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Abstract- Floating Production, Storage, and 

Offloading (FPSO) units are critical assets in 

deepwater oil and gas production, offering flexible 

and efficient solutions for hydrocarbon extraction in 

remote and challenging environments. However, the 

operational complexity, dynamic conditions, and 

safety-critical nature of FPSO-based deepwater 

production present significant challenges to effective 

decision-making. Real-time decision support systems 

(DSS) have emerged as essential tools to enhance 

situational awareness, optimize processes, and 

mitigate risks by integrating data from multiple 

sources and providing timely, actionable insights. 

Despite advances in automation and data analytics, 

the integration of real-time DSS tailored specifically 

for FPSO operations remains underdeveloped. This 

proposes a novel conceptual model for real-time 

decision support integration within FPSO-based 

deepwater production operations. The model is 

designed to assimilate heterogeneous data streams—

including process measurements, environmental 

conditions, asset health indicators, and operational 

parameters—into a unified framework. Leveraging 

advanced technologies such as Internet of Things 

(IoT) sensors, edge computing, and artificial 

intelligence/machine learning (AI/ML), the model 

facilitates real-time data processing, predictive 

analytics, and visualization to support operators and 

engineers in making informed decisions rapidly. Key 

features of the model include multi-layered data 

integration, predictive maintenance forecasting, 

anomaly detection, and automated alert generation, 

all embedded within an intuitive human-machine 

interface. The architecture emphasizes scalability, 

interoperability with existing control systems, and 

adaptability to varying FPSO configurations. 

Validation approaches, including simulation and 

pilot implementation, are discussed to demonstrate 

the model’s potential to improve operational 

efficiency, safety, and reliability. By providing a 

structured and technology-enabled framework for 

decision support, this model addresses the unique 

challenges of deepwater FPSO operations and 

contributes to the digital transformation of offshore 

production. Future research directions include 

empirical validation, integration of autonomous 

control capabilities, and extension to other offshore 

asset types, ultimately enhancing resilience and 

sustainability in complex marine environments. 
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Decision support, Integration, FPSO-based, 
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I. INTRODUCTION 

 

Floating Production, Storage, and Offloading (FPSO) 

units have become a cornerstone in offshore oil and 

gas production, particularly in deepwater and ultra-

deepwater environments (Awe, 2017; Oyedokun, 

2019). FPSOs provide a versatile solution by 

combining production, processing, storage, and 

offloading capabilities within a single floating vessel, 

enabling hydrocarbon extraction from remote and 

challenging reservoirs without reliance on fixed 

infrastructure (Awe et al., 2017; ADEWOYIN et al., 

2020). Deepwater production refers to hydrocarbon 

extraction activities conducted at water depths 

typically exceeding 500 meters, where subsea wells 

connect to FPSOs through complex riser and flowline 
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systems (Akpan et al., 2017; OGUNNOWO et al., 

2020). These operations are characterized by high 

capital expenditure, operational complexity, and 

stringent safety requirements due to harsh 

environmental conditions, including extreme weather, 

strong currents, and variable subsea pressures 

(Omisola et al., 2020; ADEWOYIN et al., 2020). The 

integrated nature of FPSOs—encompassing subsea 

systems, topside processing, and offloading 

operations—necessitates robust operational control to 

maintain efficiency, safety, and environmental 

compliance (Solanke et al., 2014; Chudi et al., 2019). 

In the context of deepwater FPSO operations, the 

ability to make informed decisions in real time is 

critical. Real-Time Decision Support Systems (DSS) 

facilitate this by integrating data acquisition, 

processing, and analytics to provide actionable 

insights to operators and engineers (Magnus et al., 

2011; Chudi et al., 2019). These systems enhance 

situational awareness, allowing timely responses to 

process deviations, equipment malfunctions, or 

environmental changes. The high degree of 

automation within FPSOs generates vast amounts of 

operational data, which, when effectively harnessed, 

can optimize production rates, improve safety 

margins, and reduce operational costs (Awe et al., 

2017; Akpan et al., 2019). Real-time DSS thus serve 

as a critical interface between complex process data 

and human decision-makers, enabling proactive 

management of production processes, maintenance 

scheduling, and emergency response (Nuzzolo and 

Lam, 2017; Terziyan et al., 2018). 

 

Despite technological advancements, deepwater 

FPSO operations face numerous challenges that 

complicate decision-making. The complexity and 

interdependence of subsea and topside systems create 

dynamic process interactions that are difficult to 

predict and control (Puecher et al., 2017; Monteverde 

et al., 2019). Harsh offshore environments contribute 

to equipment degradation and unforeseen failures, 

increasing operational risks. Data integration 

challenges arise from diverse sensor networks, varying 

communication protocols, and legacy systems, often 

resulting in fragmented information silos. Moreover, 

latency in data transmission and processing can hinder 

timely interventions. Human factors, such as operator 

workload, cognitive overload, and situational 

awareness limitations, further complicate decision-

making under pressure (Aricò et al., 2017; Kim and 

Seong, 2019). Regulatory constraints and stringent 

safety standards add layers of operational complexity. 

These challenges highlight the necessity for advanced, 

integrated decision support solutions tailored to the 

unique context of deepwater FPSO production. 

This aims to develop a conceptual model for real-time 

decision support integration specifically designed for 

FPSO-based deepwater production operations. The 

primary objective is to create a framework that 

seamlessly integrates heterogeneous data sources, 

advanced analytics, and user-centered interfaces to 

enhance operational decision-making. The model 

seeks to address existing challenges by improving data 

interoperability, reducing latency, and incorporating 

predictive and prescriptive analytics to anticipate and 

mitigate risks (Bhattarai et al., 2019; Osman, 2019). 

Additionally, the framework emphasizes scalability 

and adaptability to accommodate varying FPSO 

configurations and operational scenarios. The scope 

encompasses process data acquisition, environmental 

monitoring, asset health assessment, and integration 

with existing control systems. Ultimately, the model 

aspires to support operators in making faster, more 

accurate decisions, thereby enhancing production 

efficiency, safety, and asset integrity in complex 

deepwater offshore environments. 

II. METHODOLOGY 

The methodology for this followed the PRISMA 

(Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) guidelines to ensure a systematic 

and transparent literature review process. An extensive 

search was conducted across multiple academic 

databases, including Scopus, Web of Science, IEEE 

Xplore, and ScienceDirect. The search strategy 

utilized a combination of keywords such as "real-time 

decision support," "FPSO," "deepwater production," 

"automation integration," and "offshore oil and gas," 

applying Boolean operators to refine results. 

Inclusion criteria were established to focus on peer-

reviewed articles, conference papers, and technical 

reports published from 2000 to 2025, available in 

English, and specifically addressing real-time decision 

support systems, integration frameworks, or 
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operational challenges in FPSO and deepwater 

production contexts. Exclusion criteria eliminated 

studies unrelated to offshore production, those 

focusing on non-real-time systems, or lacking 

substantive conceptual or empirical content. 

The initial search yielded a significant number of 

records, which were imported into reference 

management software to remove duplicates. Titles and 

abstracts were screened against the inclusion criteria 

to identify relevant studies. Subsequently, full-text 

reviews were conducted on the shortlisted articles to 

confirm their relevance and quality. The screening and 

selection process was independently performed by 

multiple reviewers to ensure objectivity and reduce 

bias. 

Data extraction from the selected studies captured key 

elements such as decision support methodologies, 

integration approaches, system architectures, 

operational contexts, and reported outcomes related to 

FPSO-based deepwater production. The synthesized 

data allowed for thematic analysis and identification 

of gaps in current real-time decision support models 

applicable to FPSO operations. 

This systematic review provided a foundation for 

developing a comprehensive, domain-specific model 

for real-time decision support integration tailored to 

the unique challenges and operational requirements of 

FPSO-based deepwater production systems. The 

PRISMA methodology ensured a rigorous and 

replicable approach to literature synthesis, facilitating 

the creation of a robust conceptual framework 

grounded in current research. 

2.1 Overview of FPSO-Based Deepwater Production 

Operations 

Floating Production Storage and Offloading (FPSO) 

units have become a cornerstone technology in the 

development of offshore deepwater oil and gas fields 

(D'Souza et al., 2019; LaGrange and Maisey, 2019). 

These sophisticated vessels enable the extraction, 

processing, storage, and offloading of hydrocarbons 

directly at sea, particularly in regions where fixed 

platforms are impractical due to water depth, 

remoteness, or environmental constraints. FPSOs 

offer unmatched operational flexibility, allowing oil 

companies to tap into deepwater reservoirs with 

enhanced efficiency and adaptability. This provides an 

overview of FPSO systems, the key processes 

involved in deepwater production, and the operational 

complexities and risks unique to FPSO operations in 

challenging marine environments. 

FPSO systems are essentially ship-shaped floating 

vessels equipped with topside processing facilities, 

storage tanks, and offloading infrastructure. Their 

primary advantage lies in their ability to operate 

independently without reliance on fixed infrastructure 

or permanent pipelines. This makes them ideally 

suited for deepwater environments where subsea wells 

are connected to the FPSO via risers and flowlines. 

The operational environment for FPSOs is highly 

dynamic, characterized by deep ocean depths, strong 

currents, waves, and extreme weather conditions such 

as hurricanes or cyclones (Zanganeh and Thiagarajan, 

2018; Armstrong et al., 2019). Additionally, FPSOs 

are often moored using turret mooring systems that 

allow the vessel to rotate freely with the prevailing 

weather and sea conditions, reducing structural stress 

and improving operational stability. The modular 

design of FPSOs also enables relocation and 

redeployment to different fields, further enhancing 

their utility in the offshore industry. 

The key production processes onboard an FPSO 

involve the separation, storage, and offloading of 

hydrocarbons extracted from subsea wells. The 

separation process is critical for isolating oil, gas, 

water, and impurities, ensuring that the produced 

fluids meet quality standards for export or further 

treatment. This typically involves multi-phase 

separators that operate under high pressure and 

temperature, given the challenging conditions of 

deepwater reservoirs. The separated oil is then stored 

in the vessel’s large storage tanks, which can hold 

significant volumes of crude oil until offloading. 

Storage capacity is a vital aspect as it directly affects 

the FPSO’s operational autonomy and economic 

efficiency. Offloading is the process of transferring 

stored oil to shuttle tankers or pipelines for 

transportation to onshore facilities. Offloading 

operations require precise coordination to manage the 

dynamic motions of the FPSO and shuttle tankers, 

often necessitating specialized offloading systems 

such as flexible hoses or tandem offloading 

arrangements (Xu et al., 2019; Utne et al., 2019). 
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Additionally, gas separated from the production 

stream may be re-injected into the reservoir, flared, or 

processed for export, depending on field development 

strategies. 

Deepwater FPSO operations are inherently complex 

and fraught with numerous risks due to the harsh 

environmental and technical conditions. One of the 

primary operational complexities arises from the 

integration of subsea infrastructure with topside 

processing facilities, requiring advanced control 

systems and robust communication networks to ensure 

real-time monitoring and control. The dynamic motion 

of the vessel, influenced by waves and currents, affects 

the stability of risers and mooring systems, posing 

challenges for maintaining safe and efficient 

production. Environmental factors such as corrosion 

from seawater, biofouling, and extreme weather 

events necessitate rigorous maintenance regimes and 

contingency planning (Francis, 2019; Verma et al., 

2019). 

The risks specific to deepwater FPSOs are 

multifaceted. Safety hazards include the potential for 

hydrocarbon leaks, fires, and blowouts, which are 

exacerbated by the remote location and limited 

emergency response capabilities offshore. The 

complexity of handling multiphase flow and 

maintaining separation efficiency under fluctuating 

reservoir conditions further increases operational risk. 

Additionally, deepwater operations are capital 

intensive, and any unplanned downtime can lead to 

significant economic losses. Regulatory compliance 

and environmental protection standards impose 

additional operational constraints, requiring 

continuous risk assessment and mitigation strategies. 

FPSO-based deepwater production operations 

represent a highly specialized and challenging sector 

within the offshore oil and gas industry. The unique 

combination of mobile processing capability, 

deepwater adaptability, and complex operational 

environment demands advanced engineering, 

stringent safety practices, and sophisticated 

automation systems (Wong et al., 2018; Max et al., 

2019). Understanding the key processes and inherent 

risks associated with FPSOs is essential for optimizing 

their performance and ensuring safe, reliable, and 

efficient production in deepwater settings. 

2.2 Real-Time Decision Support Systems: Concepts 

and Technologies 

Real-Time Decision Support Systems (DSS) are 

integrated software frameworks designed to assist 

operators and engineers in making timely and 

informed decisions by continuously collecting, 

processing, analyzing, and presenting data as events 

unfold. Unlike traditional DSS, real-time DSS operate 

under stringent time constraints, enabling immediate 

responses to dynamic operational conditions. The 

primary functions of real-time DSS include situational 

awareness enhancement, anomaly detection, process 

optimization, risk mitigation, and predictive 

maintenance (Mishra et al., 2017; Ortiz et al., 2019). 

In offshore oil and gas production, these systems serve 

as critical intermediaries between complex process 

data streams and human decision-makers, translating 

raw data into actionable insights that improve safety, 

reliability, and efficiency. 

A comprehensive real-time DSS comprises four main 

components; data acquisition, data processing, 

analytics, and visualization. Data Acquisition, this 

component involves the collection of data from 

diverse sources such as sensors, control systems, 

weather stations, and subsystems within the FPSO. 

Data can include process variables (pressure, 

temperature, flow rates), equipment status, 

environmental parameters, and safety alarms. 

Effective data acquisition requires robust 

communication protocols and sensor networks capable 

of delivering high-frequency, accurate data under 

harsh offshore conditions. Data Processing, after 

acquisition, raw data undergoes preprocessing steps 

such as filtering, normalization, synchronization, and 

validation to ensure accuracy and consistency (Pernet 

et al., 2018; Yin et al., 2019). Data processing 

transforms disparate data streams into a unified, 

reliable dataset suitable for analysis. This stage also 

involves real-time data integration across multiple 

subsystems and handling missing or noisy data. The 

analytics component applies statistical methods, 

machine learning algorithms, and rule-based logic to 

interpret processed data as shown in figure 1. 

Functions include pattern recognition, anomaly 

detection, predictive modeling, and optimization. 

Predictive analytics, for example, can forecast 

equipment failures or process upsets, enabling 
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proactive interventions. Advanced prescriptive 

analytics provide recommended actions based on 

scenario simulations. Visualization translates analytic 

outputs into intuitive graphical user interfaces (GUIs) 

that enable operators to quickly comprehend complex 

data and trends. Dashboards, alarms, 3D process 

models, and augmented reality tools enhance 

situational awareness and support decision-making 

under time pressure (Franklin et al., 2017; Lee et al., 

2018). 

Figure 1: Components of DSS 

Several emerging technologies underpin the 

development and effectiveness of real-time DSS in 

offshore FPSO operations. Internet of Things (IoT) 

technologies facilitate extensive sensor deployment 

across FPSOs, enabling continuous monitoring of 

process conditions and asset health. IoT networks 

support high data volumes and ensure connectivity 

between subsea equipment, topside modules, and 

control centers, despite challenging offshore 

environments. Edge Computing, given the latency and 

bandwidth limitations of offshore communication, 

edge computing is critical. By processing data locally 

at or near the data source (e.g., on the FPSO), edge 

computing reduces response times and dependence on 

remote data centers. This allows real-time analytics 

and decision-making without delays caused by data 

transmission. Artificial Intelligence and Machine 

Learning (AI/ML), algorithms enhance DSS 

capabilities by learning from historical and real-time 

data to detect complex patterns and predict future 

events (Mehmood et al., 2019; Gubbi et al., 2019). 

These techniques improve anomaly detection 

sensitivity, optimize control strategies, and automate 

routine decisions. AI-driven DSS adapt continuously, 

increasing accuracy and reducing operator workload. 

Real-time DSS have been successfully deployed in 

various upstream oil and gas applications such as well 

monitoring, drilling optimization, production 

forecasting, and asset integrity management. Onshore 

and fixed platform installations have leveraged these 

systems to improve operational performance and 

safety. However, unique challenges in FPSO 

environments—such as constrained onboard 

computational resources, communication bandwidth 

limitations, and complex subsea-to-topside 

integration—have limited the full realization of real-

time DSS benefits. 

Existing DSS solutions often lack seamless integration 

across the diverse systems on FPSOs, resulting in 

fragmented data views and delayed decision-making 

(Bole et al., 2017; Ribotti et al., 2018). Additionally, 

many systems focus on specific functions, such as 

predictive maintenance or process control, rather than 

providing a holistic, multi-dimensional decision 

support platform. There is also limited incorporation 

of advanced AI/ML tailored to the dynamic and 

stochastic nature of deepwater production. 

These gaps highlight the need for specialized real-time 

DSS models that address FPSO-specific constraints, 

emphasize data interoperability, and incorporate 

adaptive analytics. Such systems would enable 

operators to manage the complexity and risk inherent 

in deepwater FPSO operations more effectively, 

ultimately improving operational resilience, safety, 

and productivity. 

Real-time DSS integrate advanced technologies and 

multi-source data processing to transform offshore 

operational management. While substantial progress 

has been made in oil and gas, targeted development 

and integration efforts are required to meet the unique 

demands of FPSO-based deepwater production 

operations (Gulas et al., 2017; Lu et al., 2019). 

2.3 Requirements for Decision Support in FPSO 

Deepwater Operations 

Floating Production Storage and Offloading (FPSO) 

units operating in deepwater environments present 

unique challenges that necessitate robust and adaptive 

decision support systems (Meng et al., 2018; Whyte et 

al., 2018). These systems assist operators in making 

timely and informed decisions critical to ensuring 
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safety, optimizing production processes, and 

maintaining asset integrity. The complex interplay of 

operational demands, data diversity, real-time 

constraints, and human factors shapes the specific 

requirements for decision support in FPSO deepwater 

operations as shown in figure 2. 

Figure 2: Requirements for Decision Support in 

FPSO Deepwater Operations 

Operational decisions in FPSO contexts span multiple 

domains, each with distinct priorities and urgency 

levels. Safety decisions are paramount, as the offshore 

environment is inherently hazardous due to the 

presence of flammable hydrocarbons, extreme 

weather conditions, and limited emergency response 

capabilities. Decision support systems must enable 

rapid detection and response to abnormal events such 

as leaks, fire outbreaks, or equipment failures to 

prevent catastrophic incidents. Next, process 

optimization decisions focus on maximizing 

hydrocarbon recovery while minimizing operational 

costs and environmental impact. These involve 

adjusting process parameters like flow rates, pressure, 

temperature, and chemical dosing to maintain optimal 

separation and production efficiency. Lastly, 

maintenance decisions are critical for asset longevity 

and reliability. Predictive maintenance strategies 

require decision support systems that can analyze 

condition monitoring data to forecast equipment 

degradation and schedule timely interventions, thus 

reducing unplanned downtime and costly repairs. 

A fundamental requirement for effective decision 

support is the integration of diverse data sources that 

collectively represent the operational state of the 

FPSO. Process data includes measurements such as 

pressure, temperature, flow rates, and valve positions 

collected from sensors distributed across subsea wells, 

risers, and topside processing equipment (Sotoodeh, 

2019; Hansen et al., 2019). This data provides real-

time insight into production dynamics and equipment 

performance. Environmental data, encompassing 

wave height, wind speed, sea currents, and weather 

forecasts, is essential for assessing operational risks 

and planning activities such as offloading or 

emergency shutdowns. Asset data, including 

maintenance records, equipment specifications, and 

historical failure modes, informs reliability 

assessments and maintenance planning. Integrating 

these heterogeneous data streams in a coherent manner 

is challenging but vital for holistic situational 

awareness and decision accuracy. 

The decision support system must operate within 

stringent real-time constraints to be effective in FPSO 

deepwater environments. Many operational decisions, 

particularly those related to safety and process control, 

require near-instantaneous data processing and 

response capabilities. Latency in data acquisition, 

transmission, or analysis can lead to delayed actions, 

potentially compromising safety or reducing 

production efficiency. Therefore, system architectures 

must prioritize low-latency communication protocols, 

edge computing for local data processing, and high 

availability to ensure continuous operation. 

Additionally, the system should support varying time 

horizons for decision-making—from immediate 

emergency responses measured in seconds, to longer-

term maintenance planning over days or weeks. 

User interaction and human factors are critical 

considerations in the design of decision support 

systems for FPSOs. Operators typically work in 

control rooms under high cognitive load, managing 

multiple alarms and complex system 

interdependencies. Decision support interfaces must 

present information clearly and intuitively, 

emphasizing critical alerts and actionable 

recommendations while minimizing information 

overload. Visualization tools such as dashboards, 

trend graphs, and scenario simulations aid 

comprehension and support rapid decision-making. 

Furthermore, systems should be customizable to 

accommodate varying operator expertise and 

preferences (Sarikaya et al., 2018; Kalliski et al., 

2018). Incorporating user feedback mechanisms and 

ergonomic design principles improves usability and 



© AUG 2020 | IRE Journals | Volume 4 Issue 2 | ISSN: 2456-8880 

IRE 1709214          ICONIC RESEARCH AND ENGINEERING JOURNALS 202 

acceptance, ultimately enhancing operational 

effectiveness. 

Effective training and familiarization with decision 

support tools are also essential to ensure that human 

operators can trust and efficiently utilize these systems 

during routine and emergency situations. Additionally, 

the system should support collaborative decision-

making, allowing multiple stakeholders—such as 

offshore operators, maintenance engineers, and remote 

experts—to share situational awareness and 

coordinate responses. 

Decision support systems in FPSO deepwater 

operations must address a multifaceted set of 

requirements. They must support diverse operational 

decisions encompassing safety, process optimization, 

and maintenance. Integration of heterogeneous data 

sources into a unified framework is essential for 

comprehensive situational awareness. Real-time 

processing capabilities with minimal latency are 

critical to timely and effective decision-making. 

Lastly, user-centric design that accounts for human 

factors ensures that operators can efficiently interpret 

and act upon system recommendations. Meeting these 

requirements is vital for enhancing safety, reliability, 

and efficiency in the challenging deepwater FPSO 

environment. 

2.4 Proposed Model for Real-Time DSS Integration 

The proposed model for real-time decision support 

system (DSS) integration in FPSO-based deepwater 

production operations is designed as a multi-layered 

architecture that addresses the complexities of data 

acquisition, processing, analysis, and decision 

dissemination. At its core, the architecture facilitates 

seamless interaction between physical assets, data 

infrastructures, analytics engines, and human 

operators (Morgan and O’Donnell, 2017; Trakadas et 

al., 2019). The architecture consists of four primary 

layers: the sensing layer, data integration layer, 

analytics layer, and user interface layer. The sensing 

layer comprises heterogeneous sensors and 

instrumentation across subsea systems, topside 

processing units, and environmental monitoring 

stations. Data collected at this level is transmitted to 

the data integration layer, which consolidates and 

harmonizes data from diverse sources into a unified, 

real-time data repository. The analytics layer leverages 

this integrated dataset to perform advanced 

computations, including predictive and prescriptive 

analytics. Finally, the user interface layer delivers 

actionable insights through visualization dashboards 

and alerting systems to support timely decision-

making by operators and engineers. 

One of the central challenges in FPSO operations is 

managing the vast array of data originating from 

heterogeneous sources, each with distinct formats, 

protocols, and update frequencies. The model 

incorporates a robust integration framework that 

standardizes data exchange using open 

communication protocols such as OPC UA and 

MQTT. This framework supports both batch and 

streaming data integration, ensuring high-velocity data 

flows are managed without loss or latency. 

Middleware components handle data normalization, 

error checking, and timestamp synchronization, 

enabling real-time cross-referencing of process data, 

environmental parameters, and asset condition 

monitoring. Moreover, the framework supports 

interoperability with legacy control systems and newer 

IoT platforms, allowing incremental integration and 

minimizing operational disruptions (Givehchi et al., 

2017; Lilis et al., 2017). Secure data transmission and 

role-based access controls are embedded to maintain 

cybersecurity and data integrity. 

The analytics layer is the intellectual core of the DSS, 

implementing multiple modules that perform real-time 

and predictive analysis. Real-time analytics 

continuously monitor operational parameters to detect 

anomalies and deviations from expected behavior. 

Predictive modules employ machine learning 

algorithms—such as neural networks, support vector 

machines, and ensemble models—to forecast 

equipment failures, process bottlenecks, or 

environmental threats based on historical and real-

time data trends. These models are trained on 

comprehensive datasets that include historical incident 

logs, sensor readings, and operational conditions. 

Prescriptive analytics further extend these capabilities 

by simulating potential interventions and 

recommending optimized actions to mitigate risks or 

enhance performance. The modular design allows for 

adaptive learning, where models are updated 

dynamically as new data becomes available, 

improving accuracy over time. 
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Effective visualization is critical for bridging the gap 

between complex analytics and operational decisions. 

The model incorporates customizable dashboards 

tailored to different user roles, such as operators, 

engineers, and management, offering varying levels of 

detail and interactivity. Visual elements include real-

time process flow diagrams, trend graphs, heatmaps, 

and 3D models of the FPSO and subsea infrastructure. 

Alerting mechanisms are integrated to notify users of 

critical events through color-coded alarms, sound 

notifications, and mobile alerts. These alerts prioritize 

based on severity and potential impact, helping 

operators focus on the most urgent issues. Interactive 

visualization tools also support scenario analysis and 

drill-down capabilities, enabling users to investigate 

root causes and evaluate the effectiveness of past 

decisions (Wu et al., 2017; Basole et al., 2018). 

To ensure sustained performance and system 

adaptability, the model incorporates feedback loops 

that close the gap between system outputs and 

operational reality. User feedback, incident reports, 

and operational outcomes are fed back into the 

analytics layer to refine predictive models and update 

decision rules. This continuous learning mechanism 

enables the DSS to evolve with changing operational 

conditions, new equipment, and updated regulatory 

requirements. Automated logging of decisions and 

system responses facilitates audit trails and supports 

post-event analysis. Additionally, periodic system 

performance reviews and retraining sessions are 

scheduled to validate model accuracy and incorporate 

domain expert insights. This iterative approach fosters 

a learning organization culture and enhances the long-

term resilience and effectiveness of real-time decision 

support in FPSO deepwater production operations. 

The proposed model integrates advanced data 

handling, analytics, and human-centric design within 

a scalable architecture tailored for the unique 

complexities of FPSO environments. By harmonizing 

multi-source data, leveraging predictive intelligence, 

and facilitating intuitive user interactions, the model 

aims to elevate operational decision-making, improve 

safety, and optimize production in deepwater offshore 

settings (Sivils et al., 2019; Thomas et al., 2019). 

 

2.5 Model Validation and Implementation 

Considerations 

Developing a robust decision support model for 

Floating Production Storage and Offloading (FPSO) 

units in deepwater production necessitates thorough 

validation and careful implementation planning. The 

complexity of FPSO systems, their dynamic 

operational environments, and the critical nature of 

decisions require that models be rigorously tested 

before deployment and seamlessly integrated with 

existing control infrastructures (Mastrangelo et al., 

2019; Aalberts et al., 2019). This discusses key 

considerations for model validation, performance 

assessment, integration challenges, and scalability to 

ensure successful implementation in diverse FPSO 

settings. 

A fundamental step in model validation involves 

simulation and pilot testing approaches. Simulation 

provides a controlled environment to evaluate the 

model’s behavior under a variety of operational 

scenarios without risking real assets or production 

downtime. High-fidelity dynamic simulations 

replicate the FPSO’s process conditions, 

environmental interactions, and control responses, 

enabling detailed analysis of model accuracy and 

robustness. These simulations often incorporate real-

time data feeds and stochastic elements such as 

equipment failures or weather disturbances to test the 

model’s resilience and adaptability. Pilot testing 

extends validation by deploying the model on a limited 

scale within an operational FPSO, often in a shadow 

mode alongside existing decision support systems. 

This approach allows comparison between model 

recommendations and operator decisions under live 

conditions, identifying discrepancies and areas for 

improvement while minimizing operational risks. 

Iterative cycles of simulation and pilot testing build 

confidence in the model’s reliability and performance. 

Defining performance metrics and success criteria is 

essential for objective evaluation during validation 

and subsequent monitoring in operational use. Metrics 

typically include accuracy, precision, and recall of 

event detection in safety-critical scenarios, as well as 

production optimization indicators such as throughput 

enhancement and downtime reduction. Latency—the 

time delay between data input and decision output—is 
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another critical metric, especially for real-time 

decision support in rapidly changing deepwater 

environments. User acceptance and usability 

measures, obtained via operator feedback and system 

interaction logs, also serve as important success 

criteria (Bano et al., 2017; Alexandre et al., 2018). 

Success is often defined by the model’s ability to 

improve operational outcomes while maintaining or 

enhancing safety and regulatory compliance. 

Establishing clear benchmarks enables ongoing 

performance tracking and continuous improvement 

post-implementation. 

Seamless integration with existing FPSO control and 

automation systems represents a significant 

implementation challenge. FPSOs typically employ 

complex, multi-vendor distributed control systems 

(DCS), supervisory control and data acquisition 

(SCADA) platforms, and specialized subsea control 

systems. The decision support model must interface 

effectively with these systems to access real-time 

process data and to communicate actionable 

recommendations or automated control actions. 

Integration requires adherence to industry 

communication standards such as OPC-UA and 

support for legacy protocols common in offshore 

facilities. Cybersecurity considerations are paramount 

to protect against unauthorized access or data 

manipulation. Additionally, integration should 

preserve system redundancy and fail-safe features 

critical for offshore safety. Close collaboration with 

control system vendors and operational teams is 

necessary to ensure that the decision support model 

complements rather than disrupts existing workflows. 

The scalability and adaptability of the model to 

accommodate different FPSO configurations and 

field-specific conditions are crucial for widespread 

applicability. FPSOs vary in size, processing capacity, 

mooring arrangements, and subsea architecture, 

influencing the nature and complexity of decision 

support requirements. A modular model design 

facilitates customization, allowing operators to enable 

or disable features according to asset specifics. 

Adaptability extends to evolving operational contexts 

such as field life-cycle stages, changing production 

profiles, and integration of new technologies like 

digital twins or advanced sensors. Cloud-based or 

edge computing architectures enhance scalability by 

supporting distributed data processing and allowing 

updates without extensive downtime (Taleb et al., 

2017; Qi and Tao, 2019). Additionally, models should 

be designed to learn and improve from historical 

operational data, enhancing their predictive 

capabilities and relevance over time. 

Effective model validation and implementation for 

decision support in FPSO deepwater operations 

demand a comprehensive approach. Simulation and 

pilot testing provide rigorous, risk-mitigated 

environments for performance evaluation. Clearly 

defined metrics guide objective assessment and 

continuous improvement. Careful integration with 

existing control and automation systems ensures 

operational compatibility and safety. Finally, 

scalability and adaptability enable the model to serve 

diverse FPSO assets and evolving operational 

demands. Addressing these considerations holistically 

is vital to harnessing decision support models’ full 

potential to enhance safety, efficiency, and reliability 

in the challenging offshore deepwater domain. 

2.6 Challenges and Mitigation Strategies 

Implementing real-time decision support systems 

(DSS) in FPSO-based deepwater production 

operations faces substantial technical challenges, 

primarily related to data quality and integration 

complexity as shown in figure 3. Data quality issues 

stem from sensor inaccuracies, communication 

disruptions, and environmental interference common 

in harsh offshore conditions. Sensor degradation, 

calibration drift, and intermittent connectivity often 

result in missing, noisy, or inconsistent data streams. 

Such poor data quality compromises the reliability of 

analytics and decision-making, potentially leading to 

erroneous actions or missed alarms. Furthermore, 

integrating heterogeneous data sources—ranging from 

subsea sensors, topside instrumentation, control 

systems, to third-party environmental monitoring—

poses significant complexity (Munafờ et al., 2019; 

Gayes et al., 2019). Differences in data formats, 

communication protocols, and update frequencies 

create interoperability barriers, complicating real-time 

data fusion. Legacy systems often lack standard 

interfaces, necessitating bespoke adapters or 

middleware solutions. To mitigate these challenges, 

robust data validation and cleaning algorithms must be 
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embedded within the DSS to filter out anomalies and 

fill data gaps using imputation techniques. Adoption 

of industry standards like OPC UA can streamline 

interoperability. Additionally, modular middleware 

architectures can abstract system heterogeneity and 

enable scalable integration, while redundant 

communication pathways improve data availability. 

Beyond technical constraints, organizational and 

cultural factors significantly influence the successful 

deployment of real-time DSS on FPSOs. Resistance to 

change is common in mature offshore operations, 

where entrenched workflows and traditional decision-

making processes prevail. Operators may distrust 

automated recommendations or fear job displacement, 

leading to underutilization of DSS capabilities. The 

cognitive overload resulting from new interfaces or 

alert systems can also reduce acceptance. 

Furthermore, interdisciplinary collaboration between 

IT, operational, and engineering teams is often 

insufficient, hindering holistic implementation. To 

overcome these barriers, stakeholder engagement and 

comprehensive training programs are critical. 

Transparent communication about DSS objectives, 

benefits, and limitations fosters trust and aligns 

expectations. Participatory design approaches, 

involving operators in system development and 

customization, improve usability and ownership. 

Leadership must champion digital transformation 

efforts and incentivize adoption through performance 

metrics. Cultural change initiatives emphasizing 

human-machine collaboration and continuous learning 

cultivate an adaptive organizational mindset 

supportive of real-time decision support technologies 

(Raybourn et al., 2017; Metcalf et al., 2019). 

Figure 3: Challenges and Mitigation Strategies 

The integration of real-time DSS in FPSO operations 

introduces heightened cybersecurity and data privacy 

risks. Offshore facilities are increasingly digitized and 

interconnected, expanding the attack surface 

vulnerable to cyber threats such as hacking, 

ransomware, and data tampering. Compromise of 

critical operational data or control systems could lead 

to catastrophic safety incidents, production losses, or 

environmental harm. Protecting sensitive proprietary 

and personal data collected through monitoring 

systems is also essential to comply with privacy 

regulations and safeguard commercial interests. 

Mitigation strategies include implementing multi-

layered cybersecurity frameworks that encompass 

network segmentation, encryption, intrusion 

detection, and secure authentication protocols (Meera, 

2019; Mughal, 2019). Regular vulnerability 

assessments, penetration testing, and incident response 

planning strengthen resilience against cyberattacks. 

Employing edge computing for local data processing 

reduces dependence on external networks, limiting 

exposure. Furthermore, adherence to cybersecurity 

standards such as IEC 62443 and coordination with 

regulatory bodies ensure robust protection. Training 

personnel on cyber hygiene and establishing clear data 

governance policies are equally vital to prevent 

human-related breaches. 

FPSO operations are subject to stringent regulatory 

frameworks designed to ensure safety, environmental 

protection, and operational integrity. Real-time DSS 

implementations must comply with relevant 

international and national regulations governing 

offshore oil and gas activities, such as API standards, 

OSHA regulations, and local maritime laws. 

Compliance challenges arise from the need to validate 

DSS outputs, maintain traceability of decisions, and 

ensure that automated interventions meet safety 

integrity levels (SIL) prescribed for critical control 

functions (Nicoletti 2018; Tolio et al., 2019). 

Regulatory bodies may also require transparency on 

algorithmic decision-making, posing challenges for 

proprietary or complex AI models. Additionally, 

evolving regulations on data management and 

cybersecurity necessitate ongoing system updates. To 

navigate these issues, DSS designs must incorporate 

audit trails that log data inputs, analytic results, and 

operator actions, enabling verification and forensic 

analysis. Collaborating early with regulators during 

development promotes alignment and facilitates 

certification processes. Implementing configurable 
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safety envelopes within DSS ensures that automated 

recommendations adhere to predefined safety 

thresholds. Continuous monitoring of regulatory 

developments and incorporating compliance checks 

into system updates maintain operational legality and 

reduce liability risks. 

The deployment of real-time DSS in FPSO deepwater 

production operations confronts multifaceted 

challenges spanning technical, organizational, 

cybersecurity, and regulatory domains. Addressing 

these through robust data management, inclusive 

organizational strategies, comprehensive 

cybersecurity protocols, and proactive regulatory 

compliance will be pivotal to realizing the full 

potential of decision support technologies in 

enhancing safety, efficiency, and resilience offshore 

(Choucri et al., 2017; Catota et al., 2019; Akinsanya 

et al., 2019). 

CONCLUSION 

This has presented a comprehensive exploration of 

decision support systems (DSS) tailored for Floating 

Production Storage and Offloading (FPSO) units 

operating in deepwater oil and gas environments. The 

research has focused on developing a conceptual 

model that integrates real-time data streams, 

operational decision-making needs, and system 

architecture considerations unique to FPSO deepwater 

production. This concluding section summarizes the 

key contributions, acknowledges inherent limitations, 

and outlines promising avenues for future research. 

The primary contribution of this work lies in 

articulating a structured framework for real-time 

decision support integration specific to FPSO 

deepwater operations. By systematically reviewing 

operational requirements, data integration challenges, 

and human factors, the model addresses the 

multifaceted nature of offshore production decision-

making. The framework emphasizes the convergence 

of safety-critical, process optimization, and 

maintenance-related decisions, underpinned by 

heterogeneous data sources such as process 

measurements, environmental monitoring, and asset 

health information. Additionally, it incorporates real-

time constraints and latency considerations essential 

for timely and effective interventions. This also 

highlights practical implementation aspects, including 

simulation-based validation, integration with legacy 

control systems, and scalability across different FPSO 

configurations. Together, these contributions provide 

a holistic roadmap for advancing decision support 

capabilities that enhance operational efficiency, 

safety, and resilience in challenging deepwater 

contexts. 

Despite its strengths, this acknowledges several 

limitations that constrain its immediate applicability. 

First, the proposed model, while comprehensive, has 

been primarily validated through simulation and pilot 

testing scenarios rather than extensive field 

deployment. This limits the understanding of its 

performance under diverse real-world conditions, 

including extreme weather events, unexpected 

equipment failures, or cyber-physical threats. Second, 

the integration strategies discussed focus 

predominantly on existing control and automation 

infrastructures, potentially overlooking emerging 

technologies or proprietary systems that vary across 

operators. Third, the human factors analysis, though 

informed by established ergonomic principles, would 

benefit from deeper empirical studies involving actual 

FPSO operators to refine interface designs and 

interaction protocols. Lastly, the model currently 

assumes relatively stable communication networks, an 

assumption that may not hold true in all offshore 

environments where bandwidth limitations and 

intermittent connectivity are common. 

Looking forward, several promising research 

directions emerge to enhance and extend the current 

work. A foremost area is the integration of advanced 

artificial intelligence (AI) and machine learning (ML) 

techniques to improve predictive analytics, anomaly 

detection, and adaptive decision-making capabilities. 

AI-driven models can leverage vast historical and real-

time datasets to identify subtle patterns and optimize 

operational strategies dynamically, reducing human 

cognitive load and improving response times. 

Additionally, there is growing interest in developing 

autonomous operation frameworks that enable FPSOs 

to operate with minimal human intervention, 

particularly in hazardous or remote conditions. This 

entails integrating robotics, autonomous control 

algorithms, and robust fail-safe mechanisms to 

maintain safety and continuity. 
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Furthermore, expanding decision support systems 

beyond individual FPSOs towards cross-asset 

integration represents a critical frontier. As offshore 

fields increasingly employ multiple interconnected 

assets—such as subsea infrastructure, drilling rigs, and 

floating units—decision support must evolve to 

provide holistic situational awareness and coordinated 

control across the entire ecosystem. This cross-asset 

DSS approach can facilitate optimized resource 

allocation, emergency response, and maintenance 

scheduling at the field or portfolio level. 

In conclusion, this lays a foundational framework for 

real-time decision support in FPSO deepwater 

operations, addressing key technical and operational 

challenges. While limitations remain, ongoing 

advancements in AI, autonomy, and system 

integration promise to substantially enhance the 

effectiveness and scope of such models. Future 

research focused on these areas will be instrumental in 

realizing safer, more efficient, and resilient offshore 

production systems, ultimately supporting the 

sustainable development of deepwater hydrocarbon 

resources. 
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