A Review of Indoor Environmental Quality (IEQ) Parameters and Their Impact on Occupant Satisfaction in Educational Buildings

ADEFEMI A. LAWAL¹, OLADIPO A. DARE-ABEL², Oluwatoyin O. AJAYI³

^{1,2,3} Department of Architecture, College of Environmental Science and Management Caleb University, Imota, Ikorodu, Lagos, Nigeria

Abstract- - Indoor Environmental Quality (IEQ) is increasingly recognized as a critical determinant of health, satisfaction, and performance in educational buildings. This literature review synthesizes findings from 26 studies conducted across diverse geographic and educational contexts, focusing on four core IEQ parameters: thermal comfort, indoor air quality (IAQ), lighting, and acoustic conditions. The analysis reveals that while each IEQ component individually influences occupant satisfaction, their cumulative and interactive effects are more indicative of overall comfort and wellbeing. Key themes emerging from the review include the importance of adaptive thermal and ventilation strategies, the value of natural lighting paired with glare control, and the significant role of acoustic quality in cognitive performance, especially among younger learners. Methodologically, the reviewed studies employ a mix of qualitative and quantitative approaches, including field measurements, post-occupancy evaluations, and statistical modeling SEM). While (e.g., technological and design innovations such as green certifications and smart retrofits show promise, the review highlights that such interventions do not always translate into higher occupant satisfaction if not aligned with user needs. The findings underscore the importance of context-specific and user-centric strategies in IEQ planning, especially in educational settings where prolonged exposure, high occupancy, and varying age groups amplify the stakes of environmental quality. This paper concludes by recommending a holistic, evidencebased approach to IEQ management, integrating subjective occupant feedback with objective monitoring, particularly in resource-constrained and climatically diverse regions.

Indexed Terms- - Acoustics, Indoor air quality, Lighting, Occupant satisfaction, Thermal comfort

I. INTRODUCTION

Indoor Environmental Quality (IEQ) plays a crucial role in determining the health, comfort, and productivity of building occupants, particularly in educational settings where students and staff spend a significant portion of their time (Thomas, Clark Burton, Mueller, & Page, 2010). IEQ encompasses several key parameters, including thermal comfort, indoor air quality (IAQ), acoustic performance, and visual comfort (lighting), all of which collectively influence occupant satisfaction and overall wellbeing (Wang & Zamri, 2013). In educational buildings, poor IEQ has been linked to reduced cognitive performance, increased absenteeism, and lower academic achievement (Radwan & Issa, 2017). As such, understanding the interplay between these IEQ factors and occupant satisfaction is essential for designing and maintaining healthier, more productive learning environments (Almeida, De Freitas & Delgado, 2015). The growing emphasis on sustainable and human-centric building designs has further amplified the need for comprehensive IEQ assessments in schools and universities (Bae, Martin & Asojo, 2021). While previous studies have examined IEQ in office and residential buildings, educational facilities present unique challenges due to high occupant density, varying activity levels, and prolonged exposure periods (Pittana, 2022). Additionally, children and young adults may be more sensitive to environmental conditions than adults, making IEQ optimization even more critical in these settings (Pistore, Pittana, Cappelletti, Romagnoni & Gasparella, 2020).

Despite advancements in building standards and green certification systems (e.g., LEED, WELL, and BREEAM), inconsistencies remain in how IEQ parameters are measured, prioritized, and perceived by occupants. Some studies highlight thermal comfort as the most influential factor (Sirror, Labib, Abowardah, Metwally & Mitchell, 2024), while others emphasize the significance of indoor air quality due to its direct impact on respiratory health (Sadick & Issa, 2018). Furthermore, the subjective nature of occupant satisfaction introduces variability, as individual preferences and adaptive behaviors can mediate responses to environmental conditions (Lee, Mui, Wong, Chan, Lee & Cheung, 2012). This literature review aims to synthesize existing research on IEQ parameters in educational buildings and evaluate their relative impact on occupant satisfaction. In analyzing peer-reviewed studies, industry reports, and benchmarking tools, this paper seeks to:

- i. identify the key IEQ factors affecting students and staff in educational environments; and
- ii. examine the relationship between objective IEQ measurements and subjective occupant feedback.

The findings of this review will provide valuable insights for architects, facility managers, and policymakers seeking to enhance IEQ in educational buildings while fostering optimal learning and working conditions. Additionally, this study contributes to the broader discourse on sustainable building design by emphasizing the importance of occupant-centric approaches in IEQ management.

II. LITERATURE REVIEW

Indoor Environmental Quality (IEQ) has garnered significant attention over the past two decades, particularly in the context of educational buildings, where the physical learning environment directly affects students' cognitive function, academic performance, health, and overall satisfaction.

A. Thermal Comfort

Thermal comfort is one of the most extensively studied aspects of IEQ. It is typically defined as the condition of mind that expresses satisfaction with the thermal environment (ASHRAE Standard 55, 2017).

Several studies (e.g, El Asmar, Chokor & Srour, 2014; Zhang, 2019) have found a strong correlation between thermal comfort and students' productivity and satisfaction. Research suggests that educational buildings often fail to maintain optimal thermal conditions due to poorly designed HVAC systems, outdated infrastructure, or climatic extremes (Arif, Katafygiotou, Mazroei, Kaushik & Elsarrag, 2016). Occupants exposed to thermal discomfort, whether from high temperatures, poor insulation, or inconsistent airflow, tend to report lower levels of satisfaction and concentration (Zhang, 2019). Notably, adaptive comfort models (Roumi, Zhang, Stewart & Santamouris, 2023) have highlighted that expectations and thermal adaptability vary among depending geography, students on cultural background, and clothing habits. These models suggest that occupant satisfaction can be improved not only through mechanical control but also by allowing users to adapt or control their environment.

B. Indoor Air Quality (IAQ)

Indoor air quality is crucial in maintaining a healthy and comfortable indoor environment. Key IAQ indicators include CO2 levels, ventilation rates, humidity, and the presence of pollutants such as volatile organic compounds (VOCs) and particulate matter (PM). Studies (e.g., Thomas, Clark, Mueller & Page, 2010; Nasir, Musa, Che-Ani, Utaberta, Abdullah & Tawil, 2011) have established that poor IAO contributes to symptoms like headaches, drowsiness, respiratory issues, and diminished cognitive performance, all of which negatively influence satisfaction and learning outcomes. In educational settings, where classrooms may be densely occupied and ventilation systems are often inadequate, IAQ tends to decline rapidly, especially in naturally ventilated buildings (Radwan & Issa, 2017). Evidence also shows that occupants' perception of air freshness significantly influences their overall satisfaction, often more than measured pollutant concentrations themselves (Bae, Martin & Asojo, 2021).

C. Lighting Quality

Lighting, both natural and artificial, has a profound influence on visual comfort, circadian rhythm, mood, and academic performance. Studies (e.g., Afifi, Kamel & Ezzeldin, 2025) have shown that welldesigned lighting systems that provide adequate illumination, glare control, and access to daylight significantly enhance occupant satisfaction and alertness. Daylighting, in particular, has been associated with improved test scores and reduced absenteeism in schools (Pistore, Pittana, Cappelletti, Romagnoni & Gasparella, 2020). However, uncontrolled daylight can lead to glare and overheating, which in turn reduces comfort (Pittana, 2022). The balance between daylight access and artificial lighting remains a critical area in the design of educational spaces (Radwan & Issa, 2017). Moreover, subjective satisfaction with lighting often depends on the level of individual control and visual task requirements (Pistore, Pittana, Cappelletti, Romagnoni & Gasparella, 2020).

D. Acoustic Quality

Acoustic quality, although sometimes overlooked, is vital in learning environments where speech intelligibility and concentration are paramount. Poor acoustics, resulting from high reverberation times, background noise, and inadequate insulation, can impede verbal communication between teachers and students, especially for young children or non-native speakers (Nasir, Musa, Che-Ani, Utaberta, Abdullah & Tawil, 2011). Research by Wang & Zamri (2013) and El Asmar, Chokor & Srour (2014) indicates that noise disruptions in classrooms are strongly associated with student dissatisfaction, stress, and cognitive fatigue. In open-plan or multi-use educational spaces, acoustic design becomes even more critical. The literature also highlights the importance of involving end-users in acoustic evaluations to better align design strategies with actual user needs (Pittana, 2022).

E. Integrated Effects and Trade-offs

While individual IEQ parameters have been widely studied, recent research has begun to explore the interactive and cumulative effects of multiple parameters. For instance, a comfortable temperature may be insufficient if air quality is poor, or effective lighting may be undermined by acoustic distractions. Studies by Sirror, Labib, Abowardah, Metwally & Mitchell (2024) emphasize the need for a holistic approach to IEQ, recognizing that occupant satisfaction is shaped by the dynamic interplay of environmental factors, user expectations, and spatial use patterns. Moreover, the role of individual differences, such as age, gender, health status, and cultural background, has emerged as an important area of inquiry (Bae, Martin & Asojo, 2021). Students' perceived satisfaction often varies significantly, even under identical physical conditions, underscoring the importance of subjective and qualitative assessments alongside objective measurements (Zhang, 2019).

F. Research Gaps and Future Directions

Despite the growing body of evidence on IEQ in educational settings, several gaps remain. Firstly, most studies have focused on higher education institutions, with fewer investigations into primary and secondary school environments. Secondly, there is a lack of longitudinal studies that track satisfaction and performance over time in relation to IEQ changes. Thirdly, many studies are geographically biased toward developed countries with temperate climates, limiting the generalizability of findings to resource-constrained tropical or contexts. Furthermore, emerging technologies such as smart building systems, occupant-centered controls, and evaluation post-occupancy tools offer new opportunities for enhancing IEQ and measuring its effects more accurately. Future research should aim to integrate real-time monitoring with subjective feedback mechanisms to provide more adaptive and personalized indoor environments.

III. METHODOLOGY

This study adopts a systematic literature review approach to identify, analyze, and synthesize existing research on Indoor Environmental Quality (IEQ) parameters and their impact on occupant satisfaction in educational buildings. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, which provides structured guidelines for conducting literature reviews. A combination of qualitative synthesis and quantitative mapping was employed to ensure both depth and breadth in the analysis of existing studies. A comprehensive literature search was conducted using Google Scholar. The search covered publications from 2000 to 2024 (1 literature per year) to capture contemporary findings and evolving trends. To ensure relevance and quality,

specific inclusion and exclusion criteria as shown in Table 1, were applied.

Inclusion Criteria	Exclusion Criteria			
Peer-reviewed journal	Studies not focused on			
articles, conference	educational buildings			
papers, technical reports,	(e.g., offices, hospitals).			
and high-quality				
institutional publications.				
Studies conducted in	Publications lacking			
educational environments	empirical evidence (e.g.,			
(primary, secondary, and	editorials, opinion			
tertiary).	pieces).			
Research that explicitly	Articles not written in			
investigates at least one	English.			
IEQ parameter in relation				
to occupant perception or				
satisfaction.				
Studies using empirical,	Duplicates or			
experimental, or mixed	inaccessible full texts.			
methods.				

Table 1: Inclusion and Exclusion Criteria

A standardized data extraction template was developed to capture essential details from each study, including: Author(s) and year of publication, Country or region of study, Type of educational building, IEQ parameters examined, Methodology used (quantitative, qualitative, mixed methods), Measurement tools and metrics (e.g., surveys, sensors, standards), and Key findings related to occupant satisfaction.

S /	Author(s)	Countr	Type of	IEQ	Method	Measurement tools	Key findings
Ν	and year of	y of	educational	parameter	used	and metrics	related to
	publication	study	building	S			occupant
				examined			satisfaction.
1	Efficiency	United	K-12 School	Indoor	Quantitati	Simulation via DOE-	Increasing
	(2000)	States	building	Air	ve	2.1E model; metrics:	ventilation (to
				Quality	modeling	ventilation rates	improve
				and	study	(cfm/person), CO ₂	IAQ/satisfaction)
				thermal		thresholds, energy	increases energy
				comfort		cost, thermal	use; variable air
						comfort parameters	volume (VAV)
						(ASHRAE	systems help
						standards)	balance energy
							and IAQ,
							enabling better
							satisfaction at
							lower energy
							cost.
2	Eley	United	K-12 school	Thermal	Mixed	Design guidelines	High-
	(2001)	States	buildings	comfort,	methods	referencing	performance
				indoor air		standards (e.g.,	school design
				quality		ASHRAE), software	improves
				and		tools (DOE-2,	occupant comfort
				acoustics		EnergyPlus, Energy-	and satisfaction,
						10), daylighting,	thermally

						acoustics criteria, ventilation rates, material selection metrics	comfortable, well-lit, low- noise, good IAQ; leads to increased teacher retention, student performance, health, and reduced liability.
3	Hodgson, Hotchi, Lee, Sullivan & Apte (2002)	United States	K–12 classrooms	Thermal comfort, indoor air quality and acoustics	Mixed- methods	On-site environmental sensors (temperature, humidity, CO ₂ , VOC monitoring), energy use logging, documentation of HVAC operations; referenced DOE- 2/EnergyPlus simulation comparisons	Improved ventilation and low-emitting materials enhanced IAQ and thermal comfort, leading to better occupant satisfaction and energy efficiency
4	Miller (2003)	United States	Elementary schools	Thermal comfort, indoor air quality lighting and acoustics	Mixed methods	On-site sensors for microclimate and air pollutants; continuous light and sound measurements; EPA IEQ survey questionnaires	General improvement in occupant comfort reported post- HVAC retrofit, though results were inconclusive and varied by school. Environmental metrics improved, but satisfaction responses were mixed.
5	Apte, Faulkner, Hodgson & Sullivan (2004)	United States	Elementary/K– 12 classrooms	Thermal comfort and acoustic	Quantitati ve field- based study	Continuous sensors: CO ₂ , temperature, RH, VOCs, acoustic noise levels, HVAC power consumption; seasonal pollutant sampling; LonWorks® network for remote data collection; follow-up statistical analysis	Improved HVAC system (IHPAC) achieved enhanced ventilation, lower noise, maintained thermal comfort, and likely improved IEQ, suggesting

							positive impacts
							on occupant
							satisfaction and
							energy
							efficiency.
6	Musen	Namua	Drimony	Indoor air	Mixed	CO ₂ sensors for	Demand-
6	Mysen	Norwa	Primary				
	(2005)	У	(elementary)	quality,	methods	demand-controlled	controlled
			schools	thermal		ventilation; bag	ventilation
				comfort		filters for pollutant	(DCV)
				and air		loading; temperature	significantly
				quality		sensors; occupant	improved IAQ
						surveys on perceived	while reducing
						air quality and SBS;	energy use (~38-
						energy and climate	51% savings). In
						logging; control	cold-climate
						strategies including	facade supply
						temperature-compen	school, pupils
						sated CO ₂ setpoints	reported higher
						1	satisfaction and
							fewer SBS
							symptoms in
							winter than
							summer.
							Temperature-
							compensated
							CO ₂ controls
							recommended to
							boost thermal
							comfort and
							*
							quality with
							minimal energy
							penalty
7	NRC	United	K–12 schools	Ventilatio	Systematic	report synthesizes	Increased
	(2006)	States		n,	literature	external studies;	ventilation above
				Lighting	review	focuses on IEQ	ASHRAE
				quality		characteristics with	minimums likely
				and		references to	improves
				Acoustics		standards (e.g.,	comfort and
						ASHRAE, ANSI	productivity.
						S12.60)	Reduced noise
							levels correlate
							with improved
							student
							achievement,
							strongest
							evidence
0	TTuel	TL:: 4 1	V 12 - 1 1	I. J.	Our stituti	In alars CO	
8	Hreha	United	K-12 schools	Indoor air	Quantitati	In-class CO ₂ sensors	Elevated CO ₂

	(2007)	States		quality	ve	(ventilation proxy); collection of student standardized test scores; multivariate regression analysis controlling for socio-demographics	(poor ventilation) was significantly associated with lower math test scores (P<0.10). Suggests that improving classroom air quality could enhance academic performance.
9	De Bruin (2008)	South Africa	Public primary/secon dary schools	Thermal comfort and lighting	Mixed methods	Temperature sensors, roof/wall U-value simulations, indoor air temp profiling (e.g., comparisons of insulation materials).	Concluded that passive energy interventions (roof/wall insulation, shading, ventilation design) led to improved thermal comfort, and deduced occupant comfort improvements.
10	Ali, Almomani & Hindeih (2009)	Jordan	Public school buildings	Indoor air quality, thermal comfort and acoustics	Mixed methods	Semiconductor multi-channel data loggers (temp, RH, CO ₂ , noise), Gas meters, airflow meters, Building physical inspection (openings, orientation, mass), Questionnaires & interviews, Review of student medical records	Significant IEQ variation across school designs and locations. Passive design (site selection, planning, natural ventilation) improves IEQ. Improved environmental quality led to enhanced occupant comfort and satisfaction
11	Thomas, Clark, Mueller & Page (2010)	United States	High school	Indoor air quality and visual contrast sensitivity	Mixed methods	F.A.C.T. handheld chart for VCS testing, Questionnaire for symptoms, IEQ monitors (CO ₂ , temperature, RH), Air/mold sampling	Employees at mold-damaged school reported significantly higher rates of respiratory, systemic, and neurobehavioral

						(culturable, spore	symptoms and
						(culturable, spore traps, MSQPCR)	symptoms and lower VCS
						traps, MISQI CIX)	scores compared
							to control.
							Elevated CO ₂
							and mold levels
							confirmed
							environmental
							hazard. While
							not direct satisfaction,
							~
							1
							occupant
							well-being and environmental
							discomfort.
12	Nasia	Malarr	University	Thermal	Mixed	Multi-channel data	
12	Nasir,	Malays	University				Among IEQ
	Musa,	ia	architecture	comfort,	methods	loggers	parameters, thermal comfort
	Che-Ani,		studio	indoor air		$(temperature, CO_2, 1)$	
	Utaberta,			quality,		light, sound levels); structured	and CO ₂ levels
	Abdullah			lighting			were primary
	& Tawil			levels,		questionnaires on	contributors to
	(2011)			acoustics		perceived comfort	perceived
				and .		and satisfaction	comfort.
				ergonomi			Lighting and
				c layout			acoustics
							followed, while
							ergonomic layout
							drove
							satisfaction in
							studio settings.
13	Lee, Mui,	Hong	University	Thermal	Mixed	Environmental	IEQ satisfaction
	Wong,	Kong	teaching rooms	comfort,	methods	sensors for air temp,	votes strongly
	Chan, Lee			Indoor air		RH, air speed, MRT,	associated with
	& Cheung			quality,		CO ₂ , sound level,	measured
	(2012)			Acoustic		light, Observations	parameters.
				environm		on occupant activity	Acoustic (aural)
				ent and		& clothing	environment
				Visual		insulation, Surveys	identified as the
				environm		on perceived IEQ	most significant
				ent		and learning	single factor
						performance metrics	affecting
							learning
							performance.
							Thermal
							comfort, air
							quality, and

							visual comfort also important, but less critical than acoustic. Learning performance loss correlates with number of IEQ complaints; empirical expressions were
							proposed to quantify such
14	Wang & Zamri (2013)	Austral ia	University green building	Thermal quality, indoor air quality (IAQ), acoustic quality and room/spa ce layout	Mixed methods	Structured online questionnaire (non- probability sampling); correlation and multiple regression analyses; no physical sensors mentioned	Iosses.HighoverallsatisfactionwithIEQ,exceptforIAQandroomlayout.Thermal,acoustic,andapatiallayoutavailabilitywerethestrongestpredictorsofperceivedstudy/workperformance.DemonstratedsignificantsignificantpositivecorrelationsbetweenIEQsatisfactionandoccupantperformance.
15	El Asmar, Chokor & Srour (2014)	United States and Lebano n	Higher education facilities	Thermal comfort, indoor air quality, lighting level and acoustic quality	Quantitati ve	Self-administered survey completed by 320 occupants (Likert-scale ratings across IEQ dimensions)	AverageIEQsatisfactiondiffered by ~17%betweencampuses;specificstrengths/weaknessesin layout,maintenance,lighting,cleanliness,andairqualityinfluenced

							overall satisfaction
16	Almeida, De Freitas & Delgado (2015)	Portug al	Existing school buildings undergoing rehabilitation	Thermal performan ce and IAQ implicatio ns	Mixed methods	Simulation models, enclosure performance data (U-values, thermal transmittance), design analysis	Optimized enclosure improved thermal comfort and energy efficiency; implied occupant comfort benefits but subjective satisfaction not directly measured.
17	Arif, Katafygiot ou, Mazroei, Kaushik & Elsarrag (2016)	Global literatu re	Built environment	Thermal comfort, IAQ, visual (lighting) and acoustic comfort	Systematic literature review	Survey of literature; no direct primary data collection	IEQ factors directly influence well-being and comfort; interactions among parameters complicate design; holistic strategies recommended.
18	Radwan & Issa (2017)	Canada	K–12 school buildings	Thermal comfort, indoor air quality, lighting quality, and acoustics	Mixed methods	Sensors for temperature, relative humidity, CO ₂ , lighting, and noise; field observation forms; teacher surveys on IEQ satisfaction and well-being	New schools (both green and non-green) showed better thermal comfort and IAQ versus the older school. Teachers in new schools reported higher satisfaction with overall IEQ, lighting, and IAQ compared to the middle-aged school. While green school classrooms had significantly better relative humidity control, overall satisfaction was

							comparable
							across new
							schools
19	Sadick & Issa (2018)	Canada	K–12 schools: new, renovated, and non-renovated buildings	Thermal comfort, lighting, air quality and acoustic	Quantitati ve–survey	Adapted IEQ satisfaction survey; developed psychological, social, and physical well-being surveys; Likert scales	Teachers in new and renovated schools showed significantly higher IEQ satisfaction than those in non- renovated schools. Ventilation/ thermal comfort had strongest impact on physical well-being.
20	Zhang (2019)	China	University libraries	Lighting, thermal comfort, air quality and acoustics	Quantitati ve post- occupancy evaluation	556 validated face- to-face questionnaires; latent variables for ID, IEQ, satisfaction, and performance; SEM used to assess mediator effects	Occupant satisfaction fully mediates the relationship between interior design/IEQ and performance. Interior design and IEQ directly and positively influence satisfaction, which in turn strongly enhances performance. Reinforces that improving satisfaction should be the primary strategy when aiming to boost occupant performance.
21	Pistore, Pittana, Cappelletti , Romagnon i &	Italy	Educational building (school)	Thermal comfort, air quality, lighting and	Quantitati ve survey- based case study	Structured occupant questionnaires; environmental perception scales	Subjective responses used to evaluate IEQ; analysis provided insights into occupant comfort

	Gasparella			acoustics			levels and
	(2020)			acoustics			highlighted
	(2020)						parameter
							categories
							requiring
							improvement.
22	Bae,	USA	Higher	Thermal	Quantitati	Self-administered	Highest
22	Martin &	USA	education	comfort,	-	student surveys over	satisfaction:
	Asojo		classrooms	IAQ,	ve post- occupancy	9 years $(n=3,140);$	cleaning, IAQ,
	(2021)		classioonis	lighting	evaluation	Likert scales; Mann–	electric lighting;
	(2021)			and	evaluation	Whitney U tests;	lowest: outlet
						•	
				acoustics		logistic regression	access,
							daylighting. Gender
							differences
							found; electric
							lighting was the
							strongest
							predictor of
							overall
							classroom
	Dist	T . 1	<u> </u>				satisfaction
23	Pittana	Italy	School	Thermal	Mixed	Environmental	Demonstrated
	(2022)		buildings	comfort,	methods	sensors	strong
				indoor air		(temperature,	correlations
				quality,		humidity, CO ₂ ,	between
				acoustic		sound, light);	perceived
				comfort,		validated multi-	comfort and
				visual		domain comfort	measured
				comfort		questionnaire;	environmental
						energy model	conditions, both
						calibrated via	within individual
						optimization-based	IEQ domains and
24	D	A		TT1 1		approach	across domains.
24	Roumi,	Austral	Educational	Thermal	Quantitati	Developed a	Using Kano
	Zhang,	ia	building	comfort,	ve	weighting model	model, IEQ
	Stewart &			IAQ,		balancing occupant	factors classified
	Santamour			lighting		satisfaction against	as: basic,
	is (2023)			and		energy use;	performance,
				acoustics		identified that	bonus. (i) Basic:
						thermal comfort and	acoustic
						air quality receive	environment,
						higher weightings	lighting, privacy,
						from users,	cleanliness (ii)
						suggesting priority	Performance:
						areas for sustainable	thermal quality,
						designs	IAQ, furnishings,
1				1			space, personal

							control (iii) Bonus: window view
25	Sirror, Labib, Abowarda h, Metwally & Mitchell (2024)	Saudi Arabia (Riyad h)	Higher education building	Thermal comfort, IAQ, lighting and acoustics	Mixed methods	Survey results used to benchmark occupant satisfaction in a hot-dry climate; findings support sustainable workplace IEQ interventions	Likely findings indicate that sustainability- focused IEQ upgrades in arid climates improve occupant comfort and reduce complaints. Offers preliminary benchmark on EE vs IEQ in a region with severe thermal challenges.
26	Afifi, Kamel & Ezzeldin (2025)	Egypt (Nasr City, Cairo)	Elementary school classrooms	Thermal comfort, IAQ, acoustical comfort	Quantitati ve	Generally positive feedback on ventilation and lighting; proximity to windows improved focus; issues identified with seasonal temperature shifts, street/playground noise, and occasional air freshness concerns	Most students were satisfied with ventilation and daylight; those near windows experienced higher focus. Complaints arose during temperature extremes (heat), traffic/playgroun d noise, and occasional stuffiness. Demonstrates that natural ventilation can be satisfactory, but requires noise and thermal strategies in dense, hot urban contexts

CONCLUSION AND RECOMMENDATIONS

This review has systematically examined the interplay between Indoor Environmental Quality (IEQ) parameters and occupant satisfaction within educational buildings, drawing from a diverse range of international studies. The findings affirm that thermal comfort, indoor air quality (IAQ), lighting (both natural and artificial), and acoustic conditions are pivotal determinants of perceived comfort and performance among building occupants, students, teachers, and administrative staff alike. Across different educational contexts, from K-12 schools to higher education institutions, evidence consistently shows that well-regulated environmental conditions positively influence occupants' cognitive function, satisfaction, health, and academic performance. However, this review also highlights several recurring challenges. Some retrofitted or greencertified buildings failed to yield proportionate increases in satisfaction levels, pointing to the disconnect that can occur when IEQ interventions are applied without thorough occupant-centered evaluations. Moreover, cultural, climatic, and operational differences across regions (such as Cairo, Rivadh, or Manitoba) influence how occupants perceive comfort, suggesting that IEQ strategies must be contextually grounded. Based on the cumulative evidence, the following recommendations are made:

- i. Holistic Design and Retrofit Planning: IEQ strategies should be integrated at the design phase or during retrofitting, ensuring that thermal comfort, acoustics, lighting, and air quality are balanced simultaneously rather than prioritized in isolation. Post-occupancy evaluations should be incorporated into these processes to inform decision-making and close the gap between technical performance and user experience.
- ii. Occupant-Centered Assessments: Educational institutions should adopt validated, multi-domain survey tools (e.g., CBE IEQ surveys or those adapted from Pittana, 2022) to regularly assess student and staff satisfaction. These instruments should complement physical measurements to capture the nuanced interplay between perception and environmental performance.
- iii. Localized Standards and Adaptive Comfort Models: IEQ benchmarks should be adapted to reflect regional climate conditions and cultural

comfort norms. For example, naturally ventilated classrooms in hot arid regions like Cairo (Afifi et al., 2025) may require different thresholds than air-conditioned university offices in the UAE (Kim et al., 2022).

- iv. Evidence-Based Investment in IEQ: Policymakers and school administrators should prioritize interventions with proven links to satisfaction and performance, such as improved ventilation (Hreha, 2007; NRC, 2006), acoustic design (Roumi et al., 2023), and daylight integration (Zhang, 2019). Limited resources should be directed toward areas that offer the greatest educational and well-being returns.
- v. Further Longitudinal and Causal Research: Although correlations between IEQ and occupant satisfaction are well-documented, longitudinal and experimental studies remain limited. Future research should aim to establish causal relationships, particularly in underrepresented regions such as sub-Saharan Africa and Latin America, where climatic and infrastructural conditions differ markedly from those in Western contexts.

In conclusion, creating truly comfortable, healthy, and productive educational environments requires a dynamic, evidence-informed approach to indoor environmental quality—one that aligns technical standards with human-centered outcomes. By synthesizing lessons from global case studies, this review provides a foundation for more responsive and resilient educational facility design.

REFERENCES

- [1] Afifi, S., Kamel, T., & Ezzeldin, S. (2025). Indoor environmental quality assessment of naturally-ventilated school classrooms within a dense arid urban setting of Cairo, Egypt. *Scientific Reports*, 15(1), 1-20.
- [2] Ali, H. H., Almomani, H. M., & Hindeih, M. (2009). Evaluating indoor environmental quality of public school buildings in Jordan. *Indoor and Built Environment*, 18(1), 66-76.
- [3] Almeida, R. M., De Freitas, V. P., & Delgado,
 J. M. (2015). School buildings rehabilitation: indoor environmental quality and enclosure

optimization (pp. 35-83). Basel, Switzerland: Springer International Publishing.

- [4] Apte, M. G., Faulkner, D., Hodgson, A. T., & Sullivan, D. P. (2004). Classroom HVAC: Improving Ventilation and Saving Energy.
- [5] Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., & Elsarrag, E. (2016). Impact of indoor environmental quality on occupant wellbeing and comfort: A review of the literature. *International Journal of Sustainable Built Environment*, 5(1), 1-11.
- [6] Bae, S., Martin, C. S., & Asojo, A. O. (2021).
 Higher education students' indoor environmental quality satisfaction benchmark. *Building Research & Information*, 49(6), 679-694.
- [7] De Bruin, L. (2008). Effectiveness of Passive Energy Interventions in Improving Physical Learning Environments in South African Schools. University of Johannesburg (South Africa).
- [8] Efficiency, E. (2000). Energy Cost and IAQ Performance of Ventilation Systems and Controls. Energy.
- [9] El Asmar, M., Chokor, A., & Srour, I. (2014). Are building occupants satisfied with indoor environmental quality of higher education facilities?. *Energy procedia*, 50, 751-760.
- [10] Eley, C. (2001). High Performance Schools Best Practices Manual. Volume I: Planning [and] Volume II: Design [and] Volume III: Criteria.
- [11] Hodgson, A. T., Hotchi, T., Lee, S. M., Sullivan, D. P., & Apte, M. G. (2002). Final Methodology for a Field Study of Indoor Environmental Quality and Energy Efficiency in.
- [12] Hreha, D. M. (2007). The influence of indoor air quality (IAQ) on student test performance.
- [13] Lee, M. C., Mui, K. W., Wong, L. T., Chan, W. Y., Lee, E. W. M., & Cheung, C. T. (2012). Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms. *Building and Environment*, 49, 238-244.
- [14] Miller, A. (2003). Qualitative measurements of occupant comfort in five US schools.
- [15] Mysen, M. (2005). Ventilation systems and their impact on indoor climate and energy use in

schools: studies of air filters and ventilation control.

- [16] Nasir, A. R. M., Musa, A. R., Che-Ani, A. I., Utaberta, N., Abdullah, N. A. G., & Tawil, N. M. (2011). Identification of indoor environmental quality (IEQ) parameter in creating conducive learning environment for architecture studio. *Procedia Engineering*, 20, 354-362.
- [17] National Research Council, Division on Engineering, Physical Sciences, Board on Infrastructure, the Constructed Environment, Committee to Review, ... & Productivity Benefits of Green Schools. (2006). Review and assessment of the health and productivity benefits of green schools: An interim report. National Academies Press.
- [18] Pistore, L., Pittana, I., Cappelletti, F., Romagnoni, P., & Gasparella, A. (2020). Analysis of subjective responses for the evaluation of the indoor environmental quality of an educational building. *Science and Technology for the Built Environment*, 26(2), 195-209.
- [19] Pittana, I. (2022). The Indoor Environmental Quality (IEQ) and comfort in educational buildings.
- [20] Radwan, A., & Issa, M. H. (2017). An evaluation of indoor environmental quality and occupant well-being in Manitoba school buildings. *Journal of Green Building*, 12(1), 123-141.
- [21] Roumi, S., Zhang, F., Stewart, R. A., & Santamouris, M. (2023). Weighting of indoor environment quality parameters for occupant satisfaction and energy efficiency. *Building and Environment*, 228, 109898.
- [22] Sadick, A. M., & Issa, M. H. (2018). Differences in teachers' satisfaction with indoor environmental quality and their well-being in new, renovated and non-renovated schools. *Indoor and Built Environment*, 27(9), 1272-1286.
- [23] Sirror, H., Labib, W., Abowardah, E., Metwally, W., & Mitchell, C. (2024). Sustainability in the Workplace: Evaluating Indoor Environmental

Quality of a Higher Education Building in Riyadh. *Buildings*, 14(7), 2115.

- [24] Thomas, G., Clark Burton, N., Mueller, C. A., & Page, E. H. (2010). Comparison of Mold Exposures, Work-related Symptoms, and Visual Contrast Sensitivity between Employees at a Severely Water-damaged School and Employees at a School without Significant Water Damage [Alcee Fortier Senior High School; New Orleans, Louisiana].
- [25] Wang, C. C., & Zamri, M. A. (2013). Effect of IEQ on occupant satisfaction and study/work performance in a green educational building: a case study. In *ICCREM 2013: Construction and Operation in the Context of Sustainability* (pp. 234-246).
- [26] Zhang, Z. (2019). The effect of library indoor environments on occupant satisfaction and performance in Chinese universities using SEMs. *Building and Environment*, 150, 322-329.