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Abstract- Current breast cancer treatment 

prediction models inadequately quantify uncertainty 

and fail to account for institutional clustering 

effects, particularly in resource-constrained 

healthcare settings. This study compared the 

performance of Bayesian hierarchical models 

against classical frequentist approaches for 

predicting pathological complete response (pCR) in 

breast cancer patients. We analyzed data from 5,400 

breast cancer patients across 12 Kenyan treatment 

centers. Three progressively complex models were 

developed: single-level logistic regression (M0), 

Bayesian empty hierarchical model (M1), and 

Bayesian hierarchical model with clinical covariates 

(M2). Performance comparison utilized multiple 

metrics including Area Under the Curve (AUC), 

Brier Score, calibration measures, and information 

criteria. The Bayesian hierarchical model 

demonstrated superior performance with AUC = 

0.837 compared to classical approaches (AUC = 

0.752). Bayesian methods showed consistent 2-8 

unit improvements in information criteria across all 

model complexity levels. The hierarchical structure 

captured 26.5% of outcome variation attributable to 

institutional clustering (ICC = 0.265), which 

classical models failed to address. Uncertainty 

quantification through credible intervals provided 

clinically meaningful prediction confidence 

assessment. Bayesian hierarchical approaches 

significantly outperform classical statistical 

methods in breast cancer treatment outcome 

prediction, particularly in settings with institutional 

clustering. The explicit uncertainty quantification 

and superior discrimination make Bayesian 

methods more suitable for clinical decision-making 

in resource-constrained environments. 

 

Indexed Terms- Bayesian Statistics, Breast Cancer, 

Treatment Outcomes, Model Comparison 

 

I. INTRODUCTION 

 

Breast cancer represents the most prevalent 

malignancy among women globally, with 

approximately 2.3 million new cases diagnosed 

annually [1]. In sub-Saharan Africa, the disease 

disproportionately affects younger women and 

presents unique challenges due to resource 

constraints and healthcare infrastructure limitations 

[2]. Kenya, with 6,799 new breast cancer cases 

recorded in 2020, faces significant challenges in 

optimizing treatment outcomes through evidence-

based clinical decision-making [3]. 

 

Current prediction models for breast cancer treatment 

outcomes exhibit critical limitations that compromise 

their clinical utility. Most existing approaches fail to 

adequately quantify uncertainty in treatment response 

predictions, providing point estimates without 

confidence bounds essential for informed clinical 

decision-making [4]. Additionally, these models 

typically ignore the hierarchical nature of healthcare 

data, where patients are clustered within treatment 

centers, leading to underestimated standard errors and 

poor generalizability across different healthcare 

settings [5]. 
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The emergence of Bayesian statistical methods offers 

a paradigm shift in clinical prediction modeling. 

Unlike frequentist approaches, Bayesian methods 

naturally incorporate prior knowledge, handle 

uncertainty through probability distributions, and 

accommodate hierarchical data structures through 

partial pooling mechanisms [6]. These advantages are 

particularly relevant in resource-constrained settings 

where treatment decisions carry high stakes due to 

limited alternative options. 

 

The Kenyan healthcare context presents unique 

challenges that traditional prediction models, 

predominantly developed using high-income country 

datasets, fail to address. Over 85% of existing breast 

cancer prediction models have been developed using 

Western populations, limiting their applicability to 

African settings [7]. The younger age distribution of 

breast cancer patients in Kenya (median age 45-50 

years versus 60-65 years in Western countries) and 

the higher prevalence of aggressive molecular 

subtypes necessitate population-specific prediction 

approaches [8]. 

 

Institutional clustering effects are particularly 

pronounced in the Kenyan healthcare system, where 

variations in resource availability, specialist 

expertise, and treatment protocols across urban 

tertiary centers versus regional facilities create 

systematic differences in treatment outcomes [9]. 

These unmeasured institutional factors likely 

encompass clinical expertise levels, treatment 

protocol adherence, multidisciplinary team 

coordination, and healthcare infrastructure 

capabilities that systematically influence patient 

outcomes. 

 

The objective of this study was to conduct a 

comprehensive comparison of Bayesian hierarchical 

modeling approaches against classical frequentist 

methods for predicting pathological complete 

response to neoadjuvant chemotherapy in Kenyan 

breast cancer patients. This comparison addresses a 

critical gap in clinical prediction methodology by 

demonstrating the superiority of Bayesian approaches 

in handling uncertainty quantification, institutional 

clustering, and clinical decision support in resource-

constrained healthcare environments. 

 

II. LITERATURE REVIEW 

 

2.1 Evolution of Statistical Methods in Clinical 

Prediction 

The field of clinical prediction modeling has 

undergone significant methodological evolution over 

the past two decades. Traditional frequentist 

approaches, including logistic regression and survival 

analysis, have dominated medical research due to 

their computational simplicity and established 

interpretation frameworks [10]. However, these 

methods exhibit fundamental limitations in clinical 

applications, particularly regarding uncertainty 

quantification and handling of complex data 

structures. 

 

Recent systematic reviews have highlighted critical 

deficiencies in current prediction models. Collins et 

al. [11] demonstrated that fewer than 15% of 

published clinical prediction models provide 

meaningful uncertainty estimates for individual 

patient predictions. This limitation is particularly 

problematic in oncology, where treatment decisions 

carry significant consequences and uncertainty 

directly impacts risk-benefit assessments. 

Furthermore, validation practices remain 

methodologically flawed, with only 23% of models 

reporting calibration statistics and fewer than 10% 

performing comprehensive calibration assessment 

across patient subgroups [12]. 

 

2.2 Bayesian Methods in Medical Research 

Bayesian statistical methods have gained increasing 

recognition in medical research due to their natural 

ability to incorporate prior knowledge and quantify 

uncertainty. The Bayesian framework provides a 

coherent probabilistic approach to statistical 

inference, enabling systematic integration of external 

evidence with observed data [13]. This capability is 

particularly valuable in resource-constrained settings 

where local research infrastructure may be limited, 

allowing leveraging of international evidence to 

inform locally relevant models. 

 

Spiegelhalter [14] demonstrated that Bayesian 

approaches offer distinct advantages in clinical 

applications through their explicit quantification of 

uncertainty and natural incorporation of prior 

knowledge. The ability to provide credible intervals 
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for individual patient predictions enables clinicians to 

assess the reliability of model outputs and incorporate 

uncertainty into clinical decision-making processes. 

This contrasts sharply with frequentist confidence 

intervals, which provide information about the 

estimation procedure rather than the parameter of 

interest. 

 

Recent advances in computational methods, 

particularly Markov Chain Monte Carlo (MCMC) 

techniques, have made sophisticated Bayesian 

models increasingly accessible to clinical researchers 

[15]. Modern software implementations, including 

Stan and PyMC, provide user-friendly interfaces for 

complex hierarchical models while automatically 

handling convergence diagnostics and uncertainty 

quantification. 

 

2.3 Hierarchical Modeling in Healthcare Data 

Healthcare data naturally exhibit hierarchical 

structures, with patients clustered within hospitals, 

repeated measurements within patients, and treatment 

protocols within institutions [16]. Failure to account 

for these structures leads to statistical and clinical 

problems, including underestimated standard errors, 

inflated Type I error rates, and poor generalizability 

across different healthcare settings. 

 

Austin et al. [17] provided comprehensive guidance 

on when to use multilevel modeling in health services 

research, establishing that intraclass correlation 

coefficients exceeding 5% justify hierarchical 

approaches. In cancer care settings, institutional 

clustering effects are often substantial, reflecting 

variations in clinical expertise, treatment protocols, 

and healthcare infrastructure that systematically 

influence patient outcomes. 

 

Bayesian hierarchical models offer optimal solutions 

for clustered clinical data through partial pooling 

mechanisms that automatically adjust information 

borrowing based on between-group similarity [18]. 

This approach enables improved estimation 

efficiency while maintaining appropriate uncertainty 

quantification, particularly valuable when some 

healthcare institutions have limited patient volumes. 

 

 

2.4 Breast Cancer Prediction Models: Current State 

and Limitations 

Existing breast cancer prediction models exhibit 

significant limitations that compromise their clinical 

utility in diverse healthcare settings. A systematic 

review by Wessels and van de Vijver [19] identified 

major deficiencies in current approaches, including 

inadequate external validation, poor calibration 

performance, and limited applicability to non-

Western populations. 

 

Population representativeness presents a critical 

limitation, with over 85% of existing models 

developed using high-income country datasets [20]. 

These models often perform poorly when applied to 

different populations due to variations in 

demographic characteristics, disease presentations, 

and healthcare systems. The gap is particularly acute 

for sub-Saharan African populations, who remain 

severely underrepresented in model development 

datasets despite unique disease characteristics and 

healthcare challenges [21]. 

 

Most current models fail to account for institutional 

clustering effects, treating all observations as 

independent despite clear hierarchical structures in 

healthcare delivery [22]. This oversight leads to 

biased parameter estimates and poor generalizability 

across different healthcare settings, limiting practical 

clinical implementation. 

 

2.5 Comparative Studies: Bayesian versus 

Frequentist Approaches 

Limited research has directly compared Bayesian and 

frequentist approaches in clinical prediction contexts. 

The available evidence consistently demonstrates 

Bayesian superiority across multiple dimensions, 

including predictive accuracy, uncertainty 

quantification, and clinical interpretability [23]. 

 

Berger [24] provided theoretical justification for 

Bayesian approaches in medical decision-making, 

emphasizing their natural incorporation of prior 

knowledge and coherent uncertainty quantification. 

Practical applications in oncology have demonstrated 

improved prediction accuracy and enhanced clinical 

decision support through explicit uncertainty 

estimation [25]. 
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However, most comparative studies have been 

conducted in high-income country settings with well-

established healthcare infrastructure. Limited 

evidence exists regarding Bayesian method 

performance in resource-constrained environments, 

where institutional clustering effects may be more 

pronounced and uncertainty quantification becomes 

even more critical for optimal resource allocation. 

 

III. RESEARCH METHODOLOGY 

 

3.1 Study Design and Setting 

This retrospective cohort study was conducted across 

12 major cancer treatment centers in Kenya, 

representing both academic medical centers and 

regional referral hospitals. The study design 

employed a systematic comparison of three 

progressively complex statistical modeling 

approaches to evaluate the performance advantages 

of Bayesian hierarchical methods over classical 

frequentist techniques. 

 

3.2 Data Collection and Study Population 

Electronic health records from 5,400 breast cancer 

patients receiving neoadjuvant chemotherapy 

between 2018 and 2023 were analyzed. Inclusion 

criteria encompassed female patients aged 18-80 

years with histologically confirmed invasive breast 

carcinoma who completed at least four cycles of 

neoadjuvant chemotherapy. Exclusion criteria 

included patients with metastatic disease at diagnosis, 

incomplete treatment records, or missing pathological 

response assessments. 

 

The primary outcome variable was pathological 

complete response (pCR), defined as the absence of 

residual invasive carcinoma in both breast and 

axillary lymph nodes following neoadjuvant 

chemotherapy, assessed according to standardized 

pathological protocols. 

 

3.3 Model Development and Comparison Framework 

Three statistical modeling approaches were 

systematically developed and compared: 

Model M0 (Classical Single-level): Traditional 

logistic regression without hierarchical structure, 

treating all observations as independent and 

employing maximum likelihood estimation with 

asymptotic confidence intervals. 

Model M1 (Bayesian Empty Hierarchical): Two-level 

Bayesian logistic regression with random intercepts 

for treatment centers but without patient-level 

covariates, enabling direct assessment of institutional 

clustering effects. 

 

Model M2 (Bayesian Hierarchical with Covariates): 

Complete Bayesian hierarchical model incorporating 

both patient-level clinical covariates and center-

specific random effects. 

 

3.4 Bayesian Model Specification 

The Bayesian hierarchical framework employed the 

following specification: 

Level 1 (Patient): yᵢⱼ ~ Bernoulli(θᵢⱼ) Level 2 (Center): 

logit(θᵢⱼ) = β₀ + Σβₖxₖᵢⱼ + u₀ⱼ 

Where u₀ⱼ ~ N(0, σ²ᵤ₀) represents center-specific 

random intercepts. 

Prior distributions were specified based on 

established clinical knowledge and meta-analytic 

evidence: β₀ ~ N(-0.85, 0.5²), reflecting 

approximately 30% baseline pCR rates; established 

prognostic factors employed informative priors based 

on international literature; exploratory biomarkers 

received weakly informative priors β ~ N(0, 0.5²). 

 

3.5 Computational Implementation 

Bayesian inference was conducted using the No-U-

Turn Sampler (NUTS) with four parallel chains, each 

running 2,000 warmup iterations followed by 2,000 

sampling iterations. Convergence assessment 

employed multiple diagnostics including the Gelman-

Rubin statistic (R̂ < 1.01), effective sample size 

calculations (ESS > 400), and visual inspection of 

trace plots. 

 

Classical models were fitted using maximum 

likelihood estimation with robust standard errors to 

account for potential clustering, though these 

approaches cannot fully address hierarchical data 

structures. 

 

3.6 Performance Evaluation Metrics 

Modelcomparison employed multiple complementary 

evaluation approaches: 

Discrimination Assessment: Area under the receiver 

operating characteristic curve (AUC) with 95% 

confidence intervals, sensitivity and specificity at 
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optimal thresholds, and positive/negative predictive 

values. 

 

Calibration Assessment: Brier score decomposition, 

calibration slope and intercept, and Hosmer-

Lemeshow goodness-of-fit tests with visualization 

through calibration plots. 

 

Information Criteria: Akaike Information Criterion 

(AIC) for classical models, Deviance Information 

Criterion (DIC) and Widely Applicable Information 

Criterion (WAIC) for Bayesian approaches, and 

Leave-One-Out Cross-Validation (LOO-CV) for 

robust model comparison. 

 

Clinical Utility: Decision curve analysis to quantify 

clinical benefit across threshold probabilities, net 

reclassification improvement, and integrated 

discrimination improvement. 

 

3.7 Institutional Clustering Assessment 

The extent of institutional clustering was quantified 

through the intraclass correlation coefficient (ICC): 

ICC = σ²ᵤ₀ / (σ²ᵤ₀ + π²/3) 

Where σ²ᵤ₀ represents between-center variance and 

π²/3 ≈ 3.29 approximates within-center variance for 

logistic regression. 

 

3.8 Statistical Analysis and Software 

All Bayesian analyses were conducted using Stan via 

the R interface. Classical analyses employed standard 

R packages including glm for logistic regression and 

lme4 for mixed-effects models. Model validation 

utilized stratified 10-fold cross-validation with 

careful attention to maintaining hierarchical structure 

integrity. 

 

IV.         RESULTS 

 

4.1 Study Population Characteristics 

The study population comprised 5,400 breast cancer 

patients across 12 treatment centers, with a median 

age of 52 years (IQR: 45-61). Pathological complete 

response was achieved in 2,052 patients (38.0%), 

consistent with published international rates for 

neoadjuvant chemotherapy. The distribution showed 

83.1% presenting with Stage II-III disease, reflecting 

typical patterns in resource-constrained settings with 

limited screening programs. 

4.2 Institutional Clustering Assessment 

The empty Bayesian hierarchical model (M1) 

revealed substantial institutional clustering, with an 

intraclass correlation coefficient of 26.5% (95% CrI: 

4.3%-72.4%). This finding significantly exceeded 

conventional thresholds for multilevel modeling (ICC 

> 5%), providing compelling evidence for the 

necessity of hierarchical approaches in breast cancer 

outcome prediction. 

 

The between-center variance (σ²ᵤ₀ = 1.186, 95% CrI: 

0.148-8.650) demonstrated statistically significant 

variation across treatment centers, indicating 

systematic institutional factors influencing treatment 

outcomes beyond patient-level characteristics. 

 

4.3 Model Performance Comparison 

 

Table 1: Comprehensive Model Performance 

Comparison 

Model A

U

C 

95

% 

CI 

Br

ier 

Sc

or

e 

Calib

ratio

n 

Slop

e 

AIC

/DI

C 

L

O

O-

C

V 

M0 

(Class

ical) 

0.

75

2 

0.7

31

-

0.7

73 

0.

19

8 

0.89 368.

4 

36

7.

1 

M1 

(Baye

sian 

Empt

y) 

0.

68

3 

0.6

61

-

0.7

05 

0.

24

7 

0.92 339.

9 

34

1.

2 

M2 

(Baye

sian 

Hierar

chical

) 

0.

83

7 

0.8

21

-

0.8

53 

0.

16

7 

0.97 294.

0 

29

5.

6 

 

The Bayesian hierarchical model with covariates 

(M2) demonstrated superior performance across all 

evaluation metrics. The AUC improvement from 

0.752 (classical) to 0.837 (Bayesian) represents a 

clinically meaningful enhancement in discrimination 
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ability, reaching the "excellent" classification 

threshold (AUC > 0.8). 

 

4.4 Information Criteria Analysis 

Bayesian approaches consistently outperformed 

classical methods across all information criteria. The 

progression from classical single-level (AIC = 368.4) 

to Bayesian hierarchical (DIC = 294.0) showed a 

dramatic 74.4-unit improvement, representing a 

20.2% reduction in information criteria values. 

 

Table 2: Model Improvement Metrics 

Comparison Absolute 

Improvement 

Percentage 

Improvement 

Classical to 

Bayesian 

Empty 

28.5 units 7.7% 

Empty to 

Full 

Hierarchical 

45.9 units 13.5% 

Classical to 

Full 

Bayesian 

74.4 units 20.2% 

 

4.5 Uncertainty Quantification Assessment 

The Bayesian framework provided natural 

uncertainty quantification through credible intervals 

for all predictions. Unlike classical confidence 

intervals that describe estimation uncertainty, 

Bayesian credible intervals directly quantify 

parameter uncertainty, enabling more informed 

clinical decision-making. 

 

For individual patient predictions, the Bayesian 

model generated prediction intervals that 

appropriately reflected underlying uncertainty. High-

risk patients (predicted pCR probability > 60%) 

showed narrower credible intervals (typical width: 

0.12-0.18), while intermediate-risk patients (30-60% 

predicted probability) exhibited wider intervals 

(typical width: 0.20-0.35), appropriately reflecting 

greater prediction uncertainty. 

 

4.6 Clinical Covariate Effects 

The Bayesian hierarchical model revealed several 

clinically significant associations: 

• Tumor Stage: Progressive deterioration across 

stages (Stage IV OR: 24.38, 95% CrI: 6.60-93.11) 

• Hormone Receptor Status: Reduced response 

probability (OR: 0.31, 95% CrI: 0.15-0.66) 

• HER2 Status: Improved response with HER2 

positivity (OR: 2.33, 95% CrI: 1.04-5.32) 

 

4.7 Institutional Random Effects 

Analysis of center-specific random effects revealed 

substantial heterogeneity across treatment centers. 

Three centers demonstrated significantly positive 

effects (credible intervals excluding zero), indicating 

above-average performance after controlling for 

patient characteristics. Conversely, two centers 

showed significantly negative effects, suggesting 

opportunities for quality improvement interventions. 

The reduction in ICC from 26.5% (empty model) to 

12.5% (full model) indicated that clinical covariates 

explained approximately 53% of between-center 

variation, while substantial clustering remained, 

supporting the continued necessity of hierarchical 

modeling. 

 

4.8 Cross-Validation Performance 

Stratified 10-fold cross-validation confirmed the 

robustness of performance differences. The Bayesian 

hierarchical model maintained superior 

discrimination (cross-validated AUC = 0.821) 

compared to classical approaches (cross-validated 

AUC = 0.741), with minimal optimism (0.016), 

indicating excellent generalization to new patients. 

 

4.9 Calibration Assessment 

Calibration analysis revealed superior performance of 

Bayesian approaches across the entire risk spectrum. 

The calibration slope of 0.97 for the Bayesian 

hierarchical model approached perfect calibration 

(slope = 1.0), while classical methods showed 

systematic deviation (slope = 0.89), indicating 

overfitting and poor calibration. 

 

Figure Description: Calibration plots demonstrated 

excellent agreement between predicted probabilities 

and observed response rates for the Bayesian model 

across all risk deciles, while classical approaches 

showed systematic deviation, particularly in 

intermediate-risk ranges. 
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CONCLUSION 

 

This comprehensive comparison provides compelling 

evidence for the superiority of Bayesian hierarchical 

modeling approaches over classical statistical 

methods in breast cancer treatment outcome 

prediction. The 8.5-unit AUC improvement (0.752 to 

0.837) represents a clinically meaningful 

enhancement that translates directly into improved 

patient care through more accurate risk stratification 

and treatment planning. 

 

The demonstration of substantial institutional 

clustering (ICC = 26.5%) addresses a critical 

methodological gap in current prediction modeling 

approaches. Classical single-level models fail to 

capture this hierarchical structure, leading to biased 

parameter estimates and poor generalizability across 

healthcare settings. The Bayesian framework's 

natural accommodation of clustering through partial 

pooling provides optimal solutions for healthcare 

data analysis. 

 

Uncertainty quantification emerges as a fundamental 

advantage of Bayesian approaches, providing 

clinically essential information that classical methods 

cannot deliver. The ability to generate credible 

intervals for individual patient predictions enables 

more informed clinical decision-making and supports 

patient counseling regarding treatment options and 

expected outcomes. 

 

The superior information criteria performance 

(20.2% improvement) combined with excellent cross-

validation results demonstrates both the statistical 

and practical advantages of Bayesian methods. These 

findings are particularly relevant for resource-

constrained healthcare settings where accurate 

prediction tools can optimize treatment allocation and 

improve outcomes within existing infrastructure 

limitations. 
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