to identify the faulty line 60% of the 

times.. 

 

Indexed Terms—Artificial Neural Network (ANN), 

Discrete wavelet Transform (DWT), Fault, Recloser, 

Sectionalizer. 

 

I. INTRODUCTION 

 

Abstract: Reliability is a key aspect of the power grid, 

which may be managed by pre-emptive measures or 

by fault location. Pre-emptive measures are 

implemented through the incorporation of redundancy 

in pathways and with equipment which require huge 

investments in order to avoid outages. Fault location 

on the other hand decreases the process time for fault 

clearance [1]. One effective way of improving 

distribution system reliability is the placement of 

switches and protective equipment in optimal 

locations [2]. This is typically implemented through 

the deployment of reclosers and Sectionalisers. 

Although the electric grid is designed to continuously 

supply power to consumers in an efficient and reliable 

manner, it is prone to faults which could lead to 

interruption in the supply of electricity [3]. A fault 

could be referred to as an unpermitted deviation from 

the standard operation of the system which may be 

temporary or permanent. A temporary fault is self-

resolving within a specified time interval and does not 

lead to permanent damage on any components in the 

network. Permanent faults exceed the time limit for 

temporary faults and result in the damage of one or 

several components in the network that need to be 

repaired before the service can be restored [1]. 

Temporary faults can be resolved through the action of 

reclosers which are switches, like circuit breakers, but 

intelligent enough to test the line for any fault and 

disconnect the line temporarily for a short period of 

time to clear the fault [4] [5]. Where the fault persists 

and becomes permanent thereby requiring repairs, the 

faulty portion of the network is sectionalised or 

isolated from the healthy portion of the network 

pending the repairs and restoration by the utility 

company. 

The fault location process involves a number of steps 

that is initiated by the occurrence of a fault in the 

network. The steps involved in fault location are: fault 

detection, fault area determination, general fault 

location, fault isolation/clearing and service 

restoration. When forced outage occurs in an electric 
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network with reclosers and Sectionalisers, the fault 

location process would traditionally involve an 

affected customer calling to inform the utility 

company of the outage and a team is dispatched to 

trace and locate the fault, classify the fault and clear it. 

The disadvantages of this process are; delayed reports, 

fake reports and the fact that tracing the location where 

the fault occurred can be a herculean and time-

consuming task especially in networks covering large 

areas which may also require knowledge and 

experience of the area [1]. The advent of 

microprocessor based intelligent monitoring and data 

acquisition systems has enabled fault location through 

data analysis which can be categorised into the 

following: Impedance based, travelling wave 

techniques and knowledge-based approach. The cost 

effectiveness of impedance-based methods of fault 

location is the reason for their wide acceptance and 

application in distribution systems. This method 

requires only the data for voltage, current and line 

impedance which is typically obtained at the primary 

substation level and uses the fundamental frequency to 

approximate the location of the fault [1]. 

The occurrence of a fault in a line creates a high 

frequency wave of current and voltage. These 

travelling waves propagate away from the fault 

towards both ends of the line in the form of 

electromagnetic pulses. The discontinuities in the 

network such as short circuits, open circuits and line 

terminals cause the wave to experience reflections and 

refractions as they propagate. This continues until a 

steady state is attained where the energy of these 

travelling waves gets completely dissipated [6]. Line 

terminals installed at each end of the line or network 

can be used to record the travelling time of the wave 

from the fault location to each of the terminals and 

given that the recording times are synchronized at the 

two terminals, the detection time between the two 

waves can be determined.  Traveling-wave methods 

are of three types which are: A, B and C type. Types 

A and B methods rely on the traveling-wave signal 

generated by the fault and returning to the 

measurement point. Methods A and B both require 

detection devices, which detect the signal(s) from the 

fault. A-type methods are reliant on one-end 

measurements while B-type require a reader at each 

end of the line, which makes it unattractive in 

distribution networks. In C-type on the other hand, a 

traveling-wave is introduced in the system which is 

used to calculate the fault location [7]. This injection 

of a travelling wave into the system reduces the need 

for continuous high resolution data acquisition. [7] 

Knowledge-based approach falls under soft computing 

in contrast to traditional hard computing where 

precision is sought. Hard computing relies on the 

ability of computers to perform large amounts of 

computations at high speeds through algorithms that 

operate serially, are controlled by a central processing 

unit (CPU) and store the information at a particular 

location in memory. Soft computing on the other hand 

mimics the information processing method of the 

human brain which relies on distributed 

representations and transformations that operate in 

parallel, have distributed control through 

interconnected processing elements or neurons and 

stores the information in various straight connections 

called synapses. In soft computing there are higher 

possibilities of finding complex correlations because 

the restrictions are looser but the accuracy and 

certainty come at a price which result in a trade-off 

between precision and uncertainty [8]. There are three 

broad areas under knowledge-based approaches which 

are: Expert systems techniques, Artificial neural 

networks and Fuzzy-logic systems [1]. Artificial 

neural networks have high accuracy in fault location 

as confirmed by [9], [10], [11], [12], [13], [14], [15], 

[16], [17], [18], [19], [6], [20]. This work would focus 

on the use of Artificial neural network to locate faults 

in a distribution network with Reclosers and 

Sectionalisers. This work would focus on the 

distribution section of the grid network as the analysis 

of the failure statistics of most utilities indicate that the 

distribution system is the most affected by faults [21]. 

Also, switches and other protective equipment placed 

at optimal locations in the distribution network form 

part of the protection system of the network and help 

to improve the reliability of the system [2]. As such, 

Reclosers and Sectionalisers would be included in the 

system modelled in this project. The modelling and 

simulation for this work would be carried out in 

MATLAB/Simulink 

 

II. LITERATURE REVIEW 

 

A fault in a distribution network can be referred to as 
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an unpermitted variation from its normal operating 

conditions. A number of reasons could be responsible 

for this anomaly which include: electrical lines coming 

in contact with each other creating a short circuit, the 

coming into contact of electric lines by animals or 

vegetation etc [1], [25]. The traditional way of locating 

and clearing faults in an electric grid system involves 

the affected customer calling the utility company to 

register a complaint of an interruption of service. The 

utility company in response to the complaint would be 

tasked with the responsibility of tracing the location of 

the fault and clearing the fault to restore the service 

[1]. This method is time consuming and requires much 

effort on the part of the restoration team of the utility 

company. While protection relays such as reclosers 

and Sectionalisers may be used to indicate the general 

area defined by a protection zone, fault locators are 

used for pinpointing the fault location with a high 

degree of accuracy [26]. With data acquisition systems 

such as SCADA, a fault can be located based on 

certain patterns or features in the fault data. The fault 

data is obtained from measurements of voltages and 

currents in the line at the inception of the fault. [26] 

identifies the basic fault models that must be 

considered in the formulation of a fault location 

algorithm. These basic linear fault models are depicted 

in Figure 2.1 and listed below as: 

Phase to earth fault 

Phase to phase fault 

Two phases to earth fault 

Three phases fault 

Three phases to earth fault 

Broken conductor fault 

Phase to earth fault with broken conductor 

Broken conductor with phase to earth fault 

    

   

a) Phase to earth fault       b) Phase to 

phase fault        c) Two phases to earth fault 

    

   

d) Three phases fault  e) Three phases to 

earth fault  f) Broken conductor fault 

   

   

Phase to earth fault with broken conductor h) 

Broken conductor with phase to earth fault 

Figure 2.1: Fault Models [27] 

 

Fault Location Methods 

Recent research in fault location have been applied to 

HVDC systems as seen in the work of  [28], [29], [30], 

[31], [32], [33], [34]. This is because the modern smart 

grid is progressively aligned for direct current power 

transmission [31]. Never the less the methods used to 

formulate fault location algorithms are similar to those 

for the conventional alternating current transmission 

system. These methods can be classified into three 

broad categories which are; the travelling wave 

method, the impedance-based method and the 

knowledge based or artificial intelligent techniques 

[1], [35]. 

 

Travelling Wave Method for Fault Location 

Travelling wave-based methods associate 

characteristic frequencies linked to travelling wave 

paths with the location of the fault. The reflections and 

transmissions of the waves generated when a fault 

appears are the basis for locating the fault using this 

method [35], [36]. These waves travel in both 
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directions from the point of the fault as shown in 

Figure 2. The waves launched by a fault have energy 

over a wide spectrum with the 20kHz to 2MHz range 

being mostly the useful range for travelling wave fault 

location [37]. Travelling wave techniques are of three 

types: type A, type B and type C. Both types A and B 

rely on the returning travelling wave signal from the 

fault and require detection devices to detect the 

traveling waves. Type B requires a signal reader at 

each end of the line which makes it unattractive for 

distribution networks while type A requires only one 

end measurement. Type C introduces a travelling 

wave in the system which is used to compute the fault 

location. If the recording signals are synchronized at 

terminals 1 and 2 of the line in a type B travelling wave 

fault location method for example, then the time it 

takes the wave to travel from the fault to each terminal 

can be recorded. The difference in detection times can 

be determined as shown in equation 2.1 [1]. 

 

Figure 2.2: Travelling wave fault location system 

[36] 

td = t1 − t2     

 …2.1 

Where td = difference in recording time between 

terminal 1 and 2 

t1 = recording time at terminal 1 

t2 = recording time at terminal 2 

Given that the length of the line L is known and the 

velocity of the wave C is known, the distance to the 

fault d can be calculated as shown in equation 2.2. 

d =
L−Ctd

2
    …2.2 

The concept above depicts the main principles 

underpinning the traveling wave method of fault 

finding which is often used in transmission networks 

to accurately locate a fault on the line. This method is 

not feasible in a distribution network due to the 

branched configuration of the grid and additional 

signal processing tools such as wavelet transform and 

filtering may be required to simplify the computations 

of the wave [1], [38]. Where filters are employed with 

only one line recording terminal as in type A, the fault 

signal and the subsequent reflections can be singled 

out among the frequency peaks and the time difference 

used to calculate the fault location. [37] and [39] also 

suggest the use of a reference event such as an 

automatic reclosing without fault along with the 

travelling waves captured during a fault to compute 

the fault location. The drawback with this is that type 

A fault signals are difficult to detect when the fault 

occurs close to the terminal [1]. In type C, the fault 

location can be evaluated as shown in equation 2.3. 

L =
C(t2−t1)

2
    …2.3 

Where L = distance to fault 

C = velocity of the wave signal 

t1 = the signal injection time 

t2 = the signal return time 

In a meshed layout, this method could give rise to 

several possible fault locations. A possible solution to 

this is the injection of a DC signal and the used of Hall 

Effect sensor technology to detect the signal returning 

through the ground [1]. 

The authors in [40] proposed a novel travelling wave 

fault location method based on directed tree model and 

linear fitting to solve the problem of inaccurate fault 

location in transmission network due to anomalies 

such as travelling wave location device faults, startup 

failure and time recording error. The location error in 

this work is 0.01% for any fault type and location. This 

method involves graphical analysis and requires 

detection devices with high speed in the range of less 

than 1us. 

The authors in [41] proposed a new method for fault 

location in resonant grounding systems based on 

variable modal decomposition (VMD) and Kurtosis 

calibration. The feature of the fault signal is extracted 

by decomposing the fault signal into intrinsic mode 

functions (IMF) using the VMD algorithm with 

adaptive characteristics and the IMF with transient 

fault characteristics are accurately selected. The 

arrival time of the travelling wave head is detected 

using the discrete kurtosis value which is calculated 

for the IMF component with the highest frequency. 

The wave head is calibrated by noting the time 

corresponding to the maximum kurtosis value which 

is the travelling wave head moment. The simulation 

results from this study showed that this proposed 

method can accurately calibrate the wave head and 

achieve the desired fault location. 
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The authors in [42] proposed a novel protection and 

fault location combined algorithm for mixed overhead 

lines and underground cable system. The proposed 

method applies the Morphological Gradient (MG) to 

the modal component of synchronized measured 

currents at both ends of the mixed transmission line to 

detect the transient components generated by a fault. 

The sign of superimposed components is used for 

discriminating internal and external faults and the fault 

location is computed using the difference between the 

times related to the transient components. The 

simulations were carried out using the EMTP-RV 

software with a sampling frequency of 1.5MHz. 

Analysis of the current signal and the fault location 

algorithm were implemented in MATLAB. 

The authors in [43] proposed a cable fault location 

method in VSC-HVDC system based on improved 

local mean decomposition. This was aimed at solving 

the problem of low positioning accuracy caused by 

modal aliasing and noise interference in DC cable fault 

location analysis of a VSC-HVDC system. This work 

involved the use of a double-ended fault location 

method for flexible DC cables based on improved 

local mean decomposition (LMD). The product 

function (PF) component is obtained by decomposing 

the six-mode voltage signal using the local mean 

decomposition (LMD) and then to overcome the 

problem of the instantaneous frequency of the LMD 

being limited by the extreme value, the Hilbert 

transform is performed on the PF1 to obtain the 

instantaneous frequency curve, and the arrival time of 

the voltage traveling wave head is determined from the 

mutation information. The fault distance is thereafter 

obtained by using the double ended travelling wave 

fault location principle. Various fault conditions were 

simulated, analysed and compared with wavelet 

transform and Hilbert–Huang transform. A 

positioning error within 1% was obtained from the 

results which shows that the proposed method is less 

affected by interference noise and transition 

resistance. 

Impedance Based Method for Fault Location 

The data for line impedance, voltage and current are 

all that are required for fault location using the 

impedance-based method. The fault location is 

approximated using the fundamental frequency and 

the aforementioned data which are typically usually 

collected at the primary substation level [1]. This 

method is widely used in distribution systems due to 

their cost effectiveness. Owing to the presence of 

dispersed loads, the computations are initiated in the 

first line section and then carried out sequentially in 

the network to determine the fault steady state 

conditions for all the sections. This analysis can either 

be done with symmetrical components or in phase 

domain. The choice of phase domain in this case is 

recommended because unbalanced loads are common 

in distribution systems [1]. Impedance based methods 

generally solve the line equations iteratively with an 

initial guess of the distance. The calculations are 

repeated for the next section if the fault distance is 

calculated to be beyond the segment and is continued 

in this fashion until the fault location falls within the 

range of the conductor [1]. A simplified formula for a 

single ended impedance-based method is presented in 

equation 2.4.  

Vs = d. ZL+. Is    …2.4 

Where, d = distance to fault 

 ZL+ = Positive sequence line impedance 

 VS = Voltage measured at the relay 

 IS = Current measured at the relay 

Lateral branching is a common feature in distribution 

systems and as such, they need to be accounted for in 

the computations. This can be achieved by computing 

the equivalent paths corresponding to the number of 

laterals. Larger scale systems could employ a method 

where the equivalent node impedances are computed 

through a power flow analysis before the occurrence 

of a fault [1]. 

To obtain reliable results, it is important to properly 

consider the assumptions and details in the line and 

load parameters. In a distribution network with shorter 

lines, the capacitance may be considered negligible 

but in a network with longer lines, the capacitance has 

to be accounted for. Although difficult to estimate due 

to the fact that they are usually obtained from 

historical data, the load data also needs to be 

considered. A poorly approximated load profile does 

not really affect the system to a large extent since the 

load current is much smaller than the fault current. 

However, in cases where the fault resistance is higher, 

the value of the load current and the fault current 

become closer and therefore a poorly approximated 

load increases the inaccuracy of the results [1]. 
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Figure 2.3: Typical branched distribution system 

showing the multiple estimation problem where the 

fault distance is represented by the dashed circle [44] 

 

A number of possible fault locations can be identified 

since the method involves multiple estimations. The 

impedance is calculated in the network as seen from 

the measuring point and all points with impedance 

equal to the assumed fault impedance are identified. 

Due to the branched layout of distribution grids, 

multiple points with the same impedance are obtained 

as shown in Figure 3. There are two ways to handle the 

multiple estimation problem. One solution is by 

analysing the waveform recorded at the substation, 

which displays the characteristics of the present 

protective devices before the fault. As a consequence, 

the fault is located at the point, which has the same 

upstream protective devices. If two or more points 

have the same preceding protective devices, a 

comparison can be made between the main feeder 

current and the sum of the affected load currents for 

each possible point. Another solution is the installation 

of fault indicators which detect and get triggered at the 

presence of fault currents, and analysing the load 

currents in the unaffected lines [44]. 

Impedance based methods can be subdivided in two 

main categories: one-end measurements and multi-end 

measurements. The one-end measurement method 

solely relies on voltage and current measurements at 

one location; commonly at the beginning of the line. 

Multi-end methods on the other hand require 

measurements at several nodes; the minimum being at 

every consumption and production node in the system 

[1]. The two categories have apparent pros and cons. 

One of such is the increased number of installations of 

a multi-end method compared to a lower level of 

accuracy of a one-end method. Other less obvious 

differences are the ability to perform in a grid structure 

incorporating distributed generation. The accuracy of 

one-end method is affected by distributed generation 

while multi-end methods are not affected by 

distributed generation [45]. The effects of distributed 

generation are further magnified with higher 

generation capacity installed coupled with greater 

distances from the distributed generation source [45]. 

The authors in [46] affirmed the effect of the load 

model on the steady state of the power distribution 

system which in turn will directly influence the fault 

locator performance. 

The authors in [47] proposed a method for fault 

location in distribution network by solving the 

optimization problem based on power system status 

estimation (PSSE) using a phase monitoring unit 

(PMU). Two objective functions are designed to 

identify the faulty section of the line and the fault 

location is based on computing the voltage difference 

between the two ends of the lines. The proposed 

algorithm combines the PMU in the PSSE problem in 

order to estimate the voltage and current quantities at 

the branch point and the entire network nodes after the 

occurrence of the fault. The results from this study 

showed that the proposed algorithm was able to 

determine the location of the fault with a maximum 

error of 1.21% at a maximum time of 23.87 seconds. 

The authors in [48] proposed a fault location method 

which uses voltage sag measurements for advanced 

fault location and condition-based monitoring. The 

method was shown to have good potential for 

permanent and temporary fault location on overhead 

radial distribution system and has been deployed on 

feeders located mainly at Hydro-Quebec and a couple 

of other Canadian cities. In this method, the fault 

generates a high current that is a function of the 

impedance between the source and the fault as well as 

the type of fault. This fault current causes a voltage dip 

which is used along with the fault current, the phase 

angle of voltages and a triangulation technique to 

compute the fault location. 

A novel noniterative single-ended phasor domain fault 

location method with distributed parameter model for 

AC transmission lines. was proposed by the authors in 

[49]. The proposed method leverages the additional 

information brought by the operation mode of circuit 
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breakers and as such only requires the local 

measurements and does not require the measurements 

and the equivalent source parameters of the remote 

system. Furthermore, the proposed method only uses 

single-ended data and is not affected by 

communication and synchronization. It is a non-

iterative method with no risk of non-convergence. The 

effectiveness of the proposed method was verified 

through several case studies in PSCAD/EMTDC, with 

different fault types, fault locations and resistances. 

The different categories of impedance-based methods 

offer different approaches which have different pros 

and cons. Collecting information about the topology of 

the network, available data, presence of distributed 

generation, accuracy and time requirements are a good 

way to guide one’s choice [1].  

Artificial Neural Network Based Fault Location  

Artificial Neural Network methods for fault location 

fall under a broad category which is known as 

knowledge-based approaches. Three sub-categories 

exist under the knowledge-based approaches which 

are; expert systems techniques, artificial neural 

networks and fuzzy logic systems [1]. The knowledge-

based approaches reduce the real time computational 

burden of the system. 

Artificial neural networks are taught by examples as 

opposed to expert systems which are rule-based. 

Artificial neural networks require training using a 

large set of data representing various fault scenarios in 

order to provide reliable results. They can be trained 

to recognize and map complex inputs of voltage and 

current levels; fault distance with continuous data [1]. 

Consequently, for a given network topology, data from 

a wide range of fault scenarios for the network needs 

to be available and updated with any change in 

topology. In cases where the area is newly established, 

these data may be unavailable and grid expansions 

may cause problems with the performance of the 

model [44]. However, manufactured data could be 

used in the training of the artificial neural network 

model but could increase the possibility of uncertainty 

if excessively implemented [1]. The main advantages 

of artificial neural networks are their ability to 

generalize and derive new unseen input-output 

matches along with their speed and accuracy. The 

main disadvantages of artificial neural networks are 

the large amounts of data of simulated or actual fault 

scenarios required to train the network and the fact that 

the process of training needs to be repeated if any 

change occurs in the network thereby making the 

model maintenance intensive in a dynamic network 

where changes occur continuously. 

Different types of faults at varying short circuit and 

loading levels are characteristic of distribution 

systems as a result of their usual multiple branches 

with different characteristics. This may increase the 

difficulties involved in determining the complex 

connections and the fault location. To solve this 

problem, the authors in [44] proposed the use of 

support vector machines (SVM) to break up the 

complexity by classifying fault types and short circuit 

levels and assigning an artificial neural network to 

each category. 

The authors in [50] developed a method for remote 

fault identification and analysis in electrical 

distribution network using artificial intelligence. The 

work presented wavelet and machine learning-based 

approaches for distinguishing different faults that 

occurred at different locations in a radial power 

distribution network. Wavelet decomposition-based 

detail coefficients along with their Kurtosis and 

statistical nature were used to analyse fault currents. 

Six different machine learning methods were used and 

tested with random unknown data in time series. The 

best method giving the highest accuracy in most cases 

was found to be the decision tree method. 

The authors in [51] proposed a new method for fault 

detection and classification in a renewable microgrid. 

The method first enhances fault detection performance 

in microgrids characterized by nonlinear relationships 

which include photovoltaic, hydrokinetic, and variable 

electric load systems. Next, a robust method for fault 

detection and classification is provided by the 

combination of the discrete wavelet transform with 

various types of neural networks and supervised 

learning techniques. The proposed method was 

evaluated using an IEEE-5 feeder test bed representing 

a realistic ring network configuration. The results 

yielded a low prediction error of 1.31 × 10−31 which 

show that the radial basis function neural network 

model exhibited promising outcomes, thereby 

highlighting its practical potential for enhancing 

system reliability and performance. Furthermore, 

several test cases were conducted by altering the 

ground resistance to train the neural networks, 
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demonstrating the effectiveness of this neural network 

in accurately identifying fault conditions. 

The authors of [52] presented an off-line continuous 

wavelet transform and machine learning method for 

accurately localising faults of the DC-side in Voltage 

Source Converter (VSC) based Multi-Terminal Direct 

Current (MTDC) networks utilising optically-

multiplexed DC current measurements sampled at 5 

kHz. Commercially available equipment was used to 

evaluate the technical feasibility of optically-based 

DC current measurements through laboratory 

experiments. MATLAB/Simulink based analysis was 

used to test the proposed fault location algorithm in 

different fault scenarios and locations along the 

simulated DC grid. The results obtained revealed that 

the proposed fault location scheme can accurately 

identify the type of fault and compute its location. The 

scheme was also found to be effective for faults with 

high resistances of up to 500Ω. It was revealed by 

further sensitivity analysis that the proposed scheme is 

relatively robust to additive noise and synchronisation 

errors. 

[53] presented a fault classification and location 

algorithm for medium voltage overhead lines with 

load taps and embedded remote-end source. This fault 

classification and location algorithm was based on 

artificial neural-network (ANN) utilising the 

frequency spectra of the sampled voltage and current 

signals recorded by the digital relay at the substation. 

The feature extraction was carried out using the fast 

Fourier transform (FFT) of the current and voltage 

signals. Classification and location of shunt faults on 

a medium voltage distribution network was done using 

a multilayer perceptron neural network with the 

standard back propagation technique. Training and 

testing of the ANN was done using the results obtained 

from simulating a 34.5kV overhead distribution 

system in MATLAB/Simulink. The results obtained 

were satisfactory for locating faults on radial overhead 

distribution systems with load taps and in the presence 

of remote-end source connection. 

[54] developed an artificial neural network-based fault 

location system for locating double phase to earth fault 

on non-direct ground in a transmission line. The 

system uses the GPS to locate the position and the 

GSM to communicate the position to a system 

supervisor. The generated current and voltage 

waveform signals were sampled at a frequency of 

720Hz to extract the feature for processing. The neural 

network system trained to diagnose double faults was 

found to accurately diagnose abnormal operation 

resulting from simultaneous multiple faults.   

Reclosers and Sectionalisers in Fault Location 

The optimal placement of auto-reclosers and 

remodelling the distribution system can be used to 

improve system reliability and efficiency [55], [56], 

[57], [58], [59], [60]. A recloser or auto-recloser is a 

protective device that protects upstream load points 

from downstream faults. A recloser locks out and 

isolates a permanent fault from the rest of the grid after 

a predetermined number of reclosing operations [57], 

[59]. In doing so, the recloser improves the reliability 

by preventing a sustained outage in a what is known 

as a fuse saving technique employed in distribution 

utilities where the fault is interrupted to prevent the 

melting away of the fusible link in an expulsion fuse 

and then reclosed to restore power to the healthy 

portion of the network [61] [57], [62]. This technique 

is effective because most overhead line short circuit 

faults are temporal and usually clear themselves [63], 

[61], [64]. Unlike the recloser, the Sectionaliser cannot 

operate during a fault but rather works in coordination 

with an upstream recloser. The Sectionaliser promptly 

and automatically isolates the faulty part of the 

network when a permanent fault occurs [57]. The cost 

of installing reclosers and Sectionalisers is non-trivial 

and therefore there needs to be an optimum means of 

determining the settings, number and locations where 

they need to be installed as seen in the literature [57], 

[59], [60], [65], [66]. 

Most of the literature do not explicitly mention the use 

of reclosers and Sectionalisers in precise fault location 

apart from their usual function of maintaining the 

continuous supply of power to consumers. [67] 

proposed a fault location and isolation method for 

distribution networks based on adaptive reclosing. The 

goal of the authors was to avoid multiple reclosing by 

being able to distinguish temporary and permanent 

faults thereby preventing momentary outages to the 

upstream part of the network and saving the contact 

life of the switches. Pang in [68] proposed an 

information fusion-based fault location method for 

distribution network to mitigate the problems 

associated with losses or faults in the information from 

the distribution substation. The method employed in 

this work [68] creates one information matrix based on 
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the action of all the protective relays when a fault 

occurs and another matrix is created based on the wave 

data of the current recorded at the foot node. Both 

information matrices are combined using D – S 

evidence theory to locate the fault.  

The penetration of distributed generation (DG) in 

conventional power systems brings up issues in the 

coordination of protection devices due to the fault 

current contribution from the DG [58], [62] [64]. 

Some of the frequent issues encountered by the 

addition of DG to the distribution networks are; blind 

protection, sympathetic tripping and failure of 

reclosing. To solve this problem, the authors in [58] 

focused their research on the impact of reclosers on 

overcurrent relay blind protection areas with 

distributed generators (DG) embedded in the 

distribution network. A non-operation or delay in the 

over-current relay with fault point impedance may be 

caused by the blind protection issues as a result of the 

relay feeder pickup current. The authors in [58] 

proposed a recloser to avoid blind protection due to the 

addition of DG to the distribution network as opposed 

to the conventional solution of increasing the relay 

sensitivity. 

[62] proposed a relaying scheme targeted at 

microprocessor based reclosers for fuse saving under 

transient conditions. A relay operating characteristic is 

defined based on voltage and current magnitudes 

obtained at the recloser location. The reclosing delay 

resulting from the DG fault contribution is 

compensated for by the voltage term in the relay 

characteristic. The relaying scheme is independent of 

the number of distributed generators (DG) and makes 

no use of communication links. Furthermore, the new 

scheme was shown to maintain proper recloser-fuse 

coordination for different fault conditions and DG 

configurations. 

Discrete Wavelet Transform 

The discrete wavelet transform is a signal processing 

method that quantifies the energy that is contained 

within specific frequency bands at particular periods 

within a signal. The wavelet transform is more 

appropriate for analysing transient signals due to the 

fact that fault transients are non-stationary and there is 

the need to analyse them at various transition periods 

as the signal changes [69]. Wavelet transforms employ 

a variable window size and are capable of multiple 

resolutions in time and frequency. 

The wavelet transform is based on the transformation 

of the transient signal into a series of parameters called 

approximation and detail coefficients which represent 

the slow and fast changes in the signal.  

The discrete wavelet transform (DWT) of a signal can 

be found using equation 2.5 [70]. This is done by 

passing the signal to be transformed through a series 

of low and high pass filters to decompose the signal 

into a series of approximate and detail coefficients. 

DWT(m. n) = ∑ x(t) ∗∞
−∞ Ψm,n

∗ (t)dt  

  …2.5 

Where, Ψm,n
∗ (t) is the mother wavelet and x(t) is the 

signal to be transformed. The value of Ψm,n
∗ (t) is 

computed using equation 2.6 [70]. 

Ψm,n
∗ (t) =

1

√a0
m

∗ Ψ (
t−na0

mb0

a0
m )   

  …2.6 

‘m’ represents the discrete steps of the scaling 

parameter or level which determines the wavelet 

frequency; 

‘n’ represents the discrete steps of the translation 

parameter or the position; 

‘*’ denotes complex conjugate.  

The scale parameter a =  a0
m and the translation 

parameter b =  na0
mb0  

where a0 >  1 and b0  >  0 in finding the DWT of the 

signal x(t). 

Microprocessor Relays 

Protection relays play an important role in electric 

power systems and have been around for a long time. 

Originally, protection relays were of the 

electromechanical type which operated based on the 

principles of electromagnetic attraction or 

electromagnetic induction [71]. These provided 

overcurrent, overvoltage, differential and distance 

protection functions. The development of solid-state 

technologies and the microprocessor brought about 

many improvements in distribution protection such as; 

lower costs, higher reliability, improved protection 

and control and faster service restoration [72], [73]. 

Despite the development of complex control and 

protection algorithms for the microprocessor or digital 

relay, they were not implemented in those early 

microprocessor relays but only performed basic relay 
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functions while taking advantage of the hybrid 

analogue and digital techniques [71]. Over time 

however, there have been more improvements on the 

hardware and software of microprocessor relays and 

sophisticated algorithms employing artificial 

intelligence techniques such as neural networks and 

adaptive protection are being implemented in 

microprocessor relays [71]. 

 

III. RESEARCH METHODOLOGY 

 

Recloser and Sectionaliser Modelling  

Reclosers and Circuit breakers are normally equipped 

with reverse-time overcurrent relays of a characteristic 

given in equation 3.1. 

t(I) = (
A

MP−1
+ B) × TD    

 …3.1 

Where, 

A, B and P are constants for a particular curve 

characteristic. 

t is the operating time of the recloser. 

M is the ratio 
Isc

Ipickup
⁄  (Ipickup is the recloser current 

setpoint and  Isc is the short circuit current) 

TD is the time dial setting. 

Equation 3.2 is typically implemented in a block with 

an appropriate inverse-time characteristic.  

t(I) = (
28.2

(
Isc

Ipickup
⁄ )

2
−1

+ 0.1217) × TD  

  …3.2 

The timing diagram for the coordination of the 

recloser and Sectionaliser is depicted in Figure 3.1 and 

Figure 3.2. 

Figure 3.1: Typical Recloser and Sectionaliser 

operation under temporary fault condition [74] 

 

Figure 3.2: Typical Recloser and Sectionaliser 

operation under permanent fault condition [74] 

The recloser model in this work incorporates the 

following blocks: 

Measurement section: This section measures the root 

mean square value of the instantaneous current passing 

through the recloser. A schematic of the 

implementation of this block is shown in Figure 3.3.  

Comparator section: This section compares the current 

thresholds with the programmed values as depicted in 

Figure 3.3. 

Logic and Counter section: This section counts the 

delay periods required before operating the circuit 

breaker based on the time-current characteristics. The 

equation for the time-current characteristics is given in 

equation 3.2. The relay block in this section outputs a 

Boolean value to actuate the circuit breaker. If the 

current is less than the recloser setpoint value, the 

output is zero (0); if the current is greater than the 

setpoint value, the output is one (1). 

Actuating section:  This consists of the circuit breaker 

that does the function of opening or closing the line as 

required. 

 

Figure 3.3 shows the schematic representation of the 

recloser implemented in Simulink in this work. 

Figure 3.3: Recloser Implementation  
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Figure 3.4: Measurement Block 

Sectionalisers operate after a predetermined number of 

reclosing operations for permanent faults. When the 

line current attains a value of 10% above the preset 

actuating current, the Sectionaliser begins counting the 

opening operations of the upstream recloser indicated 

by a zero current flow sensed in the line. From the 

operation of the upstream recloser, a counter in the 

Sectionaliser counts the number of reclosing attempts 

and when the trip count has been reached, the 

Sectionaliser trips off the supply to the faulty section 

of the network. If the recloser recloses the circuit and 

no fault is detected within the memory resetting time, 

the counter resets and returns to monitor mode. Figure 

3.5 shows the schematic representation of the 

Sectionaliser implemented in Simulink in this work. 

The Sectionaliser implemented for this work isolates 

the faulty portion of the network when the fault 

persists after the first reclose attempt. 

The Sectionaliser block in this work incorporates the 

following blocks: 

Measurement/comparator block: This block measures 

the rms values of the line currents 

Counter section: This section counts the number of 

reclosing attempts on the line and signals the actuating 

block when the predetermined number of counts have 

been reached 

Actuating section: This consists of the circuit breaker 

which isolates the line when the number of recloser 

counts has been attained. 

 

Figure 3.5: Sectionaliser implementation in Simulink 

Test Feeder Modelling 

The test feeder is modelled in MATLAB/Simulink 

around a standard 15 bus IEEE test feeder distribution 

system developed by [75]. 

Feeder Parameters: 

Main source => 1 (3MVA, 3-phase short circuit level 

at base voltage) 

Base voltage => 11kV 

Number of lines => 14 

Number of buses => 15 

Number of loads connected => 14 

Number of distributed generators connected => 1 

(6MVA, 3-phase short circuit level at base voltage).  

 Figure 3.6 shows the test feeder used in this work. 
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Figure 3.6: IEEE 15 Bus Test Feeder [75] 

For analysis the feeder is divided into zones and 

sections. Zone 1 has two sections; Section 1 and 

Section 2. Zone 2 has Section 1 and Section 2 as well. 

Table 3.1 shows this grouping. 

Table 3.1: Grouping and organisation of the 

distribution feeder lines 

Zone Section Lines Serial 

Numbers 

1 1 Line 1-2, Line 

2-3, Line 2-9, 

Line 2-6 

1, 2, 3, 4 

1 2 Line 9-10, 

Line 6-7, Line 

6-8, 

10, 11, 12 

2 1 Line 3-4, Line 

3-11, Line 11-

12, Line 12-13 

5, 6, 13, 14 

2 2 Line 4-5, Line 

4-14, Line 4-

15, 

7, 8, 9 

 

Data Collection and Processing 

To generate data for training the artificial neural 

network, current and voltage sensors are placed 

upstream close to the generator substation to record 

samples of the instantaneous voltage and current of the 

feeder under the various fault conditions. The sample 

size covers the period from the inception of the fault 

up to the point of sectionalisation of the faulty portion 

of the network. The current and voltage data are 

processed using the DWT algorithm. Appendix III 

shows the Simulink setup used to generate the data. 

The fault block is connected to the lines one after the 

other and all the possible fault scenarios are simulated 

to generate the data. 

Feature Extraction 

The features obtained from performing the discrete 

wavelet transform (DWT) on the voltage and current 

wave data are used for the neural network that locates 

the fault position on the line. The wavelet transform is 

done on the portion of the waveform where the fault 

occurred. The transient signal waveform is sampled at 

1kHz. The span of the fault signal is taken from the 

instant the fault is initiated up to the moment the faulty 

portion of the network is sectionalised. This time span 

amounts to 125ms. The sampled data is fed into a 

Simulink buffer to receive the discretised samples and 

thereafter fed into the DWT block for transformation 

to extract the features from the resultant approximate 

and detailed coefficients. The number of samples fed 

into the DWT block through the buffer in Simulink is 

given by equation 3.3. The inputs to the DWT block 

are interpreted as frames whose sample size must be a 

multiple of 2Nlevels. In this work a frame is realised 

using a buffer set to hold 64 samples of the voltages 

and currents. The asymmetric tree structure and single 

output is used for the DWT block used in Simulink. 

No. of samples =
125×10−3

1×10−3 = 125  …3.3 

These features for every simulated fault condition 

would be fed to the artificial neural network along with 

the target binary data for training the artificial neural 

network. The choice of the wavelet is the Daubechies 

5 wavelet and the number of decompositions done is 

obtained using equation 3.4 [76]. The operation ‘int’ 

in this case means integer of the expression in the 

bracket. 

Nlevels = int (
log(

fs
fe

⁄ )

log2
) + 2  …3.4 

Where fs = 1kHz and fe = 50Hz, the number of 

decompositions or levels is given as shown in equation 

3.5. 
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Nlevels = int (
log(1000

50⁄ )

log2
) + 2 = 6 levels  

  …3.5 

Since the high frequency signals are characteristic of 

the fault signal, the RMS values of the detailed 

coefficients of the DWT are used as the features of the 

fault signal. This is given in equation 3.6 [76]. Where 

xi is a sampled measurement and n denotes the number 

of measurements or samples. 

RMS = √
1

n
∑ xi

2
i      

 …3.6 

 

Figure 3.7: Signal transformation using DWT 

 

Figure 3.8: Fault feature extraction from the DWT 

Artificial Neural Network Design 

The artificial neural network used for the fault location 

in this study is based on a multilayer perceptron which 

consists of an input layer with neurons corresponding 

to the number of features of the fault signal and an 

output layer corresponding to the buses where faults 

can occur. The Pattern Recognition Neural Network 

App in Simulink is used for this purpose. To increase 

the accuracy of the fault location, the distribution 

network is divided into zones and sections with several 

neural networks being cascaded to locate the fault. The 

training data for the networks is a 6 x 154 matrix of 

numeric values consisting of the six fault features and 

154 fault examples or scenarios. The examples 

comprise of the fault data obtained by simulating all 

the 11 fault types (a-b, b-c, a-c, a-g, b-g, c-g, a-b-g, b-

c-g, a-c-g, a-b-c and a-b-c-g) on all the 14 lines. 

Equation 3.7 shows the number of examples. 

Number of examples = 11 × 14 = 154 …3.7 

In the absence of more training data, these 154 rows of 

fault feature data are duplicated in order to obtain a 

much larger data set to obtain better training results. 

The total number of rows obtained after duplicating 

the data is 24,640. Appendix I and II present the 

original 154 rows of data and the corresponding target 

data. 

First Level Artificial Neural Network Design 

The first neural network at the top of the hierarchy is 

used to locate the Zone where the fault has occurred. 

There are two zones namely; Zone 1 and Zone 2. This 

neural network has six inputs which are the six 

features obtained from the outputs of the number of 

levels presented in equation 3.5. An input layer of 6 

neurons, a hidden layer made up of 10 neurons and an 

output layer of 2 neurons are used in the design of the 

first neural network. The 2-neuron Output corresponds 

to the two zones of the network. Figures 3.9 and 3.10 

show the neural network architecture. A 6 x 24,640 

matrix of training data was used to train the ANN used 

to detect the zone where the fault occurred. 

The target data for this ANN have the same number of 

rows as that of the training data but there are only two 

columns corresponding to the two Zones i.e. Zone 1 

and Zone 2. A one (1) is placed in a row under a 

column corresponding to the zone where the fault 

occurred and a zero (0) elsewhere. 
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Figure 3.9: Zone Output Artificial Neural Network 

 

Figure 3.10: ANN for locating fault Zones 

Second Level Artificial Neural Network Design 

This set of neural networks in the hierarchy are two in 

number and their inputs are connected to the outputs 

of the first neural network as well as the original six 

fault data feature inputs. The original six (6) fault 

feature data and the zone fault indicator output from 

the first ANN thus make up a total of seven (7) inputs. 

The two Outputs of each of these two neural networks 

are the Sections 1 and 2 under each of the Zones. 

Figure 3.11 depicts this arrangement and Figures 3.12 

and 3.13 shows the Simulink implementation. 

 

Figure 3.11: ANN for locating fault Sections 

 

Figure 3.12: Simulink implementation for ANN for 

locating Zone 1 fault sections 

 

 

Figure 3.13: Simulink implementation for ANN for 

locating Zone 2 fault sections 

The target data for this ANN have the same number of 

rows as that of the training data. There are two 

columns for each ANN corresponding to the two 
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Sections under each zone i.e. Section 1 and Section 2. 

A one (1) is placed in a row under a column 

corresponding to the section where the fault data 

corresponds to the faulty section and a zero (0) 

elsewhere. 

Third Level Artificial Neural Network Design 

For this set of neural networks in the hierarchy, there 

are four ANNs in number and their inputs are 

connected to the outputs of the first and second neural 

networks as well as the original six fault data feature 

inputs. The original six (6) fault feature data, the zone 

fault indicator output from the first ANN and the 

section fault indicator output from the second ANN 

thus make up a total of eight (8) inputs. The Outputs 

of each of these four neural networks are the lines 

under each of the Sections under the Zones. Figure 

3.14 depicts this arrangement and Figures 3.15 to 3.18 

show the Simulink implementation. Figure 3.19 shows 

the interconnection of all the neural networks put 

together to locate the faulty lines. 

 

Figure 3.14: ANN for locating the faulty lines 

 

Figure 3.15: Simulink implementation of ANN for 

locating the faulty lines on Zone 1/Section 1 

 

Figure 3.16: Simulink implementation of ANN for 

locating the faulty lines on Zone 1/Section 2 

 

Figure 3.17: Simulink implementation of ANN for 

locating the faulty lines on Zone 2/Section 1 

 

Figure 3.18: Simulink implementation of ANN for 

locating the faulty lines on Zone 2/Section 2 
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Figure 3.19: Integrated Artificial Neural Network 

Architecture implemented in Simulink 

 

Fault Location Procedure 

To locate a fault on the network, the fault must first be 

detected. The fault detection is carried out by the 

operation of the recloser upstream of the network 

which senses an abnormal current in the line and opens 

the line temporarily to clear the fault. The 

Sectionaliser logic monitors the current through it and 

waits for a response from the recloser. The 

Sectionaliser counts every reclose attempt and after 

one reclose attempt, the Sectionaliser isolates the 

faulty part of the network. A buffer implemented in 

Simulink is used to receive samples of the voltage and 

current waveforms of the signal. These samples are fed 

to the discrete wavelet transform (DWT) blocks which 

extracts the detail coefficients of the transformed 

signal. The root mean square (RMS) values of the 

coefficients corresponding to the fault signal are 

captured using the sample and hold blocks. Figure 3.8 

depicts this arrangement. This sample period is from 

the inception of the fault up to the time the fault is 

isolated. The RMS values are the primary fault 

features that are fed to the artificial neural networks to 

locate the position of the fault on the network. Figure 

3.20 and Figure 3.21 show the flow chart illustrating 

the fault detection and location algorithm respectivel 

IV. DATA ANALYSIS AND FINDINGS 

Recloser and Sectionaliser Testing Results 

The figures presented in Figure 4.1 and Figure 4.2 are 

the transient waveforms of the currents and voltages 

caused by a fault. Figure shows the tripping of the 

feeder by the recloser three cycles after the fault has 

occurred and the isolation of the faulted portion of the 

network by the Sectionaliser once cycle after the first 

reclose attempt. 

 

Figure 4.1: Transient current of network signal 

during faults 

 

Figure 4.2: Transient voltage signal of network 

during fault 

 

ANN Training Results 

The Artificial Neural Networks (ANN) were trained 

using the “trainscg” function which is a network 

training function that updates weight and bias values 

according to the scaled conjugate gradient method. 

The following plots were obtained for each of the 

ANN trained and the codes used to generate them are 

presented in Appendix V to IX: 

Network performance plot: A plot of Cross Entropy 

against Epochs that shows the training, validation and 

test progress. The Cross Entropy normally decreases 

as the number of iterations or epochs increase. The 

curve in this plot normally descends as the iterations 

increase and terminates where there is no further 

descent.   
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Neural network training state plot: This is a plot of the 

Gradient against Epochs as well as the Validation Fails 

against Epochs. The gradient decreases as the epochs 

increase and where the validation fails reach the 

maximum or where the training does not get better, the 

graph terminates. 

Error histogram: This is a histogram of the Instances 

against Errors. Its shows the errors that have occurred 

in the process and the frequency or the instances of the 

errors. 

Confusion matrix: This is a matrix plot that shows the 

number of samples that were correctly classified as 

well as those that were incorrectly classified out of the 

total number of samples for the training, validation and 

testing phases. The boxes in red show the number of 

samples that were wrongly classified while those in 

the green boxes show the number of samples that were 

correctly classified. 

Receiver operating characteristics plot (ROC): This is 

a plot of the True Positive Rate against the False 

Positive Rate. A line along the diagonal divides this 

graph into two; the left half and the right half. The 

more the ROC tends towards the upper left half of the 

plot, the more accurate the ANN is in classifying the 

data. This also shows the trade-off between correctly 

identifying positive cases and wrongly identifying 

negative cases. 

A table summarizing the cross entropy (CE) and 

percentage errors for the training, validation and 

testing of the neural networks is also presented in 

tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7. 

ANN Training Results for Locating Faults in Zones 1 

and 2 

The figures 4.3, 4.4, 4.5, 4.6 and 4.7 show the results 

from training the ANN that is used for locating the 

faults in Zone 1 and Zone 2. 

 

 

Figure 4.3: Network performance plot for ANN 

locating faults in Zone 1 and Zone 2  

 

 

Figure 4.4: NN training state plot for ANN locating 

faults in Zone 1 and Zone 2 

 

Figure 4.5: Error histogram for ANN for locating 

faults in Zone 1 and 2 

 

Figure 4.6: Error Matrix for ANN locating faults in 

Zone 1 and 2 
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Figure 4.7: ROC for ANN Locating Faults in Zone 1 

and 2 

ANN Training Results for Locating Faults in Sections 

1 and 2 of Zone 1 

The figures 4.8, 4.9, 4.10, 4.11 and 4.12 show the 

results from training the ANN that is used for locating 

the faults on the lines of Section 1 and 2 of Zone 1. 

 

Figure 4.8: Network performance plot for ANN 

locating faults in Sections 1 and 2 of Zone 1  

 

Figure 4.9: NN Training state for locating faults in 

Sections 1 and 2 of Zone 1 

 

 

Figure 4.10: Error Histogram for ANN locating faults 

in Sections 1 and 2 of Zone 1 

 

Figure 4.11: Confusion Matrix for ANN locating 

faults in Sections 1 and 2 of Zone 1 

 

 

Figure 4.12: ROC for ANN locating faults in 

Sections 1 and 2 of Zone 1 

 

  

 



© JUN 2025 | IRE Journals | Volume 8 Issue 12 | ISSN: 2456-8880 

IRE 1709149          ICONIC RESEARCH AND ENGINEERING JOURNALS 855 

ANN Training Results for Locating Faults in Sections 

1 and 2 of Zone 2 

The figures 4.13, 4.14, 4.15, 4.16 and 4.17 show the 

results from training the ANN that is used for locating 

the faults in Section 1 and Section 2 of Zone 2. 

 

Figure 4.13: ANN Training Performance for locating 

faults in Sections 1 and 2 of Zone 2 

 

 

Figure 4.14: ANN Training State for locating faults 

in Sections 1 and 2 of Zone 2 

 

Figure 4.15: Error Histogram for ANN locating faults 

in Sections 1 and 2 of Zone 2 

 

 

Figure 4.16: Confusion Matrix for ANN locating 

faults in Sections 1 and 2 of Zone 2 

 

Figure 4.17: ROC for ANN locating faults in 

Sections 1 and 2 of Zone 2 

  

ANN Training Results for Locating Faults on the 

Lines of Section 1 of Zone 1 

The figures 4.18, 4.19, 4.20, 4.21 and 4.22 show the 

results from training the ANN that is used for locating 

the faults on the lines of Section 1 of Zone 1. 

 

Figure 4.18: NN training performance for ANN 

locating faults on lines of section 1 of Zone 1 
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Figure 4.19: NN training state for ANN locating 

faults on lines of section 1 of Zone 1 

 

 

Figure 4.20: Histogram for ANN locating faults on 

lines of section 1 of Zone 1 

 

 

Figure 4.21: Confusion matrix for ANN locating 

faults on lines of section 1 of Zone 1 

 

 

 

Figure 4.22: ROC for ANN locating faults on lines of 

section 1 of Zone 1 

 

ANN Training Results for Locating Faults on the lines 

of Section 2 of Zone 1 

The figures 4.23, 4.24, 4.25, 4.26 and 4.27 show the 

results from training the ANN that is used for locating 

the faults on the lines of Section 2 of Zone 1. 

 

Figure 4.23: NN training performance for ANN 

locating faults on lines of section 2 of Zone 1 

 

 

Figure 4.24: NN training state for ANN locating 

faults on lines of section 2 of Zone 1 
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Figure 4.25: Error histogram for ANN locating faults 

on lines of section 2 of Zone 1 

 

 

Figure 4.26: Confusion matrix for ANN locating 

faults on lines of section 2 of Zone 1 

 

Figure 4.27: ROC for ANN locating faults on lines of 

section 2 of Zone 1 

ANN Training Results for Locating Faults on the lines 

of Section 1 of Zone 2 

The figures 4.28, 4.29, 4.30, 4.31 and 4.32 show the 

results from training the ANN that is used for locating 

the faults on the lines of Section 1 of Zone 2. 

 

Figure 4.28: NN training performance for ANN 

locating faults on lines of section 1 of Zone 2 

 

Figure 4.29: NN training state for ANN locating 

faults on lines of section 1 of Zone 2 

 

 

Figure 4.30: Error histogram for ANN locating faults 

on lines of section 1 of Zone 2 
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Figure 4.31: Confusion matrix for ANN locating 

faults on lines of section 1 of Zone 2 

  

 

Figure 4.32: ROC for ANN locating faults on lines of 

section 1 of Zone 2 

 

ANN Training Results for Locating Faults on the lines 

of Section 2 of Zone 2 

The figures 4.33, 4.34, 4.35, 4.36 and 4.37 show the 

results from training the ANN that is used for locating 

the faults on the lines of Section 2 of Zone 2. 

 

Figure 4.33: NN training performance for ANN 

locating faults on lines of section 2 of Zone 2 

 

Figure 4.34: NN training state for ANN locating 

faults on lines of section 2 of Zone 2 

 

Figure 4.35: Error histogram for ANN locating faults 

on lines of section 2 of Zone 2 

 

 

Figure 4.36: Confusion matrix for ANN locating 

faults on lines of section 2 of Zone 2 
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Figure 4.37: ROC for ANN locating faults on lines of 

section 2 of Zone 2 

Summary of ANN Cross Entropy and Percent Error 

The tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 show the 

summary of the cross entropy and percent errors of all 

the artificial neural networks. The lower the cross-

entropy error, the better the classification and a cross 

entropy error of zero means no error. The percent error 

indicates the fraction of samples which are 

misclassified. A value of zero (0) means no 

misclassifications while a value of 100 indicates 

maximum misclassifications. 

Table 4.1: Summary of Cross Entropy and Percent 

Error for Zone 1 and 2 ANN 

 Samples % Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 17248 70 1.14385 1.97124 

Validation 3696 15 3.19937 1.92099 

Testing 3696 15 3.16956 1.86688 

 

Table 4.2: Summary of Cross Entropy and Percent 

Error for Zone 1 ANN 

 Sample

s 

% Cross-

Entropy 

Error (CE) 

Percent 

Error 

(%E) 

Training 17248 7

0 

7.382531e

-1 

35.6563

0 

Validatio

n 

3696 1

5 

1.95092 34.8755

4 

Testing 3696 1

5 

1.93480 34.6590

9 

Table 4.3: Summary of Cross Entropy and Percent 

Error for Zone 2 ANN 

 Samples % Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 12320 50 8.80625 25.11769 

Validation 6160 25 13.21963 24.59415 

Testing 6160 25 13.22172 25.17045 

 

Table 4.4: Summary of Cross Entropy and Percent 

Error for Zone 1 Section 1 ANN 

 Samples % Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 17248 70 3.86760 39.01901 

Validation 3696 15 10.96490 38.75811 

Testing 3696 15 10.96562 38.89339 

 

Table 4.5: Summary of Cross Entropy and Percent 

Error for Zone 1 Section 2 ANN 

 Samples % Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 12320 50 3.52081 44.91071 

Validation 6160 25 5.31036 45.49512 

Testing 6160 25 5.31789 45.20292 

 

Table 4.6: Summary of Cross Entropy and Percent 

Error for Zone 2 Section 1 ANN 

 Samples % Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 9856 40 3.03916 45.71327 

Validation 7392 30 3.56189 45.224561 

Testing 7392 30 3.57743 45.33955 
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Table 4.7: Summary of Cross Entropy and Percent 

Error for Zone 2 Section 2 ANN 

 Sample

s 

% Cross-

Entropy 

Error 

(CE) 

Percent 

Error 

(%E) 

Training 22176 9

0 

3.39609e

-1 

53.6796

5 

Validatio

n 

1232 5 2.53513 52.9626

6 

Testing 1232 5 2.53495 52.2321

4 

 

Fault Location Simulation Results  

The table presented in table 4.8 shows the results 

obtained from simulating 20 faults randomly on the 

15-bus distribution network. The fault location 

algorithm was able to locate the faulty line 60% of the 

time.. 

Table 4.8: Results obtained from randomly testing 

the fault location algorithm 

 

Discussion of Results 

The results presented in table 4.8 show a 60% accuracy 

level from a sample of 20 random trials carried out on 

different lines in the distribution network. This is a 

reflection of the level of accuracy obtained during the 

training, validation and testing of the artificial neural 

networks. The results obtained from the training, 

validation and testing of the neural networks gave 

different level of accuracies; some were more accurate 

than the others as shown in the results. The artificial 

neural network that performed the best during the 

training, validation and testing was the first level 

artificial neural network. This is the artificial neural 

network used to locate which of the two Zones has the 

faulty portion of the network. Figures 4.5, 4.6 and 4.7 

show the very good results obtained from the training, 

validation and testing phases. This artificial neural 

network classifies the faulty Zone accurately with only 

1% error.  

From the random trials carried out, the lines connected 

to bus number 4 gave the highest number of errors as 

presented in table 4.8. The errors in locating the faulty 

lines in the network could be attributed to a number of 

reasons. These could be as a result of noise in the data 

or the need to use a higher sampling frequency to 

increase the features of the data and thus the data size. 

A higher sampling frequency would increase the 

number of decompositions of the DWT and 

consequently the number of the detailed coefficients. 

 

CONCLUSION 

 

The reliability issues in power systems mainly come 

from faults on the distribution side of the grid. One 

way to improve reliability is by installing protection 

devices such as reclosers and Sectionalisers but 

permanent faults could still occur notwithstanding. 

When permanent faults occur, tracing the fault the 

traditional way can be burdensome, time consuming 

and prone to false reports. The traditional way of 

tracing the fault would typically involve the utility 

company receiving a call from a customer and 

dispatching a repair crew to locate the fault, clear the 

fault and restore power to the faulted part of the 

network. To further improve the reliability and save 

the cost and effort of dispatching a repair crew to 

locate the fault on the line, this project has presented a 

means of locating the fault using the recorded transient 

signal generated by the fault. This signal contains 

frequency components that are signature of the fault 

location and has been used to train artificial neural 

networks to identify the location on the line where the 

fault has occurred. Seven of these artificial neural 

networks have been cascaded in a hierarchical manner 

to improve the accuracy of locating the fault. The 

frequency components of the fault are extracted using 

the discrete wavelet transform which is a signal 

processing technique that is most suited to transient 

signals. The modelling and simulation of the fault 

location system is done in MATLAB/Simulink on a 15 

bus IEEE distribution network with a grid supply and 

a distributed generator connected to the system. 

Twenty (20) random trials were conducted on different 

lines of the network and the fault location system was 

able to identify the faulty line 60% of the times. 
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