Financial Distress Prediction Models for Nigerian Banks: A Multi-Dimensional Approach Using NPLs, Liquidity, and Capital Adequacy

EMEKAR. OFFOR

Abstract- This study develops and validates predictive models for financial distress in Nigerian Deposit Money Banks (DMBs) using a multi-dimensional approach incorporating non-performing loans (NPLs), liquidity ratios, and capital adequacy measures. Utilizing panel data from 16 quoted Nigerian banks over the period 2010-2021, we employ logistic regression, discriminant analysis, and machine learning techniques to construct early warning systems for bank financial distress. The study defines financial distress using multiple criteria including regulatory intervention, negative equity, and sustained losses. Results indicate that NPL ratios, liquidity coverage ratios, and capital adequacy ratios are significant predictors of financial distress, with the combined model achieving 87.5% prediction accuracy. The developed models demonstrate superior performance compared to single-variable approaches, with NPLs showing the highest individual predictive power (AUC = 0.823), followed by capital adequacy (AUC = 0.756) and liquidity measures (AUC = 0.698). The findings provide valuable insights for bank management, regulators, and policymakers in developing proactive risk management strategies and regulatory frameworks for the Nigerian banking sector.

Keywords: Financial distress prediction, Nigerian banks, Non-performing loans, Liquidity risk, Capital adequacy, Early warning systems

I. INTRODUCTION

Financial distress in the banking sector poses significant threats to economic stability and growth, particularly in emerging markets like Nigeria. The Nigerian banking sector has experienced several episodes of financial distress, culminating in major crises in 1995, 2009, and periodic institutional failures that have undermined public confidence and economic development (Sanusi, 2012). The 2009 banking crisis, which resulted in the collapse of several major banks and required significant government intervention, highlighted the critical need for robust early warning systems to predict and prevent financial distress (Soludo, 2010).

Traditional approaches to monitoring bank health have relied heavily on regulatory capital ratios and basic financial indicators. However, the complexity of modern banking operations and the interconnected nature of financial risks necessitate more sophisticated multi-dimensional approaches to financial distress prediction (Betz et al., 2014). The emergence of new risk factors, technological disruptions, and evolving regulatory frameworks further emphasize the importance of developing comprehensive predictive models tailored to specific market contexts.

This study addresses the critical gap in financial distress prediction literature specific to Nigerian banks by developing and testing multi-dimensional models that incorporate key risk indicators: non-performing loans (NPLs), liquidity measures, and capital adequacy ratios. The research contributes to both theoretical understanding and practical application by providing bank managers and regulators with sophisticated tools for early detection of potential financial distress.

The significance of this research extends beyond academic contribution to practical policy implications. Effective financial distress prediction models can enable proactive regulatory intervention, improve risk management practices, and ultimately contribute to the stability of the Nigerian financial system. Given Nigeria's position as Africa's largest economy and the regional importance of its banking sector, the findings have broader implications for emerging market banking systems.

II. LITERATURE REVIEW

2.1 Theoretical Framework

Financial distress prediction models are grounded in several theoretical frameworks. The Trade-off Theory suggests that firms balance the benefits and costs of debt financing, with excessive leverage

leading to financial distress (Myers, 1984). The Pecking Order Theory indicates that firms prefer internal financing over external debt, with heavy reliance on external financing signaling potential distress (Myers & Majluf, 1984). For banks specifically, the Buffer Theory of Capital suggests that institutions maintain capital buffers above regulatory minimums to absorb unexpected losses and avoid regulatory sanctions (Calem & Rob, 1999).

The Financial Distress Theory, as articulated by Altman (1968) and subsequently developed by numerous scholars, posits that financial distress is a process characterized by declining performance, liquidity problems, and ultimately insolvency if corrective measures are not taken. This theory forms the foundation for developing predictive models that can identify institutions at various stages of the distress process.

2.2 Empirical Literature on Financial Distress Prediction

Early studies in financial distress prediction focused primarily on manufacturing firms, with Altman's (1968) Z-score model being the seminal work in the field. Beaver (1966) pioneered the use of financial ratios for bankruptcy prediction, demonstrating that certain ratios could distinguish between failed and non-failed firms up to five years before failure.

Banking-specific financial distress prediction gained prominence following the savings and loan crisis in the United States. Martin (1977) developed the first comprehensive bank failure prediction model using financial ratios, achieving reasonable accuracy in predicting bank failures. Subsequent studies by Barr et al. (1994) and Cole and Gunther (1995) refined these approaches, incorporating regulatory variables and demonstrating the importance of asset quality measures, particularly NPL ratios, in predicting bank distress.

Recent studies have employed increasingly sophisticated methodologies. Kumar and Ravi (2007) provided a comprehensive review of bankruptcy prediction methods, highlighting the evolution from traditional statistical approaches to artificial intelligence and machine learning techniques. Betz et al. (2014) developed early warning models for European banks, demonstrating the superior

performance of machine learning approaches over traditional logistic regression models.

2.3 Nigerian Banking Context

The Nigerian banking sector has undergone significant transformation over the past two decades, including major consolidation exercises in 2005 and regulatory reforms following the 2009 crisis (Sanusi, 2012). Despite these reforms, the sector continues to face challenges including high NPL ratios, liquidity management issues, and capital adequacy concerns (Adevemi, 2011).

Studies specific to Nigerian banks have identified several key risk factors associated with financial distress. Adeyemi (2011) found that asset quality, measured primarily through NPL ratios, was the most significant predictor of bank distress in Nigeria. Uwalomwa and Uadiale (2012) demonstrated the importance of liquidity management in bank performance, while Ogboi and Unuafe (2013) highlighted the role of capital adequacy in determining bank stability.

However, existing studies have largely employed single-variable or limited multi-variable approaches, and few have developed comprehensive predictive models specifically designed for early warning purposes. This study addresses this gap by developing multi-dimensional models incorporating the three most critical risk factors identified in the literature: NPLs, liquidity, and capital adequacy.

III. METHODOLOGY

3.1 Sample and Data

The study utilizes a comprehensive dataset of 16 Nigerian Deposit Money Banks quoted on the Nigerian Stock Exchange over the period 2010-2021, resulting in 192 bank-year observations. The sample period was chosen to capture both stable and stressed periods in the Nigerian banking sector, including the post-2009 crisis recovery and subsequent economic challenges.

Banks were classified as financially distressed based on multiple criteria:

- 1. Regulatory intervention by the Central Bank of Nigeria (CBN)
- 2. Negative shareholders' equity

- 3. Sustained losses over two consecutive years
- 4. NPL ratio exceeding 15% (significantly above the regulatory threshold of 5%)
- 5. Capital adequacy ratio below the regulatory minimum of 10%

This multi-criteria approach ensures a comprehensive definition of financial distress that captures both actual failures and early warning signals.

3.2 Variables and Measurement

3.2.1 Dependent Variable

The dependent variable is a binary indicator of financial distress (DISTRESS), coded as 1 if a bank meets any of the distress criteria in a given year, and 0 otherwise.

3.2.2 Independent Variables

Non-Performing Loans (NPL): Measured as the ratio of non-performing loans to total loans and advances. This variable captures credit risk and asset quality deterioration.

Liquidity (LIQ): Measured using multiple indicators:

- Liquid assets to total assets ratio
- Loans-to-deposits ratio
- Cash and cash equivalents to total assets ratio

Capital Adequacy (CAR): Measured as the ratio of regulatory capital to risk-weighted assets, reflecting the bank's ability to absorb losses.

3.2.3 Control Variables

- Bank Size (SIZE): Natural logarithm of total assets
- Return on Assets (ROA): Profitability measure
- Cost-to-Income Ratio (CIR): Operational efficiency measure
- Deposit Growth (DGROWTH): Funding stability indicator

3.3 Model Specification

The study employs multiple modeling approaches to ensure robustness:

3.3.1 Logistic Regression Model

The baseline logistic regression model is specified as: $P(DISTRESS = 1) = 1 / (1 + e^{-z})$

Where $z = \beta_0 + \beta_1 NPL + \beta_2 LIQ + \beta_3 CAR + \beta_4 SIZE + \beta_5 ROA + \beta_6 CIR + \beta_7 DGROWTH + \epsilon$

3.3.2 Discriminant Analysis

Linear discriminant analysis is employed to classify banks into distressed and non-distressed categories based on the linear combination of predictor variables.

3.3.3 Machine Learning Approaches

Random Forest and Support Vector Machine algorithms are implemented to capture non-linear relationships and interactions between variables.

3.4 Model Evaluation

Model performance is evaluated using multiple metrics:

- Area Under the Curve (AUC) of the Receiver Operating Characteristic
- Classification accuracy
- Sensitivity (true positive rate)
- Specificity (true negative rate)
- Precision and recall measures

Cross-validation techniques are employed to ensure model robustness and prevent overfitting.

IV. RESULTS AND DISCUSSION

4.1 Descriptive Statistics

Table 1 presents descriptive statistics for the key variables. The mean NPL ratio of 8.2% is above the regulatory threshold of 5%, indicating significant credit risk challenges in the Nigerian banking sector. The average capital adequacy ratio of 16.3% exceeds regulatory requirements, suggesting that most banks maintain adequate capital buffers. However, the wide standard deviation (5.8%) indicates substantial variation across banks and time periods.

Table 1: Descriptive Statistics

Variable	Mean	Std.	Min	Max
		Dev.		
NPL (%)	8.2	6.4	0.8	34.2
LIQ (%)	32.1	12.3	8.5	67.8
CAR (%)	16.3	5.8	-2.1	32.4
SIZE (₹	1,847	2,156	89	9,234
billion)				
ROA (%)	1.8	2.3	-8.9	8.2

4.2 Correlation Analysis

Correlation analysis reveals expected relationships between variables. NPL ratios show strong negative correlation with profitability measures (r = -0.67, p < 0.01) and moderate positive correlation with financial distress probability. Capital adequacy demonstrates negative correlation with distress indicators, while liquidity measures show mixed relationships depending on the specific metric employed.

4.3 Model Results

4.3.1 Logistic Regression Results

The logistic regression model demonstrates strong predictive power with a pseudo-R² of 0.742. All three primary variables (NPL, LIQ, CAR) are statistically significant at the 1% level. The odds ratios indicate that a one-percentage-point increase in NPL ratio increases the odds of financial distress by 1.34 times, while a similar increase in capital adequacy ratio decreases the odds by 0.78 times.

Table 2: Logistic Regression Results

Variable	Coefficient	Std.	Odds	p-
		Error	Ratio	value
NPL	0.294***	0.067	1.342	0.000
LIQ	-0.082**	0.034	0.921	0.016
CAR	-0.248***	0.071	0.780	0.001
SIZE	-0.156*	0.089	0.856	0.081
ROA	-0.223**	0.094	0.800	0.018
Constant	2.847***	0.678	-	0.000

*Note: ***, **, * indicate significance at 1%, 5%, and 10% levels respectively.*

4.3.2 Model Performance Comparison

The multi-dimensional approach significantly outperforms single-variable models. The combined model achieves an AUC of 0.875, compared to 0.823 for NPL-only, 0.756 for capital adequacy-only, and 0.698 for liquidity-only models.

Table 3: Model Performance Comparison

Model	ΑU	Accura	Sensitivi	Specifici
	C	cy	ty	ty
Combin	0.87	87.5%	82.3%	89.1%
ed	5			
Model				
NPL	0.82	78.6%	74.2%	80.4%
Only	3			

CAR	0.75	72.4%	68.9%	74.1%
Only	6			
Liquidit	0.69	68.2%	63.7%	70.8%
y Only	8			

4.3.3 Machine Learning Results

Random Forest and Support Vector Machine approaches yield similar results to the logistic regression model, with slightly improved accuracy (89.2% and 88.7% respectively). The consistency across different methodologies confirms the robustness of the identified relationships.

4.4 Early Warning Thresholds

Based on the model results, critical thresholds for early warning signals are established:

- NPL ratio > 12%: High risk of distress within 12 months
- Capital adequacy ratio < 12%: Moderate to high risk
- Liquidity ratio $\leq 20\%$: Increased vulnerability to funding shocks

The combination of two or more threshold breaches increases distress probability to over 75%.

4.5 Temporal Analysis

The models demonstrate varying predictive power across different time horizons. One-year ahead predictions achieve 87.5% accuracy, while two-year ahead predictions maintain 78.3% accuracy. This temporal dimension provides valuable insights for regulatory supervision and risk management planning.

V. IMPLICATIONS AND POLICY RECOMMENDATIONS

5.1 Regulatory Implications

The findings have significant implications for banking regulation in Nigeria. The Central Bank of Nigeria could incorporate these models into its supervisory framework, enabling more targeted and timely interventions. The identification of critical thresholds provides clear benchmarks for regulatory action, while the multi-dimensional approach ensures comprehensive risk assessment.

5.2 Bank Management Implications

For bank management, the models provide valuable tools for internal risk assessment and strategic planning. The early warning capabilities enable proactive management of identified risk factors before they escalate to crisis levels. Banks can utilize these models to optimize their risk-return profiles and maintain adequate safety margins.

5.3 Investor and Stakeholder Benefits

Investors and other stakeholders can employ these models to assess bank creditworthiness and make informed investment decisions. The transparent methodology and clear indicators provide valuable insights into bank stability and future performance prospects.

VI. LIMITATIONS AND FUTURE RESEARCH

While this study provides valuable insights, several limitations should be acknowledged. The sample size, while comprehensive for the Nigerian context, may limit generalizability to other emerging markets. The binary classification of financial distress, while practical, may not capture the full spectrum of distress severity.

Future research could explore several avenues:

- 1. Extension to other African banking markets
- 2. Incorporation of macroeconomic variables
- 3. Development of dynamic models that account for time-varying relationships
- 4. Integration of market-based indicators alongside accounting measures
- 5. Application of advanced machine learning techniques including deep learning approaches

CONCLUSION

This study successfully develops and validates multidimensional financial distress prediction models for Nigerian banks, demonstrating superior performance compared to single-variable approaches. The combination of non-performing loans, liquidity measures, and capital adequacy ratios provides a robust framework for early warning systems in the Nigerian banking sector.

The findings confirm that NPL ratios are the most significant individual predictor of financial distress, consistent with the credit-driven nature of banking crises. However, the multi-dimensional approach captures additional dimensions of risk that single-variable models miss, resulting in significantly improved predictive accuracy.

The practical implications of this research extend to multiple stakeholders in the Nigerian banking ecosystem. Regulators can enhance their supervisory frameworks, bank managers can improve risk management practices, and investors can make more informed decisions. Ultimately, the implementation of these models could contribute to greater stability and resilience in the Nigerian banking sector.

The study's contribution to the literature lies in its development of context-specific models tailored to the Nigerian banking environment, while employing methodologically rigorous approaches that ensure reliability and validity. As the Nigerian banking sector continues to evolve, these models provide a foundation for ongoing risk assessment and management in an increasingly complex financial landscape.

REFERENCES

- [1] Adeyemi, K. S. (2011). Bank failure resolution: The main options. Central Bank of Nigeria Economic and Financial Review, 49(2), 67-89.
- [2] Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
- [3] Barr, R. S., Seiford, L. M., & Siems, T. F. (1994). Forecasting bank failure: A nonparametric frontier estimation approach. Recherches Économiques de Louvain, 60(4), 417-429.
- [4] Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. https://doi.org/10.2307/2490171
- [5] Betz, F., Oprică, S., Peltonen, T. A., & Sarlin, P. (2014). Predicting distress in European banks. Journal of Banking & Finance, 45, 225-241. https://doi.org/10.1016/j.jbankfin.2013.11.041
- [6] Calem, P., & Rob, R. (1999). The impact of capital-based regulation on bank risk-taking. Journal of Financial Intermediation, 8(4), 317-352. https://doi.org/10.1006/jfin.1999.0276

- [7] Cole, R. A., & Gunther, J. W. (1995). Separating the likelihood and timing of bank failure. Journal of Banking & Finance, 19(6), 1073-1089. https://doi.org/10.1016/0378-4266(95)00036-4
- [8] Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques: A review. European Journal of Operational Research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043
- [9] Martin, D. (1977). Early warning of bank failure: A logit regression approach. Journal of Banking & Finance, 1(3), 249-276. https://doi.org/10.1016/0378-4266(77)90022-X
- [10] Myers, S. C. (1984). The capital structure puzzle. Journal of Finance, 39(3), 575-592. https://doi.org/10.1111/j.1540-6261.1984.tb03646.x
- [11] Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13(2), 187-221. https://doi.org/10.1016/0304-405X(84)90023-0
- [12] Ogboi, C., & Unuafe, O. K. (2013). Impact of credit risk management and capital adequacy on the financial performance of commercial banks in Nigeria. Journal of Emerging Issues in Economics, Finance and Banking, 2(3), 703-717.
- [13] Sanusi, L. S. (2012). Banking reform and its impact on the Nigerian economy. Central Bank of Nigeria Journal of Applied Statistics, 2(2), 115-122.
- [14] Soludo, C. C. (2010). Consolidating the Nigerian banking industry to meet the development challenges of the 21st century. In The Banking Industry in Nigeria: Challenges and Prospects (pp. 23-45). Central Bank of Nigeria.
- [15] Uwalomwa, U., & Uadiale, O. (2012). An empirical examination of the relationship between ownership structure and the performance of firms in Nigeria. International Business Research, 5(1), 208-215. https://doi.org/10.5539/ibr.v5n1p208