Environmental and Structural Risk Factors Influencing the Proliferation of Uncompleted Buildings in Coastal Urban Areas: A Case Study of Eti-Osa, Lagos

OLAIFA OLAOLUWA KOLAWOLE¹, PROF. DARAMOLA SAMUEL², PROF. ADEGBILE MICHEAL³

^{1,2,3}Department of Architecture, Caleb University, Imota, Lagos

Abstract- Uncompleted buildings in coastal urban regions pose serious environmental and structural risks, threatening sustainable development, livability, and resilience in affected communities. This study investigates the factors responsible for the increasing number of abandoned and partially constructed buildings in Eti-Osa, a rapidly urbanizing coastal district in Lagos, Nigeria. Using spatial analysis, field surveys, and semi-structured interviews, the study identifies flooding, salt-laden winds, unstable soil conditions, and weak regulatory enforcement as core environmental and structural factors contributing to the phenomenon. The findings reveal that proximity to the Atlantic Ocean exacerbates material degradation and delays in construction, while ineffective land use monitoring further complicates project continuity. The paper recommends context-specific building codes, coastal planning reforms, and integrated construction monitoring frameworks for minimizing risks and *improving building project outcomes in vulnerable* urban coastlines.

Indexed Terms- Coastal Urban Areas, Uncompleted Buildings, Environmental Risks, Structural Degradation, Eti-Osa, Urban Resilience

I. INTRODUCTION

Urban development in coastal regions faces distinct environmental and structural challenges that differentiate them from inland cities. In Lagos, Nigeria's economic hub, the Eti-Osa Local Government Area exemplifies the intersection of coastal dynamics and rapid urban expansion. Despite its strategic importance, Eti-Osa is characterized by numerous uncompleted building projects, many of which remain abandoned indefinitely. These structures not only symbolize resource waste but also contribute to environmental degradation, urban blight, and socio-spatial vulnerability.

This phenomenon is particularly concerning given the increasing pressure on coastal urban areas due to climate change, population influx, and land scarcity. In areas such as Lekki, Jakande, and Sangotedo within Eti-Osa, several stalled projects exhibit patterns of corrosion, subsidence, and material deterioration, conditions linked to the coastal ecosystem.

Although several studies have examined housing crises and planning failures in Lagos, few have explicitly investigated the environmental and structural dimensions of uncompleted buildings in coastal settings. This study fills that gap by exploring how ecological factors such as saline intrusion, flooding, and weak soil integrity intersect with planning and construction lapses to proliferate uncompleted structures. The insights generated aim to inform policy and technical strategies for enhancing resilience in coastal urban housing projects.

II. LITERATUREREVIEW

Uncompleted buildings have been studied in various contexts, but their environmental and structural dimensions in coastal cities like Lagos remain underexplored. Akinmoladun and Oluwoye (2007) linked persistent housing challenges in Nigeria to weak policy enforcement and economic limitations. Agbola and Jinadu (1997) argued that forced relocations result from planning failures, while Onifade and Ogunsemi (2020) identified common abandonment causes such as litigation, inflation, and regulatory delays.

Enisan and Sanusi (2021) emphasized poor urban control and overstretched infrastructure as major contributors to urban housing crises in Lagos. In coastal areas specifically, Ayedun et al. (2011) highlighted the role of rising sea levels and flooding in weakening foundations and construction materials.

This study builds on these findings by focusing on the structural and environmental risks that lead to project abandonment in Eti-Osa, where salt-laden winds, coastal flooding, and soft soil have emerged as major contributing factors.

III. METHODOLOGY

3.1StudyArea

The study was conducted in Eti-Osa LGA, Lagos, with specific focus on coastal neighbourhoods including Sangotedo, Jakande, and Ikate-Elegushi. These areas are situated within low-lying floodplains and experience seasonal tidal surges, high water tables, and infrastructural pressures from adjacent high-value developments.

3.2ResearchDesign

A mixed-method design was adopted, combining qualitative interviews with spatial and environmental analysis. This allowed for a multi-dimensional understanding of both technical and contextual contributors to building abandonment.

3.3 Data Collection Methods

- Environmental Observation: Site visits were conducted to examine material degradation, ground movement, and weather-induced stress on structures.
- Spatial Mapping: GIS-based tools were used to plot the locations of uncompleted buildings relative to coastlines, flood zones, and soil types.
- Key Informant Interviews: Interviews were held with structural engineers, environmental planners, local authorities, and residents.

Document Review: Archival records including • building approvals, site analysis reports, and Lagos State coastal zoning guidelines were assessed.

3.4SamplingTechnique

Sites were selected using purposive sampling based on proximity to the coastline and visible stages of abandonment. Snowballing was employed to identify key professionals and stakeholders knowledgeable about construction trends in the area.

3.5DataAnalysis

Thematic analysis was used to extract dominant narratives from interview data. Spatial data were analyzed using QGIS to identify clusters and environmental risk overlays. Structural observations were correlated with common risk indicators including corrosion, efflorescence, and foundation exposure.

IV. DATA PRESENTATION, ANALYSIS, AND DISCUSSION

- Thematic content analysis was applied to interview transcripts.
- Spatial distribution data were interpreted using visual clustering and proximity risk mapping.
- Policy documents were analyzed for regulatory gaps and compliance trends.

Table 4.1: Gender Distribution

Gender	Frequency	Percentage (%)
Male	240	60
Female	160	40
Total	400	100

© .	JUL 20	25 IF	RE Journals	Volume	9 Issue	1	ISSN:	2456-8	880
-----	--------	---------	--------------------	--------	---------	---	-------	--------	-----

Table 4.2: Age Distribution			
Age Group (Years)	Frequency	Percentage (%)	
18–25	50	12.5	
26–35	120	30	
36–45	150	37.5	
46–55	60	15	
Above 55	20	5	
Total	400	100	

Table 4.3: Marital Status			
Marital	Fraguanau	Percentage	
Status	Frequency	(%)	
Single	120	30	
Married	250	62.5	
Divorced	20	5	
Widowed	10	2.5	
Total	400	100	

Table 4.4: Educational Level			
Education Level	Frequency	Percentage (%)	
Primary Education	20	5	
Secondary Education	80	20	
Tertiary Education	280	70	
No Formal Education	20	5	
Total	400	100	

Table 4.5: Occupation			
Occupation	Frequency	Percentage (%)	
Business/Trade	120	30	
Civil Servant	100	25	
Private Sector Employee	80	20	
Artisan	60	15	
Unemployed	40	10	
Total	400	100	

Table 4.6: Length of Residence			
Length of Residence (Years)	Frequency	Percentage (%)	
Less than 1 year	40	10	
1–5 years	120	30	
6–10 years	150	37.5	
Above 10 years	90	22.5	
Total	400	100	

Table 4.7: Awareness of Risks Associated with Uncompleted Buildings

Awareness Level	Frequency	Percentage (%)
Aware	350	87.5
Not Aware	50	12.5
Total	400	100

Impact on Property Value	Frequency	Percentage (%)
Decrease in Property Value	260	65
No Significant Impact	120	30
Increase in Property Value	20	5
Total	400	100

Table 4.9: Economic Impact on Businesses

Economic Impact	Frequency	Percentage (%)
Reduced Customer Footfall	200	50
No Significant Impact	150	37.5
Increased Operational Costs	50	12.5
Total	400	100

Table 4.10: Frequency of Security Incidents

Frequency of Incidents	Frequency	Percentage (%)
Very Frequent	120	30
Occasionally	180	45
Rarely	80	20
Never	20	5
Total	400	100

Table 4.11: Response to Security Threats

Response Measures	Frequency	Percentage (%)
Hiring Security Personnel	150	37.5

© JUL 2025 | IRE Journals | Volume 9 Issue 1 | ISSN: 2456-8880

Installation of Security Devices	100	25
Increased Community Policing	90	22.5
No Action Taken	60	15
Total	400	100

Table 4.12: Health Challenges Attributed to		
Uncompleted Buildings		

Health Issue	Frequency	Percentage (%)
Malaria (due to stagnant water)	200	50
Respiratory Issues	100	25
Injuries from Structural Debris	60	15
Other	40	10
Total	400	100

Table 4.13: Preferred Mitigation Measures

Mitigation Measure	Frequency	Percentage (%)
Government Intervention	220	55
Community Advocacy	100	25
Individual Actions	80	20
Total	400	100

V. SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary:

The study identified environmental and structural factors contributing to uncompleted buildings in coastal Eti-Osa, Lagos. These include flooding, corrosion from saline air, weak soil composition, and poor regulatory enforcement. Social and economic data reveal high awareness of risks and negative impacts on community wellbeing and property values.

5.2 Conclusion:

Uncompleted structures in coastal areas like Eti-Osa are not only aesthetic and spatial liabilities but also environmental and public safety threats. Construction delays caused by flooding, salinity, and regulatory lapses compound structural failures. 5.3 Recommendations:

- 1. Develop localized coastal construction codes reflecting environmental realities.
- 2. Improve inter-agency coordination on building approvals and coastal monitoring.
- 3. Introduce early-warning systems and enforce drainage compliance near construction zones.
- 4. Provide training and coastal resilience awareness for builders and local stakeholders.
- 5. Digitize building control processes and improve public access to development regulations.

REFERENCES

- Agbola, T., & Jinadu, A. M. (1997). Forced eviction and forced relocation in Nigeria: The experience of those evicted from Maroko in 1990. *Environment and Urbanization*, *9*(2), 271–288.
- [2] Akinmoladun, O. I., & Oluwoye, J. O. (2007). An assessment of why the problems of housing shortages persist in developing countries.
 Pakistan Journal of Social Sciences, *4*(4), 589–598.
- [3] Ayedun, C. A., Durodola, O. D., & Akinjare, O. A. (2011). Towards ensuring sustainable housing development in Nigeria: The role of the stakeholders. *International Journal of Business and Social Science*,*2*(2),211–217.
- [4] Enisan, A., & Sanusi, R. (2021). Planning failure and the crisis of urban housing in Lagos.
 Journal of Contemporary Urban Affairs, *5*(1), 87–101.
- [5] Onifade, V., & Ogunsemi, D. R. (2020). Risk factors in abandoned building projects in Nigeria. *International Journal of Construction Management*, *20*(5),450–462.