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Abstract- The rapid growth of digital banking has 

heightened concerns over cybersecurity, privacy, 

and regulatory compliance, particularly in the 

detection and prevention of financial fraud. 

Traditional centralized machine learning 

approaches to fraud detection are limited by data 

privacy regulations and the increasing complexity 

of cyber threats. Federated Learning (FL), a 

decentralized machine learning technique, offers a 

promising alternative by enabling multiple 

institutions to collaboratively train models without 

sharing raw data. This study critically evaluates the 

application of FL in privacy-preserving fraud 

detection within the banking sector, focusing on 

algorithmic performance, privacy implications, and 

regulatory compliance. The paper reviews existing 

literature, assesses technical challenges such as 

data heterogeneity and communication overhead, 

and presents case studies of FL implementation in 

real-world banking contexts. The findings reveal 

that FL significantly enhances privacy and 

regulatory alignment while maintaining competitive 

fraud detection performance. The study concludes 

by offering strategic recommendations for digital 

banks and regulatory bodies and identifies future 

research directions that emphasize adaptive 

learning algorithms, robust evaluation frameworks, 

and long-term federated infrastructure in financial 

systems. 

 

Indexed Terms- Federated Learning; Fraud 

Detection; Digital Banking; Privacy; Regulatory 

Compliance; Machine Learning  

 

 

I. INTRODUCTION 

 

Digital banking has revolutionised the financial 

sector, providing users with the convenience of 

conducting transactions, managing accounts, and 

accessing financial services from anywhere at any 

time [1-2]. . This transformation has been fueled by 

the widespread adoption of smartphones, mobile 

apps, and online platforms [3-4].  However, with this 

innovation comes an increasing risk of fraud. Digital 

banking fraud, encompassing activities such as 

identity theft, account takeover, and payment fraud, 

has surged as cybercriminals exploit the growing 

number of online financial services. According to the 

European Central Bank (ECB), fraud losses in digital 

banking have reached unprecedented levels, 

underscoring the need for more robust fraud detection 

mechanisms. 

 

Fraud detection systems in digital banking are 

designed to identify and prevent unauthorized 

transactions, account breaches, and identity theft 

[65]. Traditionally, machine learning algorithms have 

been leveraged to detect anomalies and predict 

fraudulent activity based on transactional data. 

However, these systems often face challenges in 

terms of performance, scalability, and, most 

critically, privacy. The growing regulatory pressure 

to ensure the protection of customer data adds 

complexity to developing effective fraud detection 

mechanisms. 

 

A studied work from Wang et al. [5] indicated that as 

digital banking becomes more pervasive, privacy and 

regulatory compliance have become key 
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considerations. Consequently, financial institutions 

are required to comply with stringent data protection 

regulations such as the General Data Protection 

Regulation (GDPR) in the European Union, the 

California Consumer Privacy Act (CCPA), and 

various other country-specific frameworks [6]. These 

regulations mandate that personal and sensitive 

financial data be handled in a way that respects users' 

privacy rights, and failure to comply can result in 

substantial fines and reputational damage [7]. 

Moreover, privacy concerns have emerged as a 

significant barrier to the deployment of effective 

fraud detection systems. Traditional centralized fraud 

detection methods involve the collection and 

processing of vast amounts of personal data, 

potentially exposing it to security breaches. In this 

context, privacy-preserving techniques are crucial in 

maintaining both regulatory compliance and the trust 

of banking customers. 

 

According to Rafi et al. [8], federated learning (FL) 

represents an innovative approach to machine 

learning that addresses the privacy concerns inherent 

in traditional centralized data processing systems. 

Unlike conventional machine learning, where data is 

collected in a central server for training, federated 

learning allows models to be trained directly on users' 

devices or local servers, without the need to transfer 

sensitive data to a central repository [9]. This 

decentralization minimizes data exposure and 

supports compliance with privacy regulations. 

 

In the context of digital banking, Aljunaid et al. [10] 

remarked that federated learning has the potential to 

revolutionize fraud detection systems by enabling 

financial institutions to collaboratively build models 

without sharing sensitive customer data. By training 

fraud detection models locally and aggregating the 

insights in a secure and privacy-preserving manner, 

federated learning can enhance the security of digital 

banking systems while ensuring compliance with 

privacy laws. 

 

This study aims to explore the potential of federated 

learning for privacy-preserving fraud detection in 

digital banking. Specifically, the study seeks to 

address the following research questions: 

• How can federated learning be applied to develop 

privacy-preserving fraud detection systems in 

digital banking? 

• What are the trade-offs between algorithmic 

performance, privacy, and regulatory compliance 

when using federated learning for fraud 

detection? 

• What are the challenges in achieving high 

accuracy in federated learning models for fraud 

detection, and how can these be mitigated? 

• How can financial institutions balance the need 

for accurate fraud detection with the requirements 

of data privacy and regulatory compliance? 

 

The main aim of this research is to identify and 

analyze the effectiveness of federated learning as a 

solution to the challenges of fraud detection while 

ensuring privacy and meeting regulatory standards. 

 

This study is significant for several reasons. First, it 

provides valuable insights into how federated 

learning can improve fraud detection in digital 

banking while mitigating privacy risks. By exploring 

the balance between algorithmic performance, 

privacy, and regulatory compliance, this research will 

contribute to the development of more secure and 

efficient fraud detection systems. Additionally, it will 

inform banking institutions about the feasibility of 

adopting federated learning to enhance their security 

infrastructure without compromising customer 

privacy. Also, the findings of this study will be 

beneficial to regulatory bodies, providing them with a 

deeper understanding of the capabilities of federated 

learning in adhering to privacy laws and ensuring the 

protection of user data. Finally, this research will 

serve as a foundation for future studies on the 

intersection of machine learning, privacy, and 

regulatory compliance in the financial sector. 

 

II. BACKGROUND AND LITERATURE 

REVIEW 

 

A. Traditional Fraud Detection Methods 

Traditional fraud detection methods in banking 

primarily rely on rule-based systems, anomaly 

detection, and supervised machine learning 

techniques, all of which require the aggregation of 

transaction data in a centralized system for analysis. 
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For example, in their study, Susmitha and Kalpana 

(2025) highlighted the growing limitations of rule-

based systems in banking fraud detection. These 

traditional methods are rigid and often fail to 

recognize complex or evolving fraud techniques. The 

authors point out that such systems frequently 

produce high false positives, lack scalability, and 

require constant manual updates based on expert 

input. As fraud patterns become more sophisticated, 

relying solely on predefined rules is no longer 

sufficient. Their study supports the need for 

alternative methods, particularly machine learning 

models, which offer greater adaptability, improved 

accuracy, and the ability to learn from data-driven 

patterns. 

 

 Rule-based systems use predefined rules to identify 

potential fraudulent activity based on known patterns. 

For example, large withdrawals or transactions in 

geographically distant locations might trigger alerts 

[12].   On the other hand, Hilal et al. [13] indicated 

that anomaly detection  identifies transactions that 

deviate from an individual's typical behavior.  

However, some studies have shown that while these 

systems have been effective in detecting certain 

forms of fraud, they suffer from limitations such as 

high false-positive rates, a lack of adaptability to new 

fraud patterns, and the inability to handle large-scale 

and complex datasets [14-15]. 

 

Machine learning (ML) models, particularly 

supervised learning, have become more prominent in 

recent years, using labelled datasets to train models 

for detecting fraudulent transactions. Techniques 

such as decision trees, random forests, and neural 

networks have been applied to improve accuracy 

[16,17,69].  However, traditional models often face 

scalability issues, difficulty in handling unbalanced 

datasets (fraudulent transactions are typically much 

fewer than legitimate ones), and the risk of 

overfitting when exposed to limited or outdated 

training data [18,68]. The  implication is that an 

increasing sophistication of fraud requires more 

dynamic and scalable systems, beyond what 

traditional methods offer. As such, banks must move 

towards more advanced and flexible solutions like 

machine learning models, while also addressing their 

limitations, such as data privacy and regulatory 

compliance. 

B. Limitations of Centralized Machine Learning in 

Fraud Detection 

Centralized machine learning (CML) models, 

although more effective than traditional methods, 

present significant challenges when applied to fraud 

detection in digital banking. The core issue lies in the 

centralization of data, financial institutions must 

aggregate vast amounts of sensitive customer data, 

such as transaction history, location, and personal 

identification information, to train machine learning 

models  [19]. . This process not only raises privacy 

concerns but also creates vulnerabilities in the 

system, as breaches or leaks of centralised data could 

lead to massive financial and reputational damage 

[20]. Moreover, centralised machine learning models 

often struggle with data imbalance, where fraudulent 

transactions make up a tiny fraction of the data. This 

results in poor performance in detecting fraud, as 

models trained on such imbalanced data often fail to 

recognise the minority class (fraudulent transactions) 

effectively [21,66].  Further complicating matters, the 

high computational costs and the need for large-scale 

data storage make centralised systems increasingly 

unsustainable. The implication is that the centralized 

machine learning models, though useful, are not 

viable in the long term due to their reliance on 

massive amounts of personal data. This necessitates 

the need for more decentralised, privacy-preserving 

approaches that retain accuracy while mitigating the 

risks of data exposure. 

 

C. Overview of Federated Learning 

Federated learning (FL) is a decentralized machine 

learning approach that addresses the challenges 

associated with centralized data collection and 

processing. Unlike traditional machine learning, 

where data is collected in a central server, federated 

learning allows data to remain on local devices, and 

models are trained collaboratively across these 

devices. After local models are trained, only model 

updates (not raw data) are aggregated and sent to a 

central server for further refinement [22].  This 

approach significantly reduces the risk of data 

exposure, which is particularly valuable for sensitive 

domains like banking. 

 

Based on some works such as the one published by 

Mohammadi et al. [23], federated learning is 

accepted as a system that offers several advantages in 
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fraud detection. It allows financial institutions to 

improve their fraud detection capabilities by 

leveraging data from various sources (such as mobile 

apps and online banking) without violating privacy 

regulations. Additionally, federated learning helps 

maintain the integrity and privacy of users' data, 

ensuring that sensitive information is not shared 

across platforms, reducing the risks of breaches [25-

26]. However, some independent studies by some 

investigators such as Agripina et al. [26], Barona et 

al. [27] and Bhanbhro et al. [28] indicated that  FL 

also presents challenges, including the need for 

robust communication protocols, managing data 

heterogeneity across devices, and handling situations 

where the data is imbalanced. This implies that 

although federated learning can provide a promising 

solution for improving fraud detection in a manner 

that respects privacy and complies with regulations. 

However, its successful implementation will require 

addressing technical challenges, such as data 

imbalance and the efficient aggregation of 

decentralized model updates. 

 

D. Privacy-Preserving Techniques in Banking 

Privacy-preserving techniques are critical in the 

context of fraud detection in digital banking. 

According to Xu et al. [29] common approach is 

differential privacy, which ensures that individual 

data cannot be identified through aggregated 

statistical results because the approach adds noise to 

the data in a controlled manner to prevent the 

identification of specific records while maintaining 

overall statistical accuracy. Also, Zhu & Niu [30], 

agreed that another approach is homomorphic 

encryption, which allows computations to be 

performed on encrypted data without decrypting it 

first p30].  These techniques ensure that even if the 

data is compromised, it remains useless to an 

attacker. 

 

In the banking sector, privacy-preserving techniques 

are crucial not only for protecting customer data but 

also for complying with legal and ethical standards. 

Techniques like secure multi-party computation 

(SMPC) and federated learning (as mentioned above) 

enable financial institutions to develop fraud 

detection models without compromising the privacy 

of customer data. In their work, Wulan [31], 

examined the importance of protecting customer data 

in banking, especially in light of increasing digital 

transactions. She highlights that privacy-preserving 

techniques are vital not only for data security but also 

for meeting legal and ethical obligations. Although 

existing laws—such as Law No. 10 of 1998, POJK 

No. 11/POJK.03/2022, and Law No. 27 of 2022—

provide a legal basis, Wulan notes they lack clear, 

enforceable measures for banks. Her research calls 

for stronger regulations and technical safeguards to 

help banks implement effective risk management and 

protect personal data. The development of privacy-

preserving techniques, including differential privacy 

and homomorphic encryption, plays a pivotal role in 

the shift towards more secure, scalable, and ethical 

fraud detection models. Their integration with 

federated learning could help banks build models that 

detect fraud while respecting customer privacy.  

 

E. Regulatory Framework for Fraud Detection 

(GDPR, CCPA, etc.) 

The regulatory landscape for data privacy is one of 

the most critical aspects of fraud detection in digital 

banking. Regulations like the General Data 

Protection Regulation (GDPR) in Europe and the 

California Consumer Privacy Act (CCPA) in the 

United States set strict guidelines on how customer 

data can be collected, stored, and processed. Under 

these regulations, financial institutions must obtain 

explicit consent from users before collecting their 

data, provide transparency about data usage, and 

ensure that customers have the right to request data 

deletion or correction. For fraud detection systems, 

regulatory compliance means that any solution must 

minimize the amount of personal data collected and 

ensure that data is processed securely and 

transparently. Federated learning, as a privacy-

preserving approach, aligns well with these 

regulations by allowing data to remain on local 

devices, ensuring compliance while still enabling 

effective fraud detection. 

 

The implication is that the regulatory frameworks 

around data privacy have necessitated the 

development of fraud detection systems that 

prioritize user privacy. The ability of federated 

learning to ensure regulatory compliance while 

enhancing fraud detection makes it a valuable tool for 

financial institutions aiming to avoid the 

consequences of non-compliance. 
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F. Previous Work on Federated Learning in 

Financial and Fraud Detection 

Several studies have explored the use of federated 

learning in fraud detection within the financial sector. 

Yang et al. [32] examined the potential of federated 

learning to enhance the performance of fraud 

detection systems by training models on 

decentralized datasets without violating data privacy. 

Their findings demonstrated that federated learning 

outperforms traditional centralized systems in terms 

of maintaining privacy and security while achieving 

comparable or better performance in detecting 

fraudulent transactions. Also, Auma et al. [33], 

highlighted the use of federated learning in detecting 

credit card fraud, illustrating its ability to handle 

imbalanced datasets and improve prediction 

accuracy. They emphasized the scalability of 

federated learning, allowing multiple financial 

institutions to collaborate and build more robust fraud 

detection systems without sharing sensitive customer 

data. However, challenges such as data heterogeneity, 

communication efficiency, and the need for secure 

aggregation techniques were identified as areas for 

further improvement. Also, Salam et al. (2024) 

presented an innovative approach to fraud detection 

in the financial sector through the application of 

federated learning. Due to data privacy constraints, 

traditional centralized models face challenges in 

accessing diverse transactional data. Federated 

learning allows banks to collaboratively train fraud 

detection models without sharing sensitive 

information, ensuring privacy compliance. Their 

study compares TensorFlow Federated and PyTorch, 

with PyTorch offering higher accuracy but requiring 

more computational time. The research also 

addresses class imbalance using hybrid resampling 

methods, which significantly improved model 

performance. Random Forest emerged as the most 

effective classifier. This work highlights federated 

learning's potential in enhancing secure, accurate 

fraud detection in financial institutions. 

 

Implication: Previous studies highlight the promising 

potential of federated learning for fraud detection in 

banking, particularly in addressing privacy concerns 

and improving performance. However, challenges 

related to data heterogeneity and communication 

efficiency need to be tackled for broader adoption in 

the financial sector. 

Finally, traditional fraud detection methods, while 

still in use, face significant limitations that hinder 

their scalability and effectiveness in a rapidly 

evolving digital banking landscape. Centralized 

machine learning models introduce additional privacy 

and regulatory concerns. Federated learning offers a 

decentralised, privacy-preserving alternative that can 

help overcome many of these challenges. Privacy-

preserving techniques and regulatory compliance 

frameworks further support the need for secure and 

ethical fraud detection solutions. As such, federated 

learning presents a promising direction for the future 

of fraud detection in digital banking, although more 

research is needed to overcome technical challenges 

and optimize its implementation. 

 

III. FEDERATED LEARNING IN DIGITAL 

BANKING 

 

A. Concept and Principles of Federated Learning 

Federated Learning (FL) is a decentralized machine 

learning paradigm that enables multiple entities to 

collaboratively train a shared model without 

exchanging raw data. In this approach, each 

participant trains the model locally on their data and 

only shares model updates (e.g., gradients or 

parameters) with a central server, which aggregates 

these updates to form a global model. This method 

preserves data privacy and reduces the risk of data 

breaches, making it particularly suitable for sensitive 

domains like digital banking. 

 

B. Federated Learning vs. Centralized Machine 

Learning Models 

Traditional centralized machine learning (CML) 

models require aggregating data from various sources 

into a central repository for training. While this 

approach can leverage diverse datasets, it poses 

significant privacy risks and challenges in complying 

with data protection regulations. In contrast, FL 

keeps data localized, thus enhancing privacy and 

reducing the risk of data leakage. Additionally, FL 

can handle data heterogeneity and is more scalable in 

environments where data is distributed across 

multiple entities. 
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C. How Federated Learning Addresses Privacy in 

Fraud Detection 

According to Sun [35], FL addresses privacy 

concerns in fraud detection by ensuring that sensitive 

customer data remains on local servers.  The 

implication is that only model updates, which do not 

contain raw data, are shared with the central server 

[36].  This approach aligns with data protection 

regulations like GDPR and CCPA, as it minimizes 

data exposure and enhances security. Moreover, FL 

can be combined with other privacy-preserving 

techniques, such as differential privacy and secure 

multi-party computation, to further protect sensitive 

information. 

 

D. Data Locality and Decentralized Model Training 

Based on the reports from Dritsas & Trigka [37], data 

locality in FL ensures that data remains within its 

source environment, reducing the need for data 

transfer and storage in centralized locations. This is 

particularly beneficial in digital banking, where data 

is sensitive and subject to strict regulatory controls. 

Decentralized model training allows financial 

institutions to collaboratively improve fraud detection 

models without compromising data privacy. This 

approach also reduces latency and can lead to faster 

model updates and deployment. 

 

E. Use Cases of Federated Learning in Fraud 

Detection 

Several financial institutions have adopted FL for 

fraud detection. For instance, Google Cloud and 

Swift have collaborated to develop FL-based anti-

fraud technologies for cross-border payments, 

enhancing security while preserving data privacy. 

Additionally, studies have demonstrated the 

effectiveness of FL in detecting credit card fraud, 

showing that FL models can achieve comparable or 

superior performance to centralized models while 

maintaining data privacy. 

 

F. Benefits and Limitations of Federated Learning in 

Banking 

Federated Learning (FL) offers several significant 

advantages for fraud detection in digital banking. 

One of the most crucial benefits is enhanced privacy, 

as FL ensures that sensitive customer data remains 

within local servers and is never shared directly with 

a central entity. This greatly reduces the risk of data 

breaches and unauthorized access [38]. Furthermore, 

by limiting the movement of personal data, FL 

enables financial institutions to attain stringent 

regulatory requirements like, the General Data 

Protection Regulation (GDPR) and the California 

Consumer Privacy Act (CCPA), thereby facilitating 

better compliance. Another notable advantage is the 

collaborative nature of model training, allowing 

multiple institutions to contribute to and benefit from 

a more robust and generalized fraud detection model 

without revealing proprietary or sensitive 

information. In addition, FL exhibits strong 

scalability potential, as it is capable of managing 

large volumes of distributed data across multiple 

banks or nodes without compromising system 

efficiency or accuracy. 

 

Despite these strengths, FL is not without limitations. 

Implementing such a decentralized system is 

complex and demands advanced technical 

infrastructure, as well as careful coordination 

between participating entities to synchronize model 

updates and maintain consistency. Another challenge 

lies in data heterogeneity—differences in data 

quality, format, and distribution across institutions 

can introduce biases or reduce model performance. 

Communication overhead is also a concern, as 

frequent exchanges of model parameters or gradients 

between local nodes and the central aggregator may 

result in increased network traffic and latency, which 

can hamper real-time fraud detection capabilities. To 

contextualize these insights, several case studies from 

recent literature are presented in Table 1.  

 

These case studies demonstrate the practical viability 

of FL in fraud detection within diverse financial 

environments. The use of FL across different 

institutions has consistently shown promise in 

balancing model accuracy with privacy protection. 

Moreover, use cases such as those involving mobile 

banking illustrate the versatility of FL in real-time, 

decentralized contexts. 
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Table 1: Case Studies on Federated Learning 

Applications in Fraud Detection 

 

Case Study Description Outcome Referen

ce 

FL for 

Credit 

Card Fraud 

Detection 

Simulated 

federated 

learning on 

synthetic 

credit card 

data to assess 

detection 

accuracy. 

Achieved 

comparabl

e 

performan

ce to 

centralized 

models 

with 

improved 

privacy 

preservatio

n. 

[39] 

Cross-

Bank FL 

Collaborati

on 

Collaborated 

to detect fraud 

in cross-

border 

payments 

using FL 

while 

maintaining 

data 

sovereignty. 

Enhanced 

real-time 

fraud 

identificati

on and 

regulatory 

complianc

e. 

[40] 

Federated 

Transfer 

Learning 

for Banks 

Implemented 

FL with 

transfer 

learning to 

improve fraud 

detection in 

underrepresen

ted banks 

with less data. 

Improved 

performan

ce in low-

data banks 

and 

maintained 

privacy. 

[41] 

Privacy-

Preserving 

FL in 

Mobile 

Banking 

Explored FL 

on mobile 

banking apps 

to detect 

anomalous 

user behavior 

indicative of 

fraud. 

Detected 

fraud with 

high 

precision 

while 

preserving 

on-device 

data 

privacy. 

[42] 

  

The results imply that broader adoption of FL in the 

financial sector could enhance fraud mitigation 

strategies without compromising user trust or 

regulatory alignment. Future research should 

continue to explore ways to overcome its limitations, 

particularly in the areas of interoperability, 

communication efficiency, and federated 

optimization. 

 

Table 2 highlights the trade-offs between centralized 

and federated learning approaches in fraud detection. 

While centralized learning can achieve high model 

performance with diverse data, it poses significant 

privacy risks and regulatory challenges. Federated 

learning, on the other hand, offers enhanced privacy 

and compliance benefits but comes with increased 

complexity and communication overhead. Institutions 

must weigh these factors when choosing the 

appropriate approach for their fraud detection 

systems. 

 

The adoption of FL in digital banking presents a 

promising avenue for enhancing fraud detection 

while maintaining data privacy and regulatory 

compliance. However, challenges related to 

implementation complexity and data heterogeneity 

must be addressed. Future research should focus on 

developing standardized protocols and frameworks to 

facilitate the adoption of FL in the financial sector. 

 

Table 2: Comparison of Centralized and Federated 

Learning in Fraud Detection 

 

Aspect Centralized 

Learning 

Federated 

Learning 

Data Privacy Low High 

Regulatory 

Compliance 

Challenging Easier 

Scalability Limited High 

Implementation 

Complexity 

Moderate High 

Communication 

Overhead 

Low High 

Model 

Performance 

High (with 

diverse data) 

Comparable 

(with 

collaborative 

training) 
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IV. PRIVACYANDCOMPLIANCE 

CONSIDERATIONS 

 

A.  Privacy Concerns in Digital Banking 

F Digital banking systems routinely collect sensitive 

customer data—transaction histories, behavioral 

biometrics, login patterns, device data, and 

geolocation, which, if improperly handled, can lead 

to serious breaches of privacy. Traditional centralized 

machine learning models often require data 

aggregation, increasing vulnerability to insider 

threats, cyberattacks, and data misuse [43,67].  

According to Zarsky [44], financial institutions have 

become data-rich but privacy-poor, as the benefits of 

surveillance-driven analytics often outweigh ethical 

constraints in practice. The concern is not only 

technical but also ethical. Consumers expect 

discretion in the handling of their financial footprints. 

The breach of trust in digital banking due to privacy 

violations can result in reputational damage and 

significant financial losses. The rise in high-profile 

data breaches such as the Capital One hack 

emphasizes that customer data centralization is an 

inherent vulnerability [45]. 

 

B. Privacy-Preserving Mechanisms in Federated 

Learning 

FL offers an architectural innovation by enabling data 

to remain on user devices or local institutional 

servers while allowing collaborative model training. 

Several techniques have been adopted to reinforce 

this privacy promise: 

• Differential Privacy (DP) introduces statistical 

noise to model updates, preventing the leakage of 

individual data records [46]. 

• Secure Multiparty Computation (SMPC) and 

Homomorphic Encryption allow encrypted model 

parameter exchanges without exposing raw data 

[47]. 

 

These mechanisms have been empirically tested in 

banking contexts. For example, Rahaman et al. [48], 

applied FL with DP in a simulated fraud detection 

environment and demonstrated a 35% reduction in 

privacy leakage metrics while maintaining over 92% 

model accuracy. However, complex integration 

increases as privacy mechanisms become more 

robust. 

 

The implication here is two-fold: while privacy-

preserving mechanisms can align with regulatory 

expectations, they can also introduce computational 

overhead and model underfitting. Therefore, careful 

calibration is necessary to optimize privacy budgets 

and learning efficiency. 

 

C. Regulatory Compliance Requirements (GDPR, 

CCPA, etc.) 

The General Data Protection Regulation (GDPR) in 

the EU and the California Consumer Privacy Act 

(CCPA) in the US demands that organisations 

prioritise data minimization, user consent, and also 

right to data deletion. These laws have significant 

implications for fraud detection systems. FL aligns 

well with GDPR Article 5(c), which emphasizes 

minimizing data collection. By training models 

without centralizing raw data, FL offers a structural 

compliance advantage. According to Truong et al. 

[49],  FL reduces the legal liability associated with 

data transfers and breaches under GDPR by ensuring 

data remains with the data controller. However, 

compliance is not automatic. For example, GDPR 

requires explainability under Article 22. FL’s 

distributed model training can obscure 

interpretability, making regulatory audits more 

complex [50-51].  Similarly, CCPA’s opt-out 

mechanisms may impact the completeness of FL 

training data, potentially degrading model 

performance [52]. These issues suggest that while FL 

is privacy-conscious by design, it must be 

supplemented with compliance auditing tools, 

consent management systems, and explainable AI 

modules to fully meet legal expectations. 

 

D. Privacy vs. Performance Trade-offs in Federated 

Learning 

One of the central tensions in FL lies in balancing 

privacy with model performance. Empirical findings 

suggest that the addition of noise (via DP) or 

encryption (via SMPC) often results in increased 

latency and reduced predictive accuracy [58]. 

 

Hard et al. [59], studied FL performance in Google’s 

GBoard application and noted that model 

convergence slowed by 50% when strong DP settings 

were applied. Similarly, Zhu et al. [60], demonstrated 

that under non-IID (non-identically distributed) 

banking data scenarios, performance drops of 3–7% 
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were observed when SMPC was introduced. A 

similar study by Lu et al. [61] confirmed similar 

findings.  

 

For fraud detection, where precision and recall are 

critical, these trade-offs become consequential. A 

false negative could mean millions in undetected 

fraud, whereas a false positive could harm a 

legitimate customer’s experience. 

 

The implication is that the design of FL systems must 

be context-sensitive. In high-stakes domains like 

banking, hybrid approaches—combining centralized 

learning for generic features and FL for sensitive 

features—may be optimal. 

 

E. Implementing Federated Learning while Ensuring 

Compliance 

Successful FL deployment in financial institutions 

requires a multidimensional approach that integrates 

technology, legal interpretation, and policy 

frameworks. According to Kairouz et al. [62], key 

considerations for compliant FL implementation 

include: 

• Model governance frameworks to ensure 

traceability and auditability. 

• Federated monitoring to detect anomalies or 

malicious participants. 

• Consent orchestration to manage user rights 

across data silos. 

 

An example is the SWIFT-FL initiative, which 

combines FL with federated analytics across banks, 

ensuring that data sovereignty is respected while 

fraud signals are efficiently shared (Google Cloud, 

2025). This model could serve as a template for 

cross-border collaboration under varying legal 

regimes. 

 

Implementation also requires robust stakeholder 

training, investment in secure aggregation servers, 

and alignment with national financial regulations 

such as Nigeria’s Data Protection Act (NDPA), 

which mirrors many GDPR principles. 

 

 

 

F. Case Studies: Privacy and Regulatory Issues in 

Banking 

To provide a clearer understanding of how privacy 

and compliance concerns are addressed in real-world 

applications of Federated Learning (FL) within the 

banking sector, Table 3 presents selected case studies 

from various organizations. These cases demonstrate 

the practical implementation of FL techniques, the 

mechanisms used to ensure privacy, the challenges 

encountered, and the resulting outcomes. The 

comparison among these cases highlights both 

common patterns and distinct strategies that reflect 

the institutions’ priorities—be it performance, 

privacy, or regulatory adherence. 

 

Table 3: Case Studies on Privacy and Compliance in 

FL for Banking 

 

Case 

Study 

Descripti

on 

Privacy 

Approac

h 

Outcome Refere

nce 

SWIF

T-

Googl

e 

Cloud 

FL 

FL across 

banks to 

detect 

real-time 

fraud in 

cross-

border 

transactio

ns 

Encrypte

d model 

updates, 

no raw 

data 

transfer 

Improve

d fraud 

detection 

and 

GDPR 

complian

ce 

[63] 

Googl

e 

GBoar

d FL 

Keyboard 

suggestio

n model 

trained 

using FL 

with DP 

Local 

differenti

al 

privacy 

and 

decentral

ized 

training 

Balanced 

privacy 

with 

performa

nce, but 

slower 

converge

nce 

[64] 

     

Baidu 

Mobil

e FL 

Fraud 

detection 

in mobile 

banking 

using FL 

with 

homomor

phic 

encryptio

Preserve

d mobile 

data 

integrity 

and user 

privacy 

High 

detection 

accuracy

, but 

high 

computat

ion cost 

[65] 
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n 

Europ

ean 

Bank 

FL 

Protot

ype 

FL 

prototype 

tested on 

European 

banking 

data 

Privacy-

preservin

g model 

governan

ce, 

GDPR 

audit 

trails 

Positive 

evaluatio

n by data 

regulator

s 

[66] 

 

These cases underscore that FL can be effectively 

aligned with privacy and regulatory needs, but 

success depends on implementation specifics. While 

Google’s GBoard case showed usability in large-

scale applications, banking institutions face higher 

stakes and must adopt more stringent encryption and 

audit measures. The trade-off between privacy 

strength and model performance remains a key 

challenge. However, innovations in federated 

optimization, differential privacy tuning, and 

federated explainability suggest a promising future 

trajectory. 

 

V.  ALGORITHMIC PERFORMANCE IN 

FEDERATED LEARNING 

 

Federated Learning (FL) has emerged as a 

transformative approach in digital banking, enabling 

collaborative model training across decentralized data 

sources while preserving data privacy. However, 

achieving optimal algorithmic performance in FL 

systems, particularly for fraud detection, presents 

several challenges. This section delves into these 

challenges, examining factors such as data 

heterogeneity, communication costs, data imbalance, 

and optimization techniques, supported by recent 

empirical studies and literature. 

 

A. Challenges in Achieving High Algorithmic 

Performance 

FL systems often grapple with data heterogeneity, 

where participating clients possess data that is not 

independently and identically distributed (non-IID). 

This heterogeneity can lead to biased model updates 

and hinder convergence, as the aggregated global 

model may not generalize well across diverse client 

data distributions. Additionally, the decentralized 

nature of FL introduces complexities in coordinating 

model updates, managing asynchronous training, and 

ensuring consistency across clients. 

 

B. Factors Affecting Model Accuracy 

Model accuracy in FL is influenced by several 

factors, including the quality and quantity of local 

data, the frequency of model updates, and the 

aggregation strategy employed. Variations in local 

data distributions can cause discrepancies in model 

performance across clients. Moreover, infrequent 

communication between clients and the central server 

can slow down convergence and affect the accuracy 

of the global model. 

 

C. Data Heterogeneity and Its Impact on 

Performance 

Data heterogeneity poses a significant challenge in 

FL, as clients may have vastly different data 

distributions. This can lead to the phenomenon of 

"client drift," where local models diverge from the 

global model, resulting in degraded overall 

performance. Addressing this issue requires advanced 

aggregation methods and personalized FL approaches 

that account for client-specific data characteristics. 

 

D. Communication Costs in Federated Learning 

Systems 

Communication overhead is a critical concern in FL, 

as frequent transmission of model updates between 

clients and the central server can strain network 

resources. Techniques such as model compression, 

quantization, and sparsification have been proposed 

to reduce communication costs. For instance, 

knowledge distillation methods can significantly 

decrease the amount of data exchanged while 

maintaining model performance. 

 

E. Data Imbalance and Its Effect on Fraud Detection 

Models 

In fraud detection, datasets are often highly 

imbalanced, with fraudulent transactions constituting 

a small fraction of the total data. This imbalance can 

cause models to be biased towards the majority class, 

leading to poor detection of fraudulent activities. In 

FL, this issue is exacerbated by the decentralized 

nature of data, necessitating strategies such as data 

resampling, cost-sensitive learning, and anomaly 

detection techniques to improve model sensitivity to 

minority classes. 
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F. Techniques for Improving Algorithmic 

Performance 

To enhance the performance of FL systems, various 

optimization techniques have been explored. 

Adaptive learning rate strategies, such as cyclical 

learning rates, have shown promise in accelerating 

convergence and improving model accuracy under 

non-IID conditions. Additionally, hyperparameter 

optimization methods tailored for FL settings can 

further refine model performance. 

 

G. Evaluating the Performance of Federated 

Learning in Real-World Banking Contexts 

Assessing FL performance in practical banking 

scenarios involves evaluating metrics such as 

accuracy, precision, recall, and convergence speed. 

Studies have proposed holistic evaluation 

frameworks that consider computational efficiency, 

fairness, and personalization to provide a 

comprehensive assessment of FL systems in financial 

applications. 

 

H. Balancing Privacy, Performance, and Compliance 

in Federated Models 

Achieving an optimal balance between privacy, 

performance, and regulatory compliance is crucial in 

FL deployments. Techniques like differential privacy 

can enhance data protection but may impact model 

accuracy. Adaptive mechanisms that dynamically 

adjust privacy budgets and performance objectives 

have been proposed to navigate this trade-off, 

ensuring compliance with data protection regulations 

while maintaining effective model performance. 

These case studies illustrate the practical applications 

and benefits of addressing algorithmic performance 

challenges in FL systems within the banking sector. 

The BalancerGNN framework demonstrates the 

effectiveness of leveraging advanced neural network 

architectures to handle data imbalance, which 

happens to be a common issue in fraud detection. The 

FedISM approach highlights the potential of 

incorporating shared models to mitigate the effects of 

non-IID data distributions, leading to significant 

improvements in model accuracy. The credit risk 

forecasting study underscores the advantages of FL in 

enhancing model performance for clients with limited 

data, emphasizing the importance of collaborative 

learning in financial applications. 

 

In summary, while FL offers significant advantages 

in preserving data privacy and enabling collaborative 

model training in digital banking, addressing the 

associated algorithmic challenges is essential. 

Ongoing research and the development of advanced 

optimization and evaluation techniques are critical to 

realizing the full potential of FL in fraud detection 

and other financial applications. 

 

Table 4: Case Studies on Algorithmic Performance in 

Federated Learning for Banking 

 

Case 

Study 

Descrip

tion 

Challen

ges 

Address

ed 

Outcome

s 

Refere

nce 

Balancer

GNN 

Framewo

rk 

Utilized 

Graph 

Neural 

Networ

ks for 

fraud 

detectio

n on 

imbalan

ced 

datasets 

Data 

imbalan

ce, 

feature 

redunda

ncy 

Achieve

d 

sensitivit

y rates 

between 

72.87% 

to 

81.23% 

across 

datasets 

[67] 

FedISM 

Approach 

Enhanc

ed data 

imbalan

ce 

handlin

g via 

shared 

models 

in FL 

Data 

imbalan

ce, non-

IID 

data 

Improve

d 

accuracy 

by up to 

25% 

with 

minimal 

shared 

data 

[68] 

 

  

Credit 

Risk 

Forecasti

ng Study 

Applied 

FL for 

credit 

risk 

assessm

ent 

across 

multipl

e 

datasets 

Data 

imbalan

ce, 

client 

data 

diversit

y 

Noted a 

17.92% 

average 

improve

ment in 

model 

performa

nce on 

non-

dominan

t clients 

[69] 

 



© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880 

IRE 1709491          ICONIC RESEARCH AND ENGINEERING JOURNALS 226 

CONCLUSION AND FUTURE DIRECTIONS 

 

This study has provided a comprehensive 

examination of Federated Learning (FL) as a 

transformative paradigm for privacy-preserving fraud 

detection in the digital banking sector. Drawing on 

empirical analyses, comparative case studies, and 

literature-supported evaluations, the work highlights 

the dual potential of FL to enhance security and 

maintain regulatory compliance without 

compromising model performance. Several key 

findings and implications emerge from the results. 

 

A. Summary of Key Findings 

The research confirms that FL enables collaborative 

model training without necessitating the 

centralization of sensitive customer data, thus 

significantly reducing privacy risks. Case studies 

such as BalancerGNN and FedISM reveal that, 

despite challenges like data heterogeneity, 

communication overhead, and class imbalance, 

tailored FL algorithms can outperform traditional 

centralized models in fraud detection sensitivity and 

adaptability. Moreover, compliance with data 

protection regulations such as the GDPR and CCPA 

is inherently more feasible in FL due to minimal data 

transmission, which aligns well with modern 

regulatory expectations. 

 

B. Contributions to the Field of Privacy-Preserving 

Fraud Detection 

This work contributes to the growing body of 

knowledge in federated machine learning by: 

 

• Providing an empirical and theoretical assessment 

of FL's applicability in detecting financial fraud 

across heterogeneous banking datasets. 

• Introducing detailed discussions on how privacy, 

performance, and compliance can be balanced 

through optimization strategies and privacy-

preserving mechanisms like differential privacy 

and secure aggregation. 

• Highlighting critical trade-offs that digital banks 

must consider, such as the tension between model 

accuracy and regulatory compliance, especially 

under real-world data imbalance conditions. 

 

C. Recommendations for Digital Banks and 

Regulatory Bodies 

For digital banks, the adoption of FL should be 

viewed as a strategic investment in both 

cybersecurity and regulatory alignment. Institutions 

are encouraged to: 

 

• Implement pilot FL systems in high-risk, data-

sensitive applications such as fraud detection and 

credit scoring. 

• Incorporate privacy-preserving mechanisms (e.g., 

differential privacy, secure multiparty 

computation) early in system design. 

• Foster interbank collaborations for shared model 

training under legal and technological safeguards. 

 

D. For regulatory bodies, it is essential to: 

• Develop clear guidelines for privacy-preserving 

AI systems, with provisions specific to 

decentralized learning frameworks. 

• Encourage sandbox environments for testing FL 

technologies in real financial environments. 

• Create incentives for banks to collaborate on 

fraud detection via federated platforms while 

ensuring transparency and auditability. 

 

E. Future Research Directions in Federated Learning 

and Fraud Detection 

There are several promising avenues for future 

research. These include: 

• Designing adaptive federated algorithms that can 

dynamically balance local accuracy with global 

convergence, especially in highly non-IID 

settings. 

• Developing unified evaluation frameworks that 

holistically consider privacy loss, performance 

metrics, and regulatory risk. 

• Exploring federated reinforcement learning and 

its application to real-time fraud detection 

systems. 

• Investigating FL deployment under resource-

constrained environments, particularly in 

developing regions or fintech startups with 

limited infrastructure. 
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F. Long-Term Vision for Federated Learning in the 

Financial Industry 

Looking ahead, Federated Learning has the potential 

to redefine the financial industry’s approach to data 

collaboration, security, and innovation. As financial 

crimes become increasingly sophisticated, the 

capacity to leverage distributed intelligence without 

compromising client data confidentiality will be 

critical. In the long term, FL could support cross-

border fraud detection networks, intelligent anti-

money laundering systems, and decentralized credit 

scoring platforms—all while remaining compliant 

with global privacy standards. Ultimately, this work 

envisions a future where federated systems not only 

safeguard individual privacy but also enhance the 

collective intelligence of the financial ecosystem, 

ensuring resilient, ethical, and intelligent banking for 

the digital age. 
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