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Abstract- Wind energy has become the world’s 

fastest growing source of clean and renewable 

energy and now contributes a large proportion of 

total power generation. This proportion will 

continue to increase because of the global 

preference for a clean and renewable energy 

source. However, wind power is difficult to integrate 

into traditional generation and distribution systems 

with current technology because it is intermittent, 

unpredictable and volatile. Thus, it is difficult to 

match wind generation to energy demand, and the 

imbalances between demand and generation can 

cause adverse voltage variations. This power quality 

problem cannot be solved effectively only by 

renewable generating technology and/or power 

electronics. As a whole, wind power integration 

challenge the power quality, energy planning and 

power flow controls in the grid. This can be more 

severe in weak networks, where the whole wind 

power source may even be disconnected from the 

grid. In this case, wind energy is forecasted using 

Hammerstein-wiener model in MATLAB®, the 

waveform is obtained from the simulation result, the 

predicted power and the observed power are 

determined from the waveform. The predicted power 

determined is improve when it is compared to the 

observed power. The percentage Error which is 

calculated from the predicted power and the 

observed power described the large error associated 

with the system. 

 

I. INTRODUCTION 

 

1.1 Background of the study 

Wind power is the conversion process of kinetic 

energy from wind into more useful forms such as 

electricity by using wind turbines. Most modern wind 

power is generated in the form of electricity by 

converting the rotation of turbine blades into 

electrical current by means of an electrical generator. 

In windmills (a much older technology), wind energy 

is used to turn mechanical machinery to do physical 

work, such as pumping water. Wind power is used in 

large scale wind farms for national electrical grids as 

well as in small individual turbines for providing 

electricity to rural residences or grid-isolated 

locations like in Sweden. Wind energy is plentiful, 

renewable, widely distributed, cleans, and reduces 

toxic atmospheric and greenhouse gas emissions if 

used to replace fossil-fuel-derived electricity. 

 

1.2 Wind Energy 

Wind Energy has played a significant role in power 

production during the last decade. It is currently 

booming and it has become one of the fastest 

growing markets in the world today [4–8]. Wind 

Energy provides clean and cheap opportunities for 

future power generation and many countries around 

the world have fostered ambitious goals for wind 

power development [9]. Wind Energy has become 

mature, and can now be considered as a valuable 

supplement to conventional energy sources. The fuel 

is free, but its variability poses challenges to wind 

powers continued growth and effective integration 

into the power grid. A large-scale introduction of 

wind power causes a number of challenges for the 

electricity market and power system operators who 

need to deal with the variability and uncertainty in 

wind power generation when making their scheduling 

and dispatch decisions. In this thesis, we forecast the 

wind Energy using the wind load date to improve the 

fluctuation and the challenges associated with the 

wind power generation. 

 

The advantages of wind energy system: 

• Wind energy is very friendly to the surrounding 

environment. 

• Wind turbines take less space than the average 

power station.  
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• Windmills only have to occupy a few square 

metres for the base. 

• Newer technologies are making the extraction of 

wind energy much more efficient. 

• Wind turbines are a great resource to generate 

energy in remote locations, such as mountain 

communities and the countryside. 

• When combined with solar electricity, this energy 

source is great for developed and developing 

countries to provide a steady, reliable supply of 

electricity. 

 

The disadvantages of wind energy system; 

 

• The main disadvantage regarding wind power is 

down to the winds unreliability factor. 

• A wind turbine can only support a specific 

population. 

• Wind turbine construction can last over a year, be 

very expensive and costly to the surrounding 

nature environment during the build process. 

• The noise pollution from commercial wind 

turbines is on a part with a small jet engine. 

• Vast protests and/or petitions usually confront any 

proposed wind farm site. 

 

1.2 Statement of the problem 

A major obstacle to the expansion of renewable 

energy technologies is the variable nature of 

renewable sources, which does not fit well with 

present approaches to the network. Their intermittent 

nature poses a problem when trying to match energy 

demand curves, one that cannot be solved by 

improving renewable generation technology alone. 

Irregularities in wind power output affect both power 

quality and the planning of energy systems. This 

variability in wind power output is due to the lack of 

control over its input. For example, the wind speed 

fluctuates due to movement of air masses and 

meteorological phenomena. These variations affect 

the wind power in terms of its consistency, which 

causes power quality concerns when wind power is 

integrated into an energy system. Consequently, the 

intermittency of generated wind power may cause 

imbalances between demand and generation which in 

turn lead to adverse voltage or frequency variations. 

This power quality problem cannot be solved by 

power electronics. This can be more severe in weak 

networks, where expansion in wind power may result 

in undesired voltage levels and sometimes the whole 

wind power source may be disconnected from the 

grid as an extreme case. Furthermore, unwanted 

instabilities in the supply may also cause fluctuations 

in system frequency due to wind fluctuations. In 

addition, variation of system parameters, 

unpredictable power demands and fluctuating wind 

power cause various uncertainties in the system. 

Therefore, the instantaneous penetration of wind 

energy conversion technologies is bounded by power 

quality requirements. 

 

In summary, wind power integration challenges the 

power quality, energy planning and power flow 

controls in the grid. Suppression of wind power 

fluctuations is therefore one of the major Challenges. 

Efficient methods must be developed in order to raise 

the penetration of renewable energy sources. Energy 

storage is considered to be a potential solution to the 

integration issues of wind power. Nowadays, non-

dispatchable power sources without any storage are a 

key concern. 

 

1.3 Aims and Objectives 

The aim of the project is to forecast the wind energy 

using the wind and load data. The objectives of the 

project are as follows: 

1. To study the potentials of wind energy from the 

available wind data.  

2. To simulate the wind and load data using 

Hammerstein-Wiener model in MATLAB® 

3. To investigate the error margin between the actual 

and the predicted load due to wind energy 

potentials. 

 

1.4 Scope and Limitations of the research 

The scope of this project is to predict the electrical 

energy from the available wind and load data using 

Hammerstein-Wiener model in MATLAB®. 

 

1.5 Project Organisation 

This chapter has presented the background of the 

study, statement of the problem, methodology, aims 

and objectives, finally the scope and limitations. The 

rest of the thesis is organised as follows: 

Chapter 2 discusses a brief literature review, which 

are sub-divided into: wind power forecasting, wind 

power forecasting approaches, impact of wind power 
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grid integration, wind energy forecasting, wind 

energy prediction, prediction performance measure, 

load curve 

Chapter 3 present proposed methodology, which 

include: Hammerstein-wiener model, preparing data 

for identification and data simulation. 

Chapter 4 highlights the major achievements of this 

work. This chapter also includes Data Analysis, 

simulation results and calculation of percentage 

Error. 

Chapter 5 this form the last part of the chapter, which 

include summary, conclusion and recommendation 

 

II. LITERATURE REVIEW 

 

2.1 Introduction 

Wind is one of the promising sources of obtaining 

energy which is renewable and abundant. No 

greenhouse gasses emission is produced during 

production of energy from wind resources. Currently, 

in the world, there are 83 countries that produce 

energy from the wind power [1]. Some countries are 

satisfying significant portion of their energy demand 

from wind resources. To cite an instance, Denmark is 

generating more than a quarter of their electricity 

needs from wind [2]. The energy obtained from wind 

resources constitutes more than 2.5% of the total 

electricity usage worldwide, and this figure is 

expected to increase in the near future. It is indicated 

that the amount of electricity produced from wind has 

been growing rapidly (i.e., 25% annual growth during 

the last 6 years), and this trend is expected to persist 

in the near future [3]. 

 

In recent years, many a papers have been published 

in many countries investigating the impacts of wind 

power generation on the power system. Due to 

different data’s, tools as well as methods of 

integration of wind power, cost comparison is very 

difficult. Despite different methodology, wind power 

is not independent, but different elements of power 

system are related with it [10-11]. The conventional 

energy sources such as oil, coal, or nuclear are finite 

and generate pollution. In addition, the renewable 

energy sources such as wind, fuel cell, solar, biomass 

& geothermal etc, are green energy sources and 

available in nature in plenty amount. Out of these 

sources wind energy is a credible green energy 

source which is eco-friendly having zero pollution 

effect as associated with conventional fuels [12]. 

Wind power is fastest growing source of renewable 

energy. However, the volatile and uncontrollable 

nature of wind power raises difficulties for power 

systems from the perspective of maintaining 

operational reliability [13]. In order to ensure the 

reliability of power systems with high wind power 

penetration, adequate reserve power needs to be 

scheduled against possible wind power fluctuations 

[14]. For wind farm operators, understanding the 

importance of uncertainty for financial as well as 

operational reasons is required. Wind energy 

application in electric power systems continues to 

increase globally. Wind presents certain challenges to 

the power system planners and operators due to its 

natural characteristics. Wind mills functions & 

generate energy when it blows above threshold 

speed. Because of such characteristics, dispatch-

ability of wind plants in a traditional sense is not 

there. Fast fluctuations and unpredictable behaviour 

of wind speed, integration of wind power in the grid 

causes serious threat to the stability, security and 

reliability of the power system. The impacts of wind 

power penetration on system reliability, stability, 

power quality and security are usually studied from 

two aspects such as system operation and system 

planning. 

 

In the latest power systems, wind power integration is 

one of the key issues. Wind energy is the most 

promising source of energy in the present modern 

world. Presently wind energy is fast emerging among 

the renewable sources. The chaotic behaviour of 

wind is a great challenge to the power system 

reliability & stability. Accurate forecast of wind 

power is very useful for unit commitment, economic 

dispatch and power system operations [5]. Wind 

power forecast depends on following factors- 

direction of wind, humidity, temperature etc. With 

the increase of the wind power penetration in the 

power system, poses a great challenge to its 

operation. Wind forecasting is important for power 

system reliability and it reduces the unit cost of the 

power system [6]. To convert available wind power 

to actual power the curve varies non-linearly as 

shown in power curve in Figure 2.1. The Figure 2.1 

shows the relationship between wind speed (m/s) and 

output power curve depicts that change in wind speed 

causes the variation of output power. Below a 
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minimum speed, which is called the threshold speed 

(around 3 m/sec), output power is zero. It is evident 

that output power growth of machine is only till 

nominal power is achieved (around 15 m/sec). 

Beyond this speed of 15 m/sec, the output power of 

machine is almost constant up to cut off speed 

(around 25 m /sec) [7],[8]. 

 

Wind turbine rotor produces wind energy & 

theoretically it is represented by 

 

 Pr=0.5 ρ π R2 Cp (λ,β)  V3               (2.1) 

 

Where 

Pr = Wind Power of the Rotor 

ρ= Air density 

R= Rotor Radius 

V= wind speed 

Cp = Rotor power Coefficient 

λ = Blade Pitch angle 

β = Tip speed ratio 

 

The conversion of the available wind power into 

actual power for utilization varies nonlinearly, as 

seen in the power curve (Figure 2.1), due to the 

transfer functions of available generators. The power 

has zero output below a minimum speed i.e. 

threshold speed (around 3 m/s), a rapid growth in 

output until the wind speed is around 15 m/s and the 

output power is constant once the wind speed is 

above the cut-off level (around 25 m/s) [9]. 

 

 
Figure 2.1 Power Curve for VESTAS V66-1.65 MW 

Wind Turbine [9] 

 

Uncertainty related to inability to predict the weather 

and wind is always there. Figure 2.2 illustrates an 

example of the performance of physical prediction 

method which is based on Numerical Weather 

Prediction (NWP) as compared to time series method 

for a horizon larger than a few hours ahead [19]. No 

matter what methods are employed so far, the errors 

of predictions cannot be ignored. 

 

As one of the most fundamental aspect of wind 

power integration, wind power forecasting accuracy 

is directly tied to the need for balancing energy and 

system security maintenance. Researchers have made 

significant efforts on wind power forecasting, and a 

number of methods are well established. State of the 

art wind power forecasting methodology is based on 

statistical models, physics-based methods, or their 

combination. As a stochastic process, more 

sophisticated methods are being proposed for the 

purpose of accurate wind power forecasting. The 

objective of this paper is to present the development 

of different techniques in this area. 

 

 
Figure 2.2 Performance of different prediction 

methods [19] 

 

2.2 Wind power forecasting 

 

2.2.1Forecast Objectives 

Forecast objectives are defined by its applications. 

Power plant scheduling, power balancing, 

determination of wind speed and power, grid 

operation and congestion management are the 

applications of wind power forecast [20]. 

 

2.2.2 Forecast Horizons 

An important feature of a forecasting system is its 

time horizon. The time horizon is defined as the time 

period in future for which the wind generation will be 

forecasted. Depending on the time horizon, wind 

power forecasting can be categorized into three types: 

very short term, short term and long term power 

prediction. Look-ahead periods that span from few 
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minutes up to an hour are defined as very short term 

forecasting [21]. A span of 1 to 12 hours ahead is 

termed as short term horizon and a span of 3-84 

hours ahead as long term horizon [4]. 

 

2.2.3 Forecast Data 

The data required for wind power prediction are 

collected from wind farms with dozens of turbines. 

The Supervisory Control and Data Acquisition 

(SCADA) systems installed at each wind turbine can 

be used to obtain the necessary data. Data for weather 

forecasting can also be obtained from National 

Weather Service Forecast Models. Data for various 

locations in the neighbouring locality of the wind 

farm can be obtained from these models. The type of 

data required depends on the time horizon used for 

wind power forecasting. Wind speed (ms-1), wind 

direction (mph), air density (kg/m3),temperature 

difference (K), sensible heat flux at the surface(Wm-

2), percentage of surface covered by vegetation (%) 

are some of the data required for wind forecasting 

[4]. 

 

2.2.4 Forecast Accuracy 

The quality of a wind power forecast is determined 

by its accuracy. A long time period should be 

considered to measure the quality of a forecasting 

system, as the accuracy of forecast changes with 

time. The different metrics used to evaluate the 

prediction accuracy are Mean Absolute Error (MAE), 

Mean Square Error (MSE), Root Mean Square Error 

(RMSE) etc. 

 

2.3 Wind power forecasting approaches 

The wind industry is in need of accurate models for 

prediction of output power and health monitoring of 

wind farms. These models require large number of 

parameters and building such models is a challenging 

task [22]. Hence new modelling approaches are the 

need of the hour to cater to the high dimensional and 

random nature of wind. The wind power forecasting 

techniques are classified mainly into three main 

groups: Physical Approach, Statistical Approach and 

Learning Approach [20]. The physical approach 

comprises of several sub models, which translate the 

Numerical Weather Prediction (NWP) forecast at a 

certain grid point and model level, to forecast the 

power at the considered site and at turbine hub 

height. The mathematical description of the physical 

processes relevant to the translation is contained in 

each sub model. In the statistical approach, the 

relation between historical measurements, 

meteorological predictions and generation output is 

realized through statistical models whose parameters 

are estimated from the data, without taking into 

account any physical phenomena. The learning 

approach makes use of soft computing techniques 

like neural networks, fuzzy logic etc to learn the 

relationship between the forecasted wind and power 

output from the time series of the past [9]. The 

physical approach consists of a group of models of 

the different physical processes involved including 

wind conditions at the site and hub height of the 

turbines, wind turbine power curve etc. In statistical 

approach, the relationship between weather forecasts 

and output power production from the time series of 

the past is analysed and described such that it could 

be used in future. The models developed using 

Artificial Intelligence (AI) techniques learn the 

relationship between input data (NWP model 

predictions) and output data (power output), using 

algorithms. 

 

2.3.1 Persistence method: 

Persistence Model for wind power forecasting 

assumes that the wind power at a certain future time 

will be the same as it is when the forecast is made, 

i.e., Pt+k|t = Pt. At a functional level, the latest 

available measurements of wind power should be 

used, as provided by the SCADA system [9]. The 

persistence method is the most simplest of all 

forecasting methods and serves as a reference to 

evaluate the performance of other advanced methods. 

Any advanced forecasting technique is worth 

implementing, only if it outperforms the persistence 

model. 

 

2.3.2 Physical Approach 

All the wind power forecast models depend on the 

weather forecasts from NWP models as their 

essential input. A model chain of various hierarchical 

levels with different NWP models is used. 

Meteorological observations carried out by 

meteorologists, weather monitoring stations, satellites 

etc. throughout the world, mark the starting point of 

the model chain. A global NWP model, which 

models the atmosphere of mother earth, is established 

using the data available as input. Using the physical 
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laws governing the weather, state of the atmosphere 

in future is predicted by the developed NWP 

 

2.3.3 Statistical Approach 

Statistical methods are easy to model and economical 

in comparison with the others. Statistical methods use 

the previous history of wind data to forecast the next 

few hours. It is good for the short time period. The 

disadvantage of the Statistical method is that error 

increases with the increase of prediction period. 

Statistical time series models are used to predict wind 

power output up to six hours in advance. The auto 

regressive moving average (ARMA) is a well-known 

time series statistical model. It is based on time series 

analysis [32]. 

 

This model shows the good forecasting results within 

1 to 2 hours. Auto regressive integrated moving 

average (ARIMA) models have three components as 

auto regressive, integrated, and moving average. 

Once the integration term is absent then the model is 

known as ARMA mode.  Statistical approach consists 

of a single step which involves the direct 

transformation of the input variables into wind 

generation. The inputs of speed, direction, etc. from 

various NWP models are combined together with the 

online measurements of wind speed, direction, power 

and others in the statistical block.  

 

A direct approximation of the regional wind power 

from the input parameters is made possible in a single 

step [9]. This approach involves the application of 

statistical methods such as Auto Regression (AR), 

Auto Regressive Moving Average (ARMA) method, 

linear prediction, probability density function, 

Gaussian distribution function etc. An overview of 

few statistical approaches implemented for wind 

power forecasting is presented here. A linear time 

varying AR process to model and forecast wind 

speed, considering its non-stationary nature was 

proposed by Huang and Chalabi in [23]. Smoothed 

integrated random walk processes were used to 

model the time varying parameters of the AR model. 

A technique for wind power forecasting based on 

ARMA modelling was developed by Rajagopalan 

and Santoso in [33]. The relationship between the 

accuracy of the forecast and the variability of wind 

power was also studied. The model coefficients were 

determined using Burg and Shanks algorithms. 

Accurate forecasts were obtained for a look-ahead 

period of one hour, but the accuracy declined further 

ahead in time. Wind speed on the day-ahead (24 

hours) and two-day-ahead (48 hours) horizons have 

been modelled and forecasted using fractional-

ARIMA (Auto Regressive Integrated Moving 

Average) or f-ARIMA models in [24]. The 

forecasting accuracy of the developed model was 

significantly higher than the persistence method. 

Short-term wind speed forecasting using a new kernel 

machine method was presented by H. Mori and E. 

Kutara in [25]. The prediction model was constructed 

using Gaussian Process (GP) with Bayesian 

estimation. The developed model reduced the average 

error of Multi-Layer Perception (MLP) and Radial 

Basis Function Network (RBFN) by 27% and 12% 

and the maximum error by 13% and 7.8% 

respectively. 

 

A method to calculate wind power forecast in a 

particular area employing an aggregate prediction 

method was proposed by M.G. Lobo and I. Sanchez 

in [26]. This method used the distances between wind 

speed forecasts for a set of selected coordinates and 

its accuracy was also tested in comparison with other 

methods and found to be significantly higher. 

 

A comprehensive evaluation of a well-designed 

power model, including the description of the method 

and its comparative performance with a standard 

power model is provided in Reference [27]. The 

impact of short-term wind power forecasting in 

Romania has been presented in [28]. The prediction 

of wind speed signals using linear prediction with 

Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) filtering has been developed in [29]. 

The speed signals are transformed from Weibull to 

Normal Probability Density 

 

The prediction of wind power output using 

probabilistic forecasting is one of the recent areas of 

research. The prediction error approach and the direct 

approach are the two main approaches to 

probabilistic wind power forecasting. The 

probabilistic forecast of the errors of an existing 

deterministic forecasting model is provided by the 

first approach, whereas the second approach provides 

the probabilistic predictions of a particular variable 

under consideration directly. Reference [30] details 
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on a method for producing the complete predictive 

Probability Density Function (PDF) based on Kernel 

Density Estimation (KDE) techniques. Spot forecasts, 

quartile forecasts and interval forecasts could be 

derived from the complete predictive distribution 

computed by the model. The performance of these 

derived forecasts was significantly better than other 

forecasting models. In order to enhance the 

participation of wind farm operators into short-term 

electricity markets, a risk-based decision-making 

method was developed in [31]. Integration of the 

uncertainty associated to the wind power and the 

market regulation price forecasts was the basis of this 

work. 

 

2.3.4 Hybrid / Combination Approach 

In general, combination of different approaches such 

as physical and statistical approaches or combining 

short term & medium term models, etc, is referred to 

as a hybrid approach. Below Figure 2.3 shows the 

pictorial view of Hybrid/Combination Approach. 

 

 
Figure 2.3. Hybrid Approach of Wind Power 

Forecasting 

 

2.3.5 Learning Approach 

Artificial Neural Networks (ANN) do not use explicit 

derivation of model equation but they learn using 

input output mapping of variables. They are used in 

various areas of research including pattern 

recognition, prediction and forecasting, optimization 

and control. Mohandes et.al., introduced a neural 

network based technique for prediction of wind speed 

and compared its performance with an Auto- 

Regressive (AR) model [34]. The RMSE was used as 

performance indicator and the ANN technique 

performed better than the AR model. A neural 

network based technique for the forecasting on mean 

hourly wind speed time analysis has been presented 

by Steftos in [35]. The method was based on the fact 

that, when the averaging interval lies within an 

interval of 10 minutes, the wind speed was more 

predictable. A locally recurrent neural network for 

prediction of wind speed using spatial correlation was 

developed by Barbounis and Theocharis [36]. This 

technique outperformed the performance of 

previously used methods. Mabel and Fernandez 

developed an ANN architecture for wind speed 

prediction [37]. The monthly average wind speed, 

relative humidity and monthly generation hours were 

used as input to the ANN model and the output 

variable was the wind energy output of wind farms 

(Figure 2.4). The MSE and MAE were calculated 

both for the training and testing data sets. The 

predicted wind energy output showed good 

coherence with the actual values. Accurate prediction 

of wind speed using two structures of neural network 

banks was proposed in [38]. This technique showed 

remarkable improvement in the performance of the 

hybrid physical-statistical wind speed forecasting 

models, better than those that used single neural 

network structures. Generally, the ANN based 

methods of wind speed prediction outperformed the 

statistical models. 

 
Figure 2.4. ANN Architecture 

 

Support Vector Machines (SVM) are a set of related 

supervised methods used for classification and 

regression. Neural Network models for short term 

wind speed prediction were compared with SVM 

models by Sreelakshmi and Ramkantha kumar [39]. 

They observed that SVM models compute faster and 

give better accuracies than the ANN models. 

 

Principles Fuzzy logic is based on of approximate 

reasoning and computational intelligence. A genetic 

algorithm based learning scheme was used to train 

the input data which consisted of wind speed and 

direction data. The fuzzy model could predict wind 

speed from 30 min to 2 hours ahead and it 
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outperformed the persistent method. The spatial 

correlation that existed among the wind speed time 

series data of various measuring stations was 

exploited by the fuzzy expert system developed by 

Damousis and Dokopoulos for wind power prediction 

[41]. 

 

Neural Networks and Fuzzy Systems complement 

each other. An Adaptive Neuro-Fuzzy Inference 

System (ANFIS) can incorporate fuzzy if-then rules 

and also the fine tune the membership functions. It is 

basically a neural. 

 

Network at par with the fuzzy inference model 

functionally. A comparison of various forecasting 

approaches like the Box- Jenkins approach, Feed-

Forward NN, Radial basis function network and 

ANFIS models on mean hourly wind speed data 

using time series analysis was performed by Steftos 

[42]. He concluded that the models based on artificial 

intelligence outperformed the respective linear ones. 

An ANFIS-based method for very short-term wind 

prediction technique for power generation was 

introduced by Potter and Negnevitsky [21]. The wind 

prediction system was designed to forecast wind 

vectors 2.5 minutes ahead. The ANFIS model was 

compared with a persistence model and the mean 

absolute percentage error was found to be 4% and 

30%. A locally recurrent fuzzy neural network with 

application to wind speed prediction using spatial 

correlation was developed by Barbounis and 

Theocharis [43]. Wind speed is estimated for 15 min 

to 3hours ahead by using the NN developed model. A 

technique based on the combination of neural 

network and fuzzy logic was used to increase the 

accuracy of the estimated wind speed and to reduce 

the computation time. In the proposed model using 

the fuzzy logic requires a lesser number of neurons. 

Thus, the prediction models based on ANFIS, exploit 

the advantages of both neural networks and fuzzy 

logic. Though they appear complicated, they perform 

better and obtain good prediction accuracies 

 

The process of extracting information from bulk of 

data is called as data mining. It is the task of 

discovering interesting pattern from bulk data’s 

stored in databases, data warehouses or other 

information repositories. Different data mining 

models including linear and non-linear models were 

studied and their advantages and drawbacks 

compared in [44]. These models comprised of neural 

networks, random forests and support vector 

machines. Algorithms for developing monitoring 

models used for computing wind farm power were 

proposed in [22]. The algorithms were developed in 

four different domains, namely data mining, 

evolutionary computation, principal component 

analysis and statistical process control. An 

evolutionary strategy algorithm was used to construct 

a nonlinear parametric model of the wind turbine 

power curve, which was used to monitor the online 

performance of the wind farm. Kusiak A., Zheng H., 

and Song Z., used the data mining approach to build 

time series models for the prediction of wind farm 

power over short (10-70 minutes) and long (1-4 

hours) horizons [45,4]. The various wind farm 

datasets were tested using five different data mining 

algorithms, out of which two algorithms performed 

very well. Zheng and Kusiak built models to predict 

the power ramp rates of a wind farm using data 

mining algorithms, which would be of importance to 

the electric grid [46]. A data driven approach for 

maximization of power produced by wind turbines 

was developed in [47]. The optimal control settings 

of wind turbines were computed using data mining 

and evolutionary computation. Hence data mining is 

a promising approach to model wind farm 

performance. The models developed based on data 

mining algorithms can be easily updated and 

expanded. 

 

2.4  Impact of wind power grid integration 

Wind power integration to the grid will have 

significant impact on reliability, security and stability 

of power system due to fast fluctuation and 

unpredictable characteristics of wind speed. Large 

quantity of wind farms integration can have either 

positive or negative impacts on the performance of 

power system reliability. The impacts of wind power 

penetration on system reliability, stability, power 

quality and security are usually studied from two 

aspects point of View-system operation and system 

planning [48]. Wind energy has several effects on 

power system which may lead to reverse power flow 

[49]. 
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2.4.1 Power Quality 

Power quality is related to voltage variation and 

harmonic distortion in the network. The integration 

of wind power in the system affects the quality of the 

supplied voltage to the end user. To minimize the 

affect these days, variable speed wind turbines 

equipped with power electronics are extensively used 

in the wind power plants. Power electronics increase 

power quality because they control the harmonic 

distortion. 

 

2.4.2 Protection System 

Protection system is also affected by wind farms 

since the incorporation of wind power injection 

changes the direction of power flow so that normal 

protection system might fail under fault situations. 

Power network is passive which maintains stability in 

majority situations. This statement is no longer valid 

if considering an increase of wind energy penetration. 

Now a days, requirement for wind units have been 

designed in order to keep the power system stability 

within limit in severe condition like low voltage ride 

through capability [51]. 

 

2.4.3 Transient Stability 

Traditional generators try to meet the fluctuating load 

demand to minimize voltage & frequency 

fluctuations. During fault which causes the voltage 

dips, generators accelerates to bridge the gap between 

mechanical and electrical powers. When the fault is 

cleared they absorb reactive power lowering the 

network voltage, if not enough reactive power is 

supplied a voltage depression is must. Exciters of 

synchronous generators enhance the reactive power 

output during low voltages and thus support voltage 

restoration. Whereas induction generators try to 

impede voltage recovery. If the penetration of wind 

generation is more and it gets disconnected at small 

voltage depression it can lead to a large generation 

deficit, to prevent this wind farms are needed to 

ensure sufficient compensation fault ride through 

capability [52]. 

 

2.4.4  Voltage Control 

Power system nodal voltage is permitted to fluctuate 

from ±5% to up to ±7%. Synchronous generator and 

other devices used as compensator to regulate the 

nodal voltage by supplying or absorbing reactive 

power. In contrast induction generators absorb 

reactive power and have no direct control over 

reactive power flows. Even variable-speed wind 

turbines are also not capable to keep the voltage 

within limit at the instant of connection, because the 

wind farm network is predominantly capacitive [53]. 

The voltage variation issue results from the wind 

velocity and generator torque. The voltage variation 

is straight way related with the changes to real and 

reactive power.  

 

The voltage variation is commonly classified as 

under [54]: 

• Voltage Sag/Voltage Dips 

• Voltage Surge 

• Short Interruptions 

• Long duration voltage variation 

 

The voltage flicker issue indicates dynamic changes 

in the network resulted due to wind turbine or by 

varying loads. Thus the power fluctuation from the 

wind turbines develops due to continuous operation. 

The amplitude of voltage fluctuation depends on grid 

strength, network impedance, and phase angle and 

power factor of the wind turbines. It is defined as a 

fluctuation of voltage in a frequency 10-35 Hz. 

 

2.4.5  Frequency control 

Increasing wind power penetration especially in non 

interconnected systems is changing gradually the way 

grid frequency control is achieved. In the power 

system, frequency is the variable indicating the status 

of generation and demand. Frequency is around the 

nominal value once operation is normal and there is 

no mismatch between demand and supply. Figure 7 

illustrates the frequency variation owing to primary 

response as well as secondary response. Primary 

control and secondary control in this regard is 

described here under:- 

 

• Primary Control: Subsequent to event leading to 

frequency deviation, during initial 30-40 sec the 

rotational energy stored in large synchronous 

machine is used to maintain the equilibrium 

between production and consumption through the 

deceleration of the rotors. Such units (often called 

as primary control units) generation is thus 

increased until the frequency is stabilized by 

restoring the power balance. 
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Figure 2.5. Definitions of frequency control in power 

systems 

 

• Secondary control: Post the primary response of the 

unit, a slow supplementary control function is 

activated in order to restore the frequency to its 

normal. The generators connected to the system are 

ordered to change their production through 

Automatic Generation Control (AGC) scheme or 

through manual request by the system operator. 

 

2.5 Wind energy forecasting 

The forecast of wind power production is 

traditionally predicted to foretell the available energy 

that the wind can produce. This knowledge store is 

not fully understood in processes that affect future 

events. Therefore, it is important to provide a method 

to evaluate the accuracy of these estimates by 

pointing out more points about wind power 

generation in days [4]. By present practice, 

uncertainty is expressed in the form of predictable 

predictions or common predictions. Some decisions 

related to wind direction and business-related sales 

have been proven to be more optimistic when 

determining concrete forecasts. Examples of business 

applications, studies show that realistic forecasts of 

aviation fields, advanced marketing methods. Other 

studies of this type involve optimal dynamic 

quantification of reserves requirements, including 

optimal operation of a combined wind system, or 

multi-zone multi-level regulation. Such studies 

include better integrated ventilation schemes, or 

better backup interventions at multiple multi-level 

monitoring sites. Wind energy prediction researches 

helps to plan the future, help manage the power 

system in a robust and economical way, help plan 

wind farm maintenance in the next few days, plan 

power exchange/flow and fuel planning consumption 

with neighboring systems.  

2..5.1 Categorization of wind energy forecasts based 

on Time-Scales  

Methods distributed based on time or methods can be 

used for prediction of wind speed. Over time, the 

wind speed forecast methods below is shown.  

1 Ultra short-term forecast from the first a few 

minutes to 1 hour.  

2 Short term forecasts range from hours to hours.  

3 The medium-term forecast one day to a week.  

4 Long-term predictions range from 1 week to 1 year 

or longer. 

 

2.6 Wind energy prediction 

Island, Greece, using historical wind data from the 

island and from other neighbouring islands as input; 

the same method was improved later in [48] for a 

different location in Greece. In [46], the Author used 

two models based on NN to predict the wind speed 

for a time horizon of one hour. The first model used 

the last known values of the hourly wind speed as 

inputs. The second improved model used wind speed 

time series with 10 min intervals as inputs in addition 

to using the NN. In addition, [36] evaluated a 

persistence model, ARIMA models, NN, and neuro-

fuzzy systems and gave performance comparisons. A 

different approach based on the frequency domain 

was also proposed in [53] and [54]. 

 

In [55], a new technique was presented to predict 

hourly wind speeds based on the Grey predictor 

model. The predicted wind speed was converted to 

wind power using a manufacturer’s power curve. In 

[41], the author presented a fractional-ARIMA (f-

ARIMA) model to predict wind speed. The predicted 

wind speed was also converted to wind power by 

using a manufacturer’s power curve. An Adaptive 

Neural Fuzzy Inference System (ANFIS) [56] was 

used to predict the wind speed for a 2.5 min 

prediction horizon. In [57], the author presented the 

idea of using more than one model to predict the 

wind speed. In [40], five ARMA models were 

presented to predict the hourly average wind speed 

for a time horizon of 10 hr in five different locations 

with different characteristics. Four NN configurations 

were tested in [47] for hourly wind speed predictions. 

In [58], the author described an approach that used 

the last six measured values as inputs to predict wind 

speed for the following minutes. The results were 

good when compared with the persistence for time 



© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880 

IRE 1709586          ICONIC RESEARCH AND ENGINEERING JOURNALS 480 

horizons below 10 min of averaged data. In [59], a 

Kalman filter based method was demonstrated for 

short-term wind prediction. In [60], a Kalman filter 

was used to control a variable-speed wind turbine as 

well. In [61], a hybrid statistical method was 

presented to predict wind speed and wind power. In 

[62], the author presented a method for the analysis 

and forecasting of wind velocity in Chetumal. In 

[39], several tests were performed to select AR 

models for wind power prediction. In [63], the author 

described two approaches for local polynomial 

regression with particular emphasis on data quality. 

A hybrid statistical–physical approach was described 

in [64]. Hybrid approaches like ANFIS were also 

used for wind power prediction [65] and [66]. The 

techniques based on physical models use the weather 

data for wind power predictions (see, e.g., [67–69]. 

These models have been reported to be inefficient for 

short-term predictions and are very expensive and 

complicated as well. Extensive prediction techniques 

and algorithms exist in the literature. A complete list 

is quite large and could continue further; but the need 

of improvement is, in fact, always there. In this 

thesis, prediction is based on combining NWP data 

with data from multiple observation points from close 

neighbouring sites to improve the prediction at the 

given point, i.e., prediction at the turbine level is 

improved using information from nearby turbines in 

the wind farm. The relevant literature, discussions 

and comparison with similar techniques are given in 

the wind power prediction chapter of this thesis. 

 

Secondly, as wind power is a function of wind 

direction, many studies have concluded that the 

prediction of wind direction is a prerequisite for 

effective operation of wind turbines [19,70]. 

Approaches found in the literature focused on the 

prediction of wind speed, direction or power 

individually. We particularly focus on the 

simultaneous prediction of both wind speed and 

direction and consequently the power, i.e., the 

research in this thesis is based on prediction of wind 

vectors, and consequently the prediction of wind 

power is achieved simultaneously using the 

observations. In addition, owing to wind direction 

variability, the concept of direction dependence is 

utilised to achieve the final wind power prediction. 

 

 

2.7 Prediction performance measures 

The following standard error measures are commonly 

used to compare the performance of prediction 

models. 

 

2.7.1 Prediction Error 

In general, the difference or deviation between 

predicted and measured quantity is called the 

prediction error. For wind power prediction, the 

prediction error observed at a given time t +k for a 

prediction made at time origin t, is defined as the 

difference between the value of wind power that is 

actually measured at t +k, and the value of predicted 

wind power at t +k that was originally predicted at t, 

i.e. 

           
 

Where e_(t+k|t) is the error corresponding to time t 

+k for the prediction made at time t, P_(t+k) is the 

measured power at time t +k, and 〖ˆP〗_( t+k|t)is 

the power prediction for time t+k  made at time t. 

 

2.7.2 Normalised Prediction Error 

It is often convenient to use the normalised prediction 

error, which can be obtained by dividing the 

prediction error by the installed capacity, as follows: 

 

     

 

where P_inst is the wind farm’s installed capacity. 

Normalised prediction errors are useful because these 

allow wind farm to be compared, regardless of their 

rated capacity. This produces results that do not 

depend on wind farm size. In our study, P_inst refers 

to the rated power of the given turbine since our 

research is based on the individual turbines in a given 

wind farm site. 

 

2.7.3  Mean Squared Error 

The mean squared error (MSE) is a measure of 

prediction accuracy. The lower the mean square 

error, the more accurate the predictions. It is a 

common error measure to identify the contribution of 

both positive and negative errors to a prediction 

method’s lack of accuracy, which consists of the 

average of the squared errors over the test set, i.e. 
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2.7.4 Mean Absolute Error 

The mean absolute error (MAE) is a quantity used to 

measure how close predictions are to the eventual 

outcomes. The mean absolute error is given by 

 

  

 

where all errors receive a weighting directly 

proportional to their amplitude in contributing to this 

error measure. The MAE divided by the installed 

capacity or the average production of the wind farm, 

is called Normalised Mean Absolute Error (NMAE). 

In our study, MAE is normalised by the rated power 

of the given turbine and the numerical results are 

presented as a percentage of the rated power. 

 

2.7.5 Root Mean Square Error 

Root mean square error (RMSE) is the square root of 

the mean square error and is given as 

 

            
Since the errors are squared before they are averaged, 

larger errors are penalised more than smaller errors in 

contributing to this error measure. This means the 

RMSE is most useful when large errors are 

particularly undesirable. The RMSE, divided by the 

installed capacity or the average production of the 

wind farm, is called Normalised Root Mean Square 

Error (NRMSE). In this study, RMSE is normalised 

by the rated power of the given turbine and the 

numerical results are presented as a percentage of the 

rated power. 

 

2.8   Variable load on wind power station 

The load on a power station varies from time to time 

due to uncertain demands of the consumers and is 

known as variable load on the station. A power 

station is designed to meet the load requirements of 

the consumers. An ideal load on the station, from 

stand point of equipment needed and operating 

routine, would be one of constant magnitude and 

steady duration. However, such a steady load on the 

station is never realised in actual practice. The 

consumers require their small or large block of power 

in accordance with the demands of their activities. 

Thus the load demand of one consumer at any time 

may be different from that of the other consumer. 

The result is that load on the power station varies 

from time to time. 

 

2.8.1  Effects of variable load. 

The variable load on a power station introduces many 

perplexities in its operation. Some of the important 

effects of variable load on a power station are: 

 

(i) Need of additional equipment. 

The variable load on a power station necessitates to 

have additional equipment. By way of illustration, 

consider a steam power station. Air, coal and water 

are the raw materials for this plant. In order to 

produce variable power, the supply of these materials 

will be required to be varied correspondingly. For 

instance, if the power demand on the plant increases, 

it must be followed by the increased flow of coal, air 

and water to the boiler in order to meet the increased 

demand. Therefore, additional equipment has to be 

installed to accomplish this job. As a matter of fact, 

in a modern power plant, there is much equipment 

devoted entirely to adjust the rates of supply of raw 

materials in accordance with the power demand made 

on the plant. 

 

(ii) Increase in production cost.  

The variable load on the plant increases the cost of 

the production of electrical energy. An alternator 

operates at maximum efficiency near its rated 

capacity. If a single alternator is used, it will have 

poor efficiency during periods of light loads on the 

plant. Therefore, in actual practice, a number of 

alternators of different capacities are installed so that 

most of the alternators can be operated at nearly full 

load capacity. However, the use of a number of 

generating units increases the initial cost per kW of 

the plant capacity as well as floor area required. This 

leads to the increase in production cost of energy. 

 

2.9 Load curve 

The curve showing the variation of load on the power 

station with respect to (w.r.t) time is known as a load 

curve. The load on a power station is never constant; 

it varies from time to time. These load variations 
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during the whole day (i.e., 24 hours) are recorded 

half-hourly or hourly and are plotted against time on 

the graph. The curve thus obtained is known as daily 

load curve as it shows the variations of load w.r.t. 

time during the day. Figure 2.6. Shows a typical daily 

load curve of a power station. It is clear that load on 

the power station is varying, being maximum at 

6P.M. in this case. It may be seen that load curve 

indicates at a glance the general character of the load 

that is being imposed on the plant. Such a clear 

representation cannot be obtained from tabulated 

figures. The monthly load curve can be obtained from 

the daily load curves of that month. For this purpose, 

average values of power over a month at different 

times of the day are calculated and then plotted on 

the graph. The monthly load curve is generally used 

to fix the rates of energy. The yearly load curve is 

obtained by considering the monthly load curves of 

that particular year. The yearly load curve is 

generally used to determine the annual load factor. 

 

 
Figure 2.6: load curve of a power station 

 

2.9.1 Importance of load curve 

The daily load curves have attained a great 

importance in generation as they supply the following 

information readily: 

 

(i)The daily load curve shows the variations of load 

on the power station during different hours of the 

day. 

(ii)The area under the daily load curve gives the 

number of units generated in the day. Units 

generated/day = Area (in kWh) under daily load 

curve. 

(iii) The highest point on the daily load curve 

represents the maximum demand on the station on 

that day. 

(iv)The load curve helps in selecting the size and 

number of generating units. 

(v)The load curve helps in preparing the operation 

schedule of the station. 

 

2.10 Load duration curve 

When the load elements of a load curve are arranged 

in the order of descending magnitudes, the curve thus 

obtained is called a load duration curve. 

 

 
Figure 2.7 

 

The load duration curve is obtained from the same 

data as the load curve but the ordinates are arranged 

in the order of descending magnitudes. In other 

words, the maximum load is represented to the left 

and decreasing loads are represented to the right in 

the descending order. Hence the area under the load 

duration curve and the area under the load curve are 

equal. Figure 2.7 (i) shows the daily load curve. The 

daily load duration curve can be readily obtained 

from it. It is clear from daily load curve [See Figure 

2.7. (i)], that load elements in order of descending 

magnitude are : 20 MW for 8 hours; 15 MW for 4 

hours and 5 MW for 12 hours. Plotting these loads in 

order of descending magnitude, we get the daily load 

duration curve as shown in Figure 4.2 (ii). 

 

The following points may be noted about load 

duration curve: 

(i) The load duration curve gives the data in a more 

presentable form. In other words, it readily    

shows the number of hours during which the 

given load has prevailed. 

(ii) The area under the load duration curve is equal to 

that of the corresponding load curve. Obviously, 

area under daily load duration curve (in kWh) will 

give the units generated on that day. 

(iii) The load duration curve can be extended to 

include any period of time. By laying out the 

abscissa from 0 hour to 8760 hours, the variation 

and distribution of demand for an entire year can 

be summarised in one curve. The curve thus 

obtained is called the annual load duration curve. 
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2.10.1 Types of Loads 

A device which taps electrical energy from the 

electric power system is called a load on the system. 

The load may be resistive (e.g., electric lamp), 

inductive (e.g., induction motor), capacitive or some 

combination of them. The various types of loads on 

the power system are: 

(i) Domestic load. Domestic load consists of lights, 

fans, refrigerators, heaters, television, small 

motors for pumping water etc. Most of the 

residential load occurs only for some hours during 

the day (i.e., 24 hours) e.g., lighting load occurs 

during night time and domestic appliance load 

occurs for only a few hours. For this reason, the 

load factor is low (10% to 12%). 

(ii) Commercial load. Commercial load consists of 

lighting for shops, fans and electric appliances 

used in restaurants etc. This class of load occurs 

for more hours during the day as compared to the 

domestic load. The commercial load has seasonal 

variations due to the extensive use of air 

conditioners and space heaters. 

(iii) Industrial load. Industrial load consists of load 

demand by industries. The magnitude of 

industrial load depends upon the type of industry. 

Thus small scale industry requires load up to 25 

kW, medium scale industry between 25kW and 

100 kW and large-scale industry requires load 

above 500 kW. Industrial loads are generally not 

weather dependent. 

(iv) Municipal load. Municipal load consists of street 

lighting, power required for water supply and 

drainage purposes. Street lighting load is 

practically constant throughout the hours of the 

night. For water supply, water is pumped to 

overhead tanks by pumps driven by electric 

motors. Pumping is carried out during the off-

peak period, usually occurring during the night. 

This helps to improve the load factor of the power 

system. 

(v) Irrigation load. This type of load is the electric 

power needed for pumps driven by motors to 

supply water to fields. Generally this type of load 

is supplied for 12 hours during night. 

(vi) Traction load. This type of load includes tram 

cars, trolley buses, railways etc. This class of load 

has wide variation. During the morning hour, it 

reaches peak value because people have to go to 

their work place. After morning hours, the load 

starts decreasing and again rises during evening 

since the people start coming to their homes. 

 

2.11 Load curves and selections of generating units 

The load on a power station is seldom constant; it 

varies from time to time. Obviously, a single 

generating unit (i.e., alternator) will not be an 

economical proposition to meet this varying load. It 

is because a single unit will have very poor  

efficiency during the periods of light loads on the 

power station. Therefore, in actual practice, a number 

of generating units of different sizes are installed in a 

power station. The selection of the number and sizes 

of the units is decided from the annual load curve of 

the station. The number and size of the units are 

selected in such a way that they correctly fit the 

station load curve. Once this underlying principle is 

adhered to, it becomes possible to operate the 

generating units at or near the point of maximum 

efficiency. 

 

2.11.1 Illustration of load curve 

The principle of selection of number and sizes of 

generating units with the help of load curve is 

illustrated in Figure 2.8. In Figure 2.8 (i), the annual 

load curve of the station is shown. It is clear form the 

curve that load on the station has wide variations; the 

minimum load being somewhat near 50 kW and 

maximum load reaching the value of 500 kW. It 

hardly needs any mention that use of a single unit to 

meet this varying load will be highly uneconomical. 

 

 
Figure 2.8 Load curve Illustration 

 

As discussed earlier, the total plant capacity is 

divided into several generating units of different sizes 

to fit the load curve. This is illustrated in Fig. 2.8 (ii) 

where the plant capacity is divided into three units 

numbered as 1, 2 and 3. The cyan colour outlines 
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shows the units capacity being used. The three units 

employed have different capacities and are used 

according to the demand on the station. In this case, 

the operating schedule can be as presented in Table 

2.2. 

 

Thus by selecting the proper number and sizes of 

units, the generating units can be made to operate 

near maximum efficiency. This results in the overall 

reduction in the cost of production of electrical 

energy 

 

 2.11.2 Important Points in the Selection of Units 

While making the selection of number and sizes of 

the generating units, the following points should be 

kept in view: 

(i) The number and sizes of the units should be so 

selected that they approximately fit the annual 

load curve of the station. 

(ii) The units should be preferably of different 

capacities to meet the load requirements. 

Although use of identical units (i.e., having same 

capacity) ensures saving in cost, they often do not 

meet the load requirement. 

(iii) The capacity of the plant should be made 15% to 

20% more than the maximum demand to meet the 

future load requirements. 

(iv) There should be a spare generating unit so that 

repairs and overhauling of the working units can 

be carried out. 

 

The tendency to select a large number of units of 

smaller capacity in order to fit the load curve very 

accurately should be avoided. It is because the 

investment cost per kW of capacity increases as the 

size of the units decreases. 

 

Table 2.2: Load operation 

          

         Time         Units in operation 

From 12 midnight to 7 

A.M. 

From 7 A.M. to 12.00 

noon 

Only unit no.1 is put in 

operation. 

Unit no. 2 is also started 

so that both units 1 and 2 

are 

in operation. 

 

From 12.00 noon to 2 

 

Unit no. 2 is stopped and 

P.M. 

From 2 P.M. to 5 P.M. 

only unit 1operates. 

Unit no. 2 is again 

started. Now units 1 and 

2 are in 

Operation. 

 

From 5 P.M. to 10.30 

P.M. 

From 10. 30 P.M. to 

12.00 midnight 

 

Units 1, 2 and 3 are put in 

operation. 

Units 1 and 2 are put in 

operation. 

 

2.11.3 Base Load and Peak Load on Power Station 

The changing load on the power station makes its 

load curve of variable nature. Figure 2.9. Shows the 

typical load curve of a power station. It is clear that 

load on the power station varies from time to time. 

However, a close look at the load curve reveals that 

load on the power station can be considered in two 

parts, namely; 

 

(i) Base load: The unvarying load which occurs 

almost the whole day on the station is known as base 

load. Referring to the load curve of Figure 4.4, it is 

clear that 20 MW of load has to be supplied by the 

station at all times of day and night i.e. throughout 24 

hours. Therefore, 20 MW is the base load of the 

station. As base load on the station is almost of 

constant nature, therefore, it can be suitably supplied 

(as discussed in the next Article) without facing the 

problems of variable load. 

 

(ii) Peak load: The various peak demands of load 

over and above the base load of the station is known 

as peak load. Referring to the load curve of Figure 

2.9, it is clear that there are peak demands of load 

excluding base load. These peak demands of the 

station generally form a small part of the total load 

and may occur throughout the day. 
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Fig 2.9: load curve of a power station 

 

III. RESEARCH METHODOLOGY 

 

3.1 Introduction 

The project’s methodology consists of several 

approaches and steps. The procedures that had been 

taken are referred from literature review through 

many journals, report papers and articles founded 

about the wind energy forecasting from many sources 

like internet and library. A suitable model has been 

selected for this research. The Hammerstein-wiener 

model is used to forecast and simulate the wind load 

data. As discussed in the literature review, there are 

some projects that have been done before but they 

uses other model to forecast the data. This project 

will extend the previous work by using MATLAB® 

to improve the fluctuation in wind Energy, because it 

is user friendly and had the entire component for the 

simulation of result. 

 

3.2 Hammerstein-wiener model 

Hammerstein-Weiner models were described as 

dynamic systems using one or two static nonlinear 

blocks in series with a linear block. The linear block 

is a discrete transfer function and represents the 

dynamic component of the model. In this paper, this 

structure is chosen as the best fitting model for 

nonlinear real-time ranges. Figure 3.1 shows the 

structure of NLHW which represents the dynamic 

system using input and output static nonlinear blocks 

in between dynamic linear blocks which is distorted 

by static nonlinearities [5]. Hammerstein-Weiner 

structure is then used to capture the physical 

nonlinear effects in the system that will affect the 

input and output of the linear system. 

 

 

 
Figure 3.1: Structure of Hammerstein-wiener model 

 

The applications of NLHW model depend on its 

inputs. If the output of a system depends nonlinearly 

on its inputs, it can be decompose the input-output 

relationship into two or more interconnected 

elements. This system is preferred because they have 

a convenient block representation, transparent 

relationship to linear systems, and easier to be 

implement than heavy-duty nonlinear models. In this 

paper, it is present an algorithm to identify Single-

Input Single-Output (SISO) HW systems. 

 

3.3 preparing Data for identification 

You can use only uniformly sampled time-domain 

input-output data for estimating Hammerstein-wiener 

models. Your data can have one or more input and 

output channels. You cannot used time series data 

(output only) or frequency domain data for 

estimation. 

 

To prepare data for model estimation, import your 

data into MATLAB® workspace, and do one of the 

following: 

• In the system identification app- import data into 

the app, as described in represent data 

• At the command line- Represent your data as an 

iddata object 

 

After importing the data, you can analyse data quality 

and pre-process data by interpolating missing values, 

filtering to emphasize a specific frequency range, or 

resampling using a different sample time. For most 

applications, you do not need to remove offsets and 

linear trends for from the data before nonlinear 

modelling. However, data detrending can be useful in 

some cases, such as before modelling the relationship 

between the change in input and output about an 

operating point. After preparing your estimation data, 

you can configure your model structure, loss 

function, and estimate the model using the estimation 

data. 
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3.4 Data Simulation 

After getting the data, the next procedure is to import 

the data on MATLAB, because it has the model that 

can be used for the simulation. Identify the 

Hammerstein-Wiener model, at the command line 

use sim to simulate the model output. Wind Energy 

can be forecasted using different model, after 

understanding the previous model used, then try to 

developed your own model to forecast the wind 

energy 

 

 
Fig 3.2 Simulation flow 

 

IV. RESULTS AND DISCUSSION 

 

4.1 Wind data 

The wind load data cover a period form first of 

January to thirty first of January, the data comprises 

of time, relative humidity, temperature, wind 

direction, wind speed and load, which are used for 

the simulation of result, the input used for the 

simulation are temperature, wind direction and wind 

speed while the output is load. The wind speed and 

wind direction were discussed in the previous 

chapters, the load and the variation of load on power 

station will be discussed fully in section 4.2, 4.3, 4.4, 

4.5. 

 

 

 

4.2 Data Analysis  

MATLAB® is going to be used here to get the data 

output of power produced by the various data of wind 

power plant. From this data, the output will 

beanalysed whether this system can give enough 

energy to supply our home low power equipment 

without using supply from TNB and then, at the same 

time can reduce our electricity bill every month. The 

output results also will decide where are the potential 

places the power can be apply. The amount of energy 

that can be captured from the wind is exponentially 

proportional to the speed of the wind. The power 

generated is calculated using equation 2.1. 

 

4.3 Simulation result 

The simulation of the result is done using the wind 

load data, where temperature, wind speed and wind 

direction are used as the input, while the load is used 

as the output. The figure 4.5 show the simulation 

command in the MATLAP command window and 

the Wind Load Data 

 
Figure 4.5 simulation command 

 

Table 4.1: Wind Load Data 

 

S/N Temp Rel 

Hum 

Wind 

Dir 

Wind 

Spd 

Load 

1 -9.6 88 36 8 1,643.40 

2 -9.2 91 34 6 1,620.40 

3 -8.3 92 36 6 1,577.70 

4 -9.7 91 36 7 1,555.90 

5 -11 90 36 8 1,556.40 

6 -10.4 88 36 10 1,576.70 

7 -11 86 34 9 1,609.90 

8 -10.3 88 35 11 1,579.30 

9 -9.5 89 35 12 1,619.30 

10 -5.6 66 32 33 1,654.30 

11 -4.1 62 32 31 1,673.70 

12 -3.8 59 32 33 1,686.70 
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13 -3.7 59 31 33 1,696.20 

14 -3.4 60 30 34 1,675.00 

15 -4 63 30 33 1,671.20 

16 -5 69 31 25 1,686.90 

17 -5.3 72 32 22 1,778.30 

18 -5.9 74 33 14 1,897.00 

19 -5.8 85 33 9 1,875.00 

20 -5.9 90 35 8 1,854.80 

21 -4.3 73 32 29 1,827.50 

22 -3.7 68 31 36 1,819.40 

23 -5.1 68 33 24 1,721.70 

24 -5.4 65 33 23 1,642.30 

25 -5.9 60 32 32 1,593.40 

26 -6.9 62 34 20 1,533.10 

27 -8.1 64 34 19 1,504.40 

28 -9.5 68 34 16 1,517.60 

29 -10.7 70 35 12 1,553.70 

30 -11.6 73 36 12 1,628.00 

31 -12.5 77 36 13 1,751.80 

 

The simulation result for a day (24 hours) and for a 

month data (January) is shown in figure 4.6 

 

 
Figure 4.6(a): simulation result for 24 hours 

 

 
  

Figure 4.6 (b): simulation result for a month 

 

 

4.4 Calculation of percentage Error 

The percentage error is the difference between the 

predicted power and observed power divide by 

observed power. The percentage error for 4weeks is 

calculated from Fig 4.5(c) as shown above, where the 

predicted power and observed power are determined 

from the graph. 

 

• For Week 1, 168hours 

Power (observed) = 1200MW 

Power (predicted) = 1300MW  

Error (%) = [(1300 – 1200)/1200] × 100 = 8.3% 

 

• For Week 2, 336hours 

Power (observed) = 1220MW 

Power (predicted) = 1320MW  

Error (%) = [(1320 – 1220)/1220] × 100 = 8.2% 

 

• For week 3, 504hours 

Power (observed) = 1640MW 

Power (predicted) = 1720MW  

Error (%) = [(1720 – 1640)/1640] × 100 = 4.9% 

 

• For week 4(One month), 672hours 

Power (observed) = 1520MW 

Power (predicted) = 1700MW  

Error (%) = [(1700 – 1520)/1520] × 100 = 11.8% 

 

4.5 Simulation results and calculation of percentage 

Error. 

 

The results gotten from the simulation was observed 

for both the observed power and predicted power, 

and their corresponding values for some specified 

period of time were recorded and filled in the Table 

4.2 

 

Table 4.2: Simulation result and calculation Error 

 

S/N

O. 

Wee

k  

Time  

(hour

s) 

Power 

(observe

d) 

(MW) 

Power 

(predicte

d) 

(MW) 

Erro

r 

(%) 

1 1 168 1200 1300 8.3 

2 2 336 1220 1320 8.2 

3 3 504 1640 1720 4.9 

4 4 673 1520 1700 11.8 
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4.6 Calculation of prediction performance measure 

The following standard error measures are commonly 

used to compare the performance of prediction 

models. 

 

1. Mean Squared Error 

The mean squared error (MSE) has the general 

formula 

MSE=1/N ∑_(t=1)^N▒.e_(t+1|t)^2 

MSE=(68.89+67.24+24.01+139.24)/4=79.4%  

 

2. Mean Absolute Error 

The mean absolute error is given by 

MAE =1/N ∑_(t=1)^N▒.e_(t+1|t)^. 

MAE =(8.3+8.2+4.9+11.8)/4=8.3% 

 

3. Root Mean Square Error 

Root mean square error (RMSE) is the square root of 

the mean square error and is given as 

RMSE =  

RMSE =√79.4=8.9% 

 

4.7   Discussion 

The waveform shown in figure 4.6(b) are used to 

obtained the observed power and predicted power at 

the same period of time, the value obtained 

undergoes further processing by calculating the 

percentage error which is known as the normalised 

prediction error, which is the difference between the 

predicted power and the observed power divided by 

the observed power. The normalised error for 

different weeks (4 weeks) was calculated and 

recorded for comparison as shown in table 4.2, from 

table 4.2 it was observed that the predicted power 

was improve when it is compared to the observed 

power, that is to say the forecasting was impressive. 

And finally, it was also observed that the fourth week 

seems to have the highest error simply because there 

are some undesirable error associated to the system 

during the fourth week, the performance was also 

computed for better Accuracy, the Mean Squared 

Error (MSE) which is used to measure the prediction 

accuracy has a higher value, that is to say the 

prediction accuracy is low, which implies that they 

are large error is associated to the predicted outcome. 

To improve the error the Root Mean Squared Error 

(RMSE) is calculated, from the value calculated from 

the RMSE, the prediction accuracy is improve and 

the error is minimise. 

 

V. CONCLUSIONS AND 

RECOMMENDATIONS 

 

5.1 Introduction 

The wind power provides clean and cheap 

opportunity for the production of power. The fuel is 

free and there are some challenges associated with 

wind power. These challenges affect the electricity 

market and the power operation. To overcome these 

challenges the wind Energy is forecasted using 

Hammerstein-Wiener Model, to improved the 

challenges associated with the wind energy. 

 

5.2 Conclusion 

From the forecast result, it was concluded that the 

idea of the proposed approach is based on the use of 

multiple observation points and the incorporation of 

meteorological forecasts, which led to an 

improvement in the performance when the observed 

power is compared with the predicted power. The 

model used was analyzed to improve the prediction 

performance in a given wind farm using the wind 

load data. This model is flexible enough to 

incorporate more information and can be extended to 

an entire wind farm. 

 

5.3 Recommendations 

There is some recommendation for further work in 

order to improve this work. Firstly, try to design and 

analysea circuit using PSCAD software since the 

software is related to power system. Other 

recommendation is that more complex model can be 

used to forecast the wind energy to get more accurate 

output. Lastly, it is recommended to use more and 

most update wind loaddata from other places to find 

out which places are most suitable to practice this 

wind system. 
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