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Abstract- As a result of the speedy incorporation of 

Internet of Things (IoT) technologies in healthcare 

systems, it has managed to enhance service delivery, 

but also accelerated the appearance of potential 

cyber threats that jeopardize the safety of the 

patients, their data confidentiality, as well as the 

working dependability of the systems. This paper 

proposes the development and testing of a 

vulnerability identification model that uses deep 

learning model in a healthcare IoT setting. Three 

methods of deep neural networks (DNN) models, 

which comprise Convolutional Neural Network 

(CNN), Long Short-Term Memory (LSTM), and a 

combination of CNN+LSTM models, were trained 

and evaluated on real-life vulnerability data 

acquired at the University of Nigeria Teaching 

Hospital. Important performance vector was 

evaluated to test the models: loss, accuracy, 

precision, recall, and F1-score. The performance of 

CNN+LSTM hybrid model as evaluated revealed 

that it yielded the best result in all the metrics with 

an accuracy of 97 percent in training, 93 in 

validation, 94 percent precision, 95 percent recall 

and a f1-score of 94 percent. This would mean that 

there is better ability to identify and categorize 

vulnerabilities together with reduced false positives 

and anomalies. The conclusion points to the 

promise of hybrid deep learning methods in 

pursuing improved security in healthcare IoT 

systems in terms of real-time and reliable detection 

and response capabilities of threats. 

 

Indexed Terms- Healthcare; Internet of Things; 

Vulnerability; Deep Learning; CNN; LSTM 

 

 

I.  INTRODUCTION 

 

Cyber-physical Systems (CPS) are the integration of 

cyber elements, networking, and physical systems to 

facilitate the exchange of information in real time 

(Parades et al., 2024; Yuan et al., 2024). CPS 

emerges from the integration of embedded computer 

and communication technologies into physical 

systems to automatically monitor and control 

processes effectively (Abdelrahman et al., 2024). 

Also, CPS are vital infrastructures such as the 

Internet of Things, industrial automation, healthcare, 

and smart cities. It blends physical components such 

as actuators, sensors, and machines with digital 

components such as control and monitoring systems 

to enhance optimal performance, thus making them 

the backbone of modern smart infrastructure 

(Segovia-Ferreiraet al., 2023). However, it has been 

reported severally that CPS are prone to various 

vulnerability issues, both in the physical layers and 

digital layers (Umer et al., 2022; Parades et al., 

2024). 

 

Umer et al. (2022) grouped the components of CPS 

into three, namely the physical layer, application 

layer, and network layer. According to Khan et al. 

(2022) and Umer et al. (2022), CPS during the design 

stage does not integrate security measures like other 

networking systems due to its heterogeneous nature, 

different operating protocols, software and hardware 

it uses during communication, thus making it 

vulnerable to cyber threats. CPS are even more 

vulnerable due to the connectivity with massive 

components and are prone to attack on each layer 

(Markakis et al., 2019). In the network layer, denial 

of service, flood attacks, signal jamming, and Sybil 
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attacks are among the major threat issues reported 

due to vulnerabilities in the layers(Khan et al. 2022). 

One of the main applications of CPS is in healthcare, 

where it is used to integrate digital systems with 

physical healthcare devices to improve real-time data 

processing, control, and monitoring (Vyas and 

Bhargava, 2021). These systems include medical 

equipment that gathers and sends patient data to 

healthcare service providers through robotic surgical 

systems, wearable health monitors, and telemedicine 

platforms (Iqbal et al., 2020). These systems' 

connectivity allows for remote consultations, rapid 

interventions, and continuous vital sign monitoring, 

all of which contribute to optimal patient care. 

However, the reliance of the healthcare CPS (H-CPS) 

on different technologies to operate also presents the 

risk of vulnerabilities, such as those related to data 

breaches, illegal access, and system failures, all of 

which can have detrimental effects on patient privacy 

and safety (Xu et al., 2019).Vulnerability 

management refers to the process of identifying, 

classifying, and reporting this security vulnerability 

in the systems (Northern et al., 2021). In the H-CPS 

context, vulnerability detection and control aims to 

identify flaws in the different service layers and 

report to help mitigate cyber-attacks. Currently, to 

successfully manage vulnerability in H-CPS is very 

difficult due to the complex nature of its 

architecture(Knowles et al., 2015; Bernieri et al., 

2018). 

 

In the past, basic security frameworks like intrusion 

detection systems, firewalls, and patch management 

systems were some of the popular approaches for 

vulnerability management, but despite their success, 

they were often reactive and unable to provide real-

time security assurance for general CPSs. Recently, 

Deep Neural Networks (DNN) have resonated as a 

powerful tool for real-time data analysis of complex 

patterns, making them suitable for pro-active 

vulnerability detection and control in CPS (Khazraei 

et al., 2022; Ashraf et al., 2022); However, there is 

limited work on the application of Deep Leaning 

(DL) for vulnerability management in CPS, thus 

necessitating the need for this work. In addition, it is 

rare; a work that considered vulnerability in the three 

layers of CPS, and finally zero-day vulnerability, has 

not been addressed in the CPS system. 

This study designs a real-time vulnerability 

management model for electronic healthcare cyber-

physical system using deep neural network.This was 

achieved through careful consideration of health care 

CPS as the case study and developing a model that 

ensures that information in patient health records is 

secured at all times. 

 

II. METHODOLOGY 

 

The spiral model will be employed for this work, 

offering an iterative and risk-driven approach to 

project management. It combines elements of both 

incremental development and systematic risk 

management, making it suitable for complex, 

evolving systems. Each phase, or loop, involves four 

key steps: planning and requirement gathering, risk 

analysis, development and testing, and evaluation. 

The project begins with basic requirements, and as 

the loops progress, the system is gradually refined 

and expanded. At each loop, risks are assessed and 

mitigated before moving to the next phase, ensuring 

that potential issues are addressed early. This 

iterative model allows for continuous refinement 

based on feedback, adaptability to changes, and a 

focus on minimizing project risks, ensuring robust 

and secure system development. 

 

2.1 Data Collection 

 

The data used for this work was collected from the 

University of Nigeria Teaching hospital, Enugu state 

Nigeria as the primary data source. The data include 

common vulnerabilities in the Intensive Care Unit 

(ICU) of the hospital, capturing key security 

attributes across the transport, network, and 

application layers of connected medical devices from 

2019 to 2022. It includes structured records of known 

vulnerabilities, identified by `CVE ID` and 

categorized under `CWE ID` to specify the weakness 

type. Each entry provides details such as ` of 

Exploits` to indicate exploitation likelihood, 

`Vulnerability Type(s)`, and `Publish Date` with 

`Update Date` for tracking disclosure timelines. The 

`Score` (CVSS) quantifies severity, while `Gained 

Access Level`, `Access Complexity`, and 

`Authentication` highlight exploit difficulty. The 

dataset further assesses security impact through 

`Confidentiality Impact`, `Integrity Impact`, and 
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`Availability Impact`, mapping risks to patient data 

privacy, device reliability, and system uptime. This 

comprehensive structure enables predictive 

modelling for risk assessment and proactive 

mitigation of cybersecurity threats in critical 

healthcare infrastructures. The sample size of the data 

collected is 107606 features of vulnerability. The 

Table 1 presents the data description.  

 

Table 1: Data description of Healthcare IoT 

vulnerability 

 

Attribute Data Type Description 

CVE ID String Unique 

identifier for 

the 

vulnerability 

(e.g., CVE-

2023-XXXX). 

CWE ID String Common 

Weakness 

Enumeration 

(CWE) 

identifier for 

the 

vulnerability 

type. 

 of Exploits Integer Number of 

known exploits 

available for 

the 

vulnerability. 

Vulnerability 

Type(s) 

String Type of 

vulnerability 

(e.g., SQL 

Injection, 

Buffer 

Overflow). 

Publish Date Date (YYYY-

MM-DD) 

The date when 

the 

vulnerability 

was publicly 

disclosed. 

Update Date Date (YYYY-

MM-DD) 

The most 

recent update 

date of the 

vulnerability 

record. 

Score Float (0.0 - 10.0) CVSS 

(Common 

Vulnerability 

Scoring 

System) score 

indicating 

severity. 

Gained Access 

Level 

String The level of 

access gained 

if exploited 

(e.g., Admin, 

User). 

Access 

Complexity 

String 

(Low/Med/High) 

Difficulty of 

exploiting the 

vulnerability. 

Authentication String 

(Required/Not 

Required) 

Whether 

authentication 

is needed for 

exploitation. 

Confidentiality 

Impact 

String 

(Low/Med/High) 

Impact on data 

confidentiality 

if exploited. 

Integrity 

Impact 

String 

(Low/Med/High) 

Impact on data 

integrity if 

exploited. 

Availability 

Impact 

String 

(Low/Med/High) 

Impact on 

system 

availability if 

exploited. 

Description String A brief 

summary of the 

vulnerability 

and its impact. 

 

2.2 Data Preparation 

The collected data were processed using 

visualization, normalization and balancing approach. 

First the data structure was visualized in excel form 

to check for missing and duplicate values. This was 

done carefully using manual physical inspection by 

the researcher. The outcome showed that the data has 

no duplicate and missing values, and in addition all 

the features were observed to be numeric apart from 

the unique identifier. Data normalization was applied 

for dimensionality reduction using resampling 

approach based on Min-Maxscaler technique as 

shown in Equation 1 (Khalid et al., 2024). 
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    (1) 

 

Where Xj represents the features of the j-th credit 

card transactions, X_(i,j) is the features X_j of 

sample i. for the data distribution of target variables. 

The imbalance data structure prompt the need for 

class balancing. This was address by adopting the 

random under sampling approach in Khalid et al. 

(2024). The algorithm was presented using the 

relationship between fraud transaction subset defined 

as D1, legitimate subset defined as D0 and D^' which 

represents under sample dataset. 

 

Algorithm 1: Random class under sampling 

algorithm  

 

 

 

 

 

 

 

 

 

2.2 The Convolutional neural network (Benchmark 

CNN) 

 

A CNN is a type of feedforward neural network made 

of four major blocks which are the input layer, 

convolutional layer, fully connected layer and output 

layer. The input layer is responsible for dimensioning 

input transaction data based on the scaled output 

from Equation 1, the convolutional layer takes care of 

data extraction process using filters and pooling 

functions, while the fully connected layer is where 

the training process takes place and finally the output 

layer which produces the final results. The Figure 1 

presents the architecture of the CNN; 

 

 
Figure 1: Architecture of CNN (Wang et al., 2024) 

 

Figure 1 showed the architecture of the benchmark 

CNN which was adopted for this study. This 

convolutional layer used convolutional filters to 

extract local features, and with the help of nonlinear 

activation function produced similar output which 

forms input to the next convolutional layer. The 

mathematical model of CNN is defined by Wang et 

al. (2024) as Equation 2; 

 

   (2) 

 

Where represents jth features of thel-t layer, f 

defines the activation function; M number of feature 

maps,i represent it  feature maps in the l-k; while 

is the convolutional kernel and  is the offset. 

The convolutional layer here is a 1D convolution 

which has filter, kernel and rectified linear unit 

activation function defined as Equation 3. The filters 

are kernel are used for the convolutional scan, ensure 

that the matrix of the feature vectors are identified 

during the convolutional process.  

 

f(x) max⁡〖(0, x)〗    (3) 

 

The function of the Equation 3 is to help address 

vanishing problem during the feature extraction 

process, introduction of nonlinearity to facilitate 

learning of more complex transaction patterns and 

also speed up the convergence of neurons (Zhou et 

al., 2017). During this convolutional process to map 

out feature vectors of the input transactional data, the 

pooling layers are applied to extract it.  Several 

pooling techniques existing for this process such as 

the mean, maximum pooling technique, however 

Wang et al. (2024) revealed that the mean pooling 

process suffer limitation of spatial information loss, 

which can affect the quality of extracted features. 
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Based on this insight this work applied the maximum 

pooling techniques for the extraction process based 

on downsampling approach defined in the Equation 

4; 

             (4) 

 

Where f is the pooling function, down (.) mean the 

downsampling function while  is set to 0. The 

Table2 presents the architecture of the benchmark 

CNN, showing the number of layers, their functions 

and hyper-parameter sizes at each section. 

 

Table 2:   Architecture of the Benchmark CNN with 

output sizes 

 

Layers  Output size  Hyper-

parameters  

1D 

convolution  

[None; 29, 

64] 

256 

Filter size  [32, 128] 32 

Kernel  1  

Batch 

normalization  

[None; 29, 

64] 

256 

1D 

convolution 

(Layer 1) 

[None; 29, 

128] 

24704 

Filter size  [32, 128] 

kernel =1 

 

Activation 

function  

ReLU  

Batch 

normalization 

(Layer 1) 

[None; 29, 

128] 

512 

Maximum 

pooling  

[None; 14, 

128] 

0 

1D 

convolution 

(layer 2) 

[None; 14, 

128] 

0 

Filter size  [32, 128] 

kernel =1 

 

Activation 

function  

ReLU  

Batch 

normalization 

(Layer 2) 

[None; 14, 

256] 

98560 

Flatten  [None; 14, 1024 

256] 

Dense  [None; 

3584] 

1835520 

Dropout   [None; 512] 0 

Dropout factor  0.3; 0.8  

Dense  [None; 512] 513 

 

 
Figure 2: Flowchart of the CNN Model 

 

2.3 Long Short-Term Memory (LSTM) 

LSTM is a type of Recurrent Neural Network (RNN) 

designed to handle sequential data while overcoming 

the vanishing gradient problem. Unlike standard 

RNNs, LSTMs use memory cells with gates (input, 

forget, and output gates) to selectively store, update, 

and retrieve information over long time steps. This 

allows LSTMs to effectively learn dependencies in 

time-series data, such as detecting patterns in 

cybersecurity vulnerabilities, predicting network 

intrusions, or analysing ICU device logs for anomalies. 

The forget gate decides what past information to 

discard, the input gate determines which new 

information to store, and the output gate controls what 

part of the memory is passed to the next step. LSTMs 

are widely used in predictive modelling, anomaly 

detection, and cybersecurity threat analysis, making 

them ideal for analysing sequential attack patterns in 

healthcare networks. Figure 3 presents the flowchart of 

the LSTM. 
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Figure 3: Flow chart of the LSTM 

 

2.3 CNN-LSTM MODEL 

A CNN-LSTM model is a hybrid deep learning 

architecture that combines CNN for spatial feature 

extraction and LSTM networks for capturing 

temporal dependencies in sequential data. CNN 

layers first process raw data, identifying key spatial 

patterns, while LSTM layers analyze the extracted 

features over time to detect trends, anomalies, or 

cyber threats. This model is highly effective for 

intrusion detection, vulnerability assessment, and 

anomaly detection in healthcare systems, enabling 

real-time security monitoring by identifying 

sequential attack patterns and abnormal behaviours in 

connected medical devices. Figure4 presents the flow 

chart of the CNN+LSTM. 

 

 
Figure 4: Flowchart of the CNN+LSTM 

 

2.4 Training of the Deep Neural Network Models 

The training process of the DNN models involved 

several key steps to ensure optimal performance in 

detecting vulnerabilities. First, the dataset containing 

common vulnerability data, was pre-processed by 

handling missing values, normalizing numerical 

features, and encoding categorical variables where 

necessary. Next, the dataset was split into training 

and testing subsets to evaluate the model’s 

generalization capability. Data augmentation 

techniques were applied where necessary to balance 

the dataset and improve robustness. Feature 

extraction was performed using the CNN component, 

which captured spatial patterns, while the LSTM 

component processed sequential dependencies, 

allowing the model to retain temporal correlations.   

 

Once the data preparation was complete, the model 

was trained using an optimized configuration of 

hyper parameters, including learning rate, batch size, 

and the number of layers. The Adam optimizer was 

selected for efficient gradient updates, and the 

categorical cross-entropy loss function was used to 

measure performance. The training process involved 

multiple epochs, with validation at each step to 

monitor overfitting. Dropout and batch normalization 

techniques were applied to improve generalization. 

Finally, model performance was evaluated using key 

metrics such as accuracy, precision, recall, and F1-
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score to assess its effectiveness in identifying 

vulnerabilities within the dataset. 

 

III. SYSTEM IMPLEMENTATION 

 

The system implementation was carried out using 

Python, leveraging its extensive libraries and 

frameworks for deep learning and data processing. 

The implementation began with data preprocessing 

using NumPy and Pandas to clean and structure the 

dataset. Scikit-learn was used for feature scaling and 

dataset splitting into training and testing sets. The 

TensorFlow and Keras libraries were employed to 

design and train the hybrid deep neural network 

model, integrating CNN for feature extraction and 

LSTM for sequential pattern recognition.  The 

training phase involved defining the network 

architecture, setting hyperparameters, and using the 

Adam optimizer for efficient weight updates. The 

model was trained in multiple epochs with validation 

at each stage to monitor performance and prevent 

overfitting using dropout and batch normalization 

techniques. Finally, the trained model was evaluated 

on test data using metrics such as accuracy, precision, 

recall, and F1-score. The entire system was 

implemented in a Jupyter Notebook environment to 

allow for iterative model tuning and visualization of 

training progress. 

 

IV. RESULTS OF DNN VULNERABILITY 

DETECTION MODEL TRAINING 

 

This section presents the results of the DNN 

vulnerability detection training. The training process 

considering each of the individual metrics and 

evaluate them simultaneously. The Figure 6 presents 

the comparative loss of the models during the 

training process. The loss is a measure of cross 

entropy which is the deviation in correctly predicting 

true from actual values.  

 

 

 
Figure 5: Loss result of the DNN vulnerability 

detection model in health care -IoT 

 

Figure 5presents the training and validation loss 

values for three different deep learning architectures: 

CNN, LSTM, and a hybrid (CNN+LSTM) model. 

The results highlight the effectiveness of each model 

in identifying vulnerabilities within healthcare IoT 

environments.  The CNN-based vulnerability 

detection model recorded a training loss of 0.4622 

and a validation loss of 0.5323.The LSTM-based 

vulnerability detection model, on the other hand, 

performed the worst among the three models, with a 

training loss of 0.6310 and a validation loss of 

0.6831. LSTM networks are generally suited for 

sequential data, making them highly effective for 

time-series anomaly detection.The (CNN and LSTM) 

hybrid model achieved the best performance, with a 

training loss of 0.2330 and a validation loss of 

0.3853. The significant reduction in loss compared to 

the standalone CNN and LSTM models suggests that 

combining CNN’s feature extraction strengths with 

LSTM’s ability to capture sequential patterns resulted 

in a more robust vulnerability detection system.  

 

Accuracy is a crucial performance metric that 

indicates how well a model correctly identifies 

vulnerabilities in a system. Higher accuracy values 

signify that the model is making more correct 

predictions, which is essential for securing healthcare 

IoT environments. Figure 6 presents the training and 

validation accuracy of the deep learning modelsused 

for detecting vulnerabilities in healthcare IoT 

systems. 
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Figure 6: Accuracy of the DNN vulnerability models 

 

These results provide insight into the models' 

effectiveness across different security layers, 

including device-level threats (perception layer), 

network security risks (network layer), and data 

protection challenges (application layer). The CNN-

based vulnerability detection model recorded a 

training accuracy of 0.90 and a validation accuracy of 

0.92. This suggests that the CNN model was effective 

at identifying vulnerabilities using spatial feature 

extraction. The LSTM-based model achieved a 

training accuracy of 0.91 but a lower validation 

accuracy of 0.86. While LSTM networks are highly 

effective for sequential data, the drop in validation 

accuracy suggests that the model may be struggling 

with generalization. The CNN+LSTM hybrid model 

outperformed both individual models, achieving a 

training accuracy of 0.97 and a validation accuracy of 

0.93. The small difference between training and 

validation accuracy indicates that the model is well-

regularized and less prone to overfitting, making it a 

more reliable solution for detecting threats across 

different IoT layers.  

 

Precision is a critical metric in vulnerability detection 

as it measures the proportion of correctly identified 

vulnerabilities out of all instances that the model 

predicted as vulnerable. A higher precision value 

indicates that the model reduces false positives, 

ensuring that only genuine security threats are 

flagged, which is essential in healthcare IoT systems 

where false alarms can disrupt critical medical 

operations. Figure 7 presents the precision scores for 

the deep learning modelsin managing vulnerabilities 

across different IoT layers:   

 

 
Figure 7: Precision of the DNN vulnerability 

management model 

 

From the Figure 7, the CNN Model recorded a 

precision of 0.90, demonstrating that it effectively 

identifies vulnerabilities while maintaining a 

relatively low rate of false positives. However, their 

performance may be limited when dealing with 

evolving or sequential cyber threats. LSTM Model 

reported a lower precision of 0.86, suggesting that 

while it captures sequential relationships well, it may 

struggle with differentiating between actual threats 

and benign activities.(CNN+LSTM) Hybrid Model 

achieved the highest precision of 0.95, indicating its 

superior capability in distinguishing actual 

vulnerabilities from false alarms. In healthcare IoT, 

missing vulnerability could have severe 

consequences, such as compromised patient data, 

unauthorized access to medical devices, or system 

failures in life-critical applications. Figure 8 presents 

the recall scores for the three deep learning models 

used for vulnerability management: 

   

 
Figure 8: Recall result of the DNN vulnerability 

model 

 

In the Figure 8, the CNN Model recorded a recall of 

0.85, indicating that it correctly detected 85% of all 

actual vulnerabilities. LSTM Model achieved a recall 

of 0.83, slightly lower than the CNN model.  

(CNN+LSTM) Hybrid Model achieved the highest 

recall of 0.94, demonstrating its superior ability to 

detect the majority of actual vulnerabilities.  
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The F1-score is a critical metric for evaluating the 

effectiveness of a vulnerability detection model in 

healthcare IoT systems. It is the harmonic mean of 

precision and recall, balancing both false positives 

and false negatives. A higher F1-score signifies a 

model’s ability to detect real security threats while 

minimizing false alarms, which is essential for 

healthcare IoT security, where false positives may 

lead to unnecessary system shutdowns and false 

negatives can expose patient data to cyber risks. 

Figure 9presents the F1-score of the models. 

 

 
Figure 9: F1-Score of the DNN vulnerability 

management model 

 

The F1-score is a harmonic mean of precision and 

recall, making it a crucial metric for evaluating the 

overall effectiveness of the deep learning models in 

vulnerability detection. It provides a balanced 

measure of how well a model correctly identifies 

vulnerabilities while minimizing false positives and 

false negatives. The CNN model achieved an F1score 

of 0.89%, indicating a strong balance between 

precision and recall. The CNN+LSTM hybrid model 

achieved the highest F1-score of 0.94, indicating that 

it is the most effective at correctly identifying 

vulnerabilities while maintaining a low rate of 

misclassification.  

 

In the context of healthcare IoT security, where real-

time detection and response are crucial, the F1-score 

directly affects system reliability. Higher F1-score 

(CNN+LSTM at 0.94) means fewer false positives 

and negatives, ensuring that critical vulnerabilities 

are detected accurately without raising too many false 

alarms. This is essential in healthcare, where a 

security breach can compromise patient data and 

system integrity.  CNN’s F1-score (0.89) suggests it 

performs well but may miss vulnerabilities caused by 

time-based anomalies, such as slow-developing 

attacks or delayed system responses.  LSTM’s F1-

score (0.85) highlights its weakness in distinguishing 

between normal and anomalous behaviour, making it 

prone to false alerts, which can overwhelm security 

teams with unnecessary notifications.  Since 

healthcare IoT systems handle sensitive patient data 

and operate in real-time, the model with the highest 

F1-score (CNN+LSTM) would be the most suitable 

for deployment, as it ensures accurate and timely 

threat detection while reducing operational 

inefficiencies. 

 

CONCLUSION 

 

This study presented the development of an efficient 

real-time vulnerability management model for cyber-

physical systems. The work followed a structured 

approach, beginning with a technical investigation of 

cyber-physical systems to identify potential 

weaknesses. The model presented in this study 

provided a structural representation of security risks 

within the system and was further tested using real-

world datasets. The analysis included evaluating 

different software and hardware attack vectors, 

enabling us to identify patterns of vulnerabilities 

across different system layers.  To enhance security, 

we developed a new data model that encapsulates 

vulnerabilities across multiple layers of the cyber-

physical system. This dataset was structured to 

include real-time attack scenarios and anomalies, 

ensuring a comprehensive representation of threats. 

The newly developed dataset was instrumental in 

training machine learning models and improving the 

accuracy of vulnerability detection.   

 

A deep neural network algorithm was proposed for 

training the real-time vulnerability management 

model. This hybrid CNN+LSTM model was designed 

to leverage spatial and sequential learning 

capabilities for enhanced detection of security threats. 

To enhance vulnerability detection, we developed 

and characterized a cyber-physical system model 

using deep learning techniques. Three models were 

trained and evaluated: CNN, LSTM, and 

CNN+LSTM. Performance evaluation showed that 

the CNN+LSTM model outperformed both CNN and 

LSTM models, achieving a training accuracy of 0.97 

and validation accuracy of 0.93, compared to CNN 

(0.90, 0.92) and LSTM (0.91, 0.86). The 

CNN+LSTM model also had the best F1-score 
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(0.94), precision (0.95), and recall (0.94), proving to 

be the most effective in identifying and managing 

vulnerabilities.   
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