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Abstract- This paper proposes a new real-time 

feature detection and mitigation framework of cyber 

threats that will be based on hybrid deep learning 

technique. The system proposed uses Convolutional 

Neural Networks (CNN) as the part that extracts the 

spatial features and Autoencoders (AE) as the part 

that reduces the number of dimensions and detect 

anomalies resulting in a CNN enhanced with AE 

architecture that is optimized and can be used in 

cyber security applications. One of the main novelties 

of the system is the usage of a feature extraction 

method based on cross-correlation and it manages to 

dynamically select the most appropriate network 

traffic features by assessing the inter-feature 

relationships over time which provides the model 

with flexibility in response to a changing trend of 

threat and discards duplicating or noise data. The 

system used Python with TensorFlow and Keras to 

implement deep learning and tested on a virtualized 

platform with both synthetic. Evaluation terms 

showed good results, the training accuracy was 

89.23%, validation accuracy was 86.74%, and 

minimal classification loss. The findings have shown 

that the CNN and AE in combination with feature 

extraction of the cross-correlation method has great 

preference to the accuracy and efficiency of network 

threat detection systems. The framework provides 

flexible and scalable real-time cybersecurity defence 

that can be used to reduce false positives and at the 

same time guarantee prompt mitigating effects. 

 

Indexed Terms- Cybersecurity; Convolutional 

Neural Network (CNN); Autoencoder (AE); Cross-

Correlation Feature Extraction; Real-Time Threat 

Mitigation 

 

 

 

 

I. INTRODUCTION 

 

In the last few decades, network technologies have 

continued to improve the overall quality of services, 

but at the same time have resulted in increased 

network security challenges (Elberri et al., 2024). 

Today, threat vectors such as denial of service, 

malicious insider threats, man in the middle attack, 

phishing attack, are some of the few examples of 

popular attack types, employed by network intruders 

to unlawfully attack network environments, and 

violate elements of computer network security which 

are integrity, availability and confidentiality of data,  

thus necessitating the need for feature assessment 

model which investigates the characteristics of packet 

features towards network environments and classify 

threats (Ren et al., 2020). 

 

Traditionally, several solutions such are anti-virus, 

intrusion detection systems, firewalls, etc., are been 

employed to address issues of threats (Ahmed et al., 

2022). However, the sophisticated nature of these 

threat vectors and their unpredictable nature make 

these existing solutions not fit to provide the reliable 

security requirements needed to restore user 

confidentiality and network integrity (Abdulrahman et 

al., 2023). Advances in technologies have both 

positive and negative outcomes. One of the negatives 

is its adoption by threat attackers to optimize threat 

features and generate novel threat vectors, which are 

very difficult to detect using current security systems, 

and it has remained a research hotspot in the cyber 

scientific community (Celebi et al., 2023). 

 

Feature assessment is a recent approach that 

investigates the features of data packets to classify 

threats in real-time. This approach, due to its 

effectiveness in distinguishing features of potential 

threats from normal legitimate features, has recently 
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dominated studies through approaches such as game 

theory, machine learning, fuzzy logic, encryption, 

among other optimization methods (Kim et al., 2020; 

Parra et al., 2019; Sochima et al., 2025; Li et al., 2020; 

Rouamel et al., 2022; Ren et al., 2020; Piazza, 2020; 

Pawlick et al., 2019; Ferguson-Walter et al., 2019). 

Among these approaches, Machine Learning (ML) is 

singled out as the most efficient, due to its ability to 

learn from data directly, model the problem, and then 

use the reference knowledge for feature assessment to 

classify the threat. 

 

Some of the papers that applied ML for network 

feature assessment are Alkhalidi and Yaseen (2021), 

who applied semi semi-supervised ML technique. 

Ghosh et al. (2019) experimented with Support Vector 

Machine (S-VM), Neural Network, Bayes Classifier, 

and Decision Tree, respectively, to generate feature 

assessment models and comparatively analyzed threat 

detection.  However, Elberri et al. (2024) revealed that 

while ML can correctly classify features of packets to 

identify threats, deep learning provides an even better 

solution than ML algorithms. 

 

Deep learning (DL) is a type of convolutional neural 

network with several layers, which has many 

advantages such as improved accuracy, automated 

feature extraction capability, more robust feature 

selection capability, etc (Ebere et al., 2025; Chidi et 

al., 2024). over ML. Studies such as (Sun et al., 2022; 

Almousa et al., 2022; Sharma et al., 2022) have all 

applied DL to manage cybersecurity challenges and 

recorded good performances; however, (Guo et al., 

2023; Elberri et al., 2024) revealed that DL is prone to 

the problem of over-fitting and false positive results, 

thus necessitating the need for a real-time cyber threat 

feature assessment and mitigation framework using 

cross-correlated deep learning techniques. The cross-

correlated approach is tailored towards quality 

assurance in the feature extraction process to help 

identify intricate features of cyber threats and 

legitimate packets, then fed to an improved deep 

learning algorithm, which will utilize an encoded 

convolutional neural network for feature 

identification, concatenation, and classification of 

threats in real time. 

   

 

 

II. RESEARCH METHODOLOGY 

 

The methodology used for this work is the feature-

driven development approach. The approach is the 

best methodology for developing a deep learning 

feature assessment model for threat mitigation because 

it emphasizes a user-centered, iterative process that is 

ideal for addressing complex cybersecurity 

challenges. By focusing on understanding users' needs 

and the dynamic nature of threats, this approach 

enables the development of more practical and 

adaptive solutions. The iterative nature of design 

thinking allows for continuous testing and refinement, 

ensuring that the deep learning models are both 

effective in detecting threats and flexible enough to 

mitigate new or evolving risks. This makes it 

particularly suited for an area where threats are 

constantly changing, and user interaction is critical for 

real-world applications. 

 

2.1 Data Collection  

The data used in this study was collected from the 

NSK-DD dataset on Kaggle. NSK-DD provides 

detailed network traffic records, including normal and 

attack traffic, making it a reliable source for intrusion 

detection research. The collected data included 16 

features such as source and destination ports, IP 

addresses, protocol types, packet counts, and statistical 

flow characteristics. These features were essential in 

capturing the distinctions between normal and 

malicious traffic, aiding in the development of an 

accurate detection model.  The sample size of the data 

collected is 404289 records of network information. 

This made up the secondary data source, while the 

primary data source contained similar network 

attributes, but the test-bed is the National Cyber 

Security Coordination Center (NCCC), Headquarters, 

Three Arms Zone, and Abuja, Nigeria. The sample 

size of data collected is 304333 records of network 

behaviour, which constitutes both normal and 

abnormal network information. The total sample size 

of data collected is 708622, after integration with the 

secondary data. The data description table is reported 

in Table 1,  
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Table 1: Data description

 

Attribute Format Description 

SrcPort Integer Source port number of the network packet. 

DstPort Integer The destination port number of the network packet. 

SrcIP Integer Encoded source IP address of the sender. 

DstIP Integer Encoded destination IP address of the receiver. 

Feature1 Float Statistical feature related to packet flow timing. 

Feature2 Float Another statistical feature captures network behavior. 

Packets Integer Total number of packets exchanged in the flow. 

Bytes Integer Total size of the data transferred in bytes. 

Feature3 Float Computed feature related to packet intervals or delays. 

Feature4 Float Additional statistical metric for traffic behavior. 

Value1 Integer Encoded numerical representation of traffic properties. 

Value2 Integer Another encoded numerical representation of network behavior. 

LabelID Integer A numerical label representing attack type or normal traffic. 

AttackType String Classification of network traffic (e.g., DDoS, Normal). 

Protocol String The transport protocol used (e.g., TCP, UDP, ICMP). 

Timestamp Datetime The exact time when the network packet was recorded. 

2.2 Data Processing 

The collected datasets from NSK-DD underwent a 

structured preprocessing phase to ensure data quality 

and consistency. The raw data contained noise, 

redundant entries, and missing values, which were 

addressed through data cleaning techniques. Feature 

encoding was applied to make the data compatible 

with a deep learning model. Following data 

preparation, an Exploratory Data Analysis (EDA) was 

conducted to understand the distribution of attack and 

normal traffic. Statistical summaries and visualization 

techniques, such as histograms and correlation 

heatmaps, were used to identify feature relationships 

and patterns. These analytical steps provided insights 

into data trends and helped refine the machine learning 

approach for effective intrusion detection. 

 

2.3 The proposed adaptive online feature extraction 

approach using the Cross Correlated Extraction 

(CCE) technique 

Cross Correlation Extractor (CCE) is a feature 

extraction technique that can measure heterogeneous 

features that are similar, time-varying data, and hence 

make it suitable as the feature extraction of choice for 

this work. Traditional CCE, despite its success, may 

not be able to fully capture the complex dependencies 

in network packet inflow under varying conditions, 

thus necessitating the need for an improved adaptive 

CCE for optimal online feature extraction. The 

proposed adaptive CCE is made of several 

components in Figure 1 

 

 
Figure 1: Block diagram of the proposed adaptive 

CCE 

 

i. Multi-Resolution Correlation Coefficient- 

This method computes correlation across different 

resolutions or scales of network data. It helps in 

capturing both short-term and long-term dependencies 

in network features. Multi-resolution techniques, such 

as wavelet transforms, were used to analyze feature 

correlations at different levels of granularity, making 

it useful for detecting anomalies in network traffic at 

varying time scales. 

   

𝑅𝑥,𝑦
(𝑠)

=  
𝑡𝑊𝑥(𝑠,𝑡)𝑡𝑊𝑦(𝑠,𝑡)

√𝑡𝑊𝑥
2

(𝑠,𝑡)𝑡
𝑊𝑦

2
(𝑠,𝑡)

                                        (1) 
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Where 𝑊𝑥  (𝑠, 𝑡) and 𝑊𝑦 (𝑠, 𝑡) are the wavelet 

coefficients of the features X (dependent variable) and 

Y (independent variable) at scale s. 𝑅𝑥,𝑦
(𝑠)

 represents the 

correlation coefficient at specific resolutions. 

 

ii.  Adaptive Correlation Coefficient   

The adaptive correlation coefficient dynamically 

adjusts Equation 1 based on the characteristics of the 

network traffic data. This approach updates correlation 

weights based on real-time variations, ensuring that 

the extracted features remain relevant even as network 

conditions change. 

  

𝑅𝑥,𝑦
(𝑡)

= 𝑤𝑡.
𝑁

𝑡=1
(𝑋𝑡− 𝑋𝑓)

.
(𝑦𝑡− 𝑦).

𝑁
𝑡=1

(𝑋𝑡− 𝑋𝑓)
2 𝑁

𝑡=1
(𝑦𝑡− 𝑦)2

                            (2) 

 

Where wt = 
1

1+𝑒−𝜆𝑓𝑡
 at featuring scoring function𝑓𝑡, 

and tuning parameter λ; 𝑅𝑥,𝑦
(𝑡)

: This is the corrected 

correlation coefficient between feature vector x and 

target variable y, at time step t, adjusted by a weighting 

function; Xt: The value of the feature x at time step t. 

yt The value of the target y at time step t; 𝑋𝑓: The mean 

of the feature X over all time steps t=1 to N; yˉ: The 

mean of the target y over all time steps t=1 to N; The 

total number of time steps or samples in the dataset; 

Ft: The feature scoring function at time step t. It 

quantifies the importance or relevance of the feature X 

at time t; λ: A tuning parameter that adjusts the 

steepness or sensitivity of the sigmoid function used in 

calculating wt; wt: The weighting factor at time t, 

derived using the sigmoid function wt = 
1

1+𝑒−𝜆𝑓𝑡
. It 

ensures that features with higher relevance scores have 

greater influence on the correlation. 

 

iii.  Nonlinear Correlation Coefficient   

Since network traffic data often exhibits nonlinear 

dependencies. The nonlinear correlation coefficient, 

based on a mutual information-based approach, 

captures complex relationships between features that 

would otherwise be missed using standard correlation 

metrics. 

   

iv.  Optimal Time-Lagged Correlation Values   

Network events often exhibit delayed dependencies; 

the optimal time-lagged correlation method finds the 

best time lag for feature relationships, ensuring that 

delayed effects in network behaviour are effectively 

captured. The time lag for the features is defined as 

𝑅𝑥, 𝑦 (𝜏) = 𝑡𝑋(𝑡)𝑌(𝑡+𝜏) , while the optimal lag 𝜏∗ = 

arg, 𝑅𝑥,𝑦 (𝜏) 𝜏. 

 

v.  Entropy Weighted Correlation Features   

Entropy is a measure of uncertainty or randomness in 

data. This approach uses the Shannon entropy 

techniques to assign weights to correlated features 

based on their entropy values. Features with high 

information content (low redundancy) receive higher 

weights, while redundant and less informative features 

are given lower importance. This ensures that the most 

significant network features are prioritized for 

anomaly detection and intrusion detection models. 

   

vi.  Combined Weights of Feature Vectors   

This step integrates multiple correlation-based feature 

extraction techniques by assigning an overall weight 

to each feature vector. The weights are determined 

based on a combination of the above techniques, 

ensuring a balanced feature representation. This 

approach helps in reducing dimensionality while 

retaining the most relevant features for cybersecurity 

analysis.  

  

Algorithm 1: proposed adaptive feature extractor  

1. Start  

2. Identify packet data from the network 

3. Decomposition signal with wavelet and compute 

the correlation matrix (𝑅𝑥,𝑦
(𝑠)

) 

4. Apply 
1

1+𝑒−𝜆𝑓𝑡
 and λ for adaptation of 𝑅𝑥,𝑦

(𝑠)
 

5. Compute the adaptive cross correlation 𝑅𝑥,𝑦
(𝑡)

 

6. Apply a kernel function for nonlinear correlation 

features  

7. Determine Optimal time lagged correlation values 

8. Apply entropy-weighted correlation features  

9. Combine all correlated feature weights  

10. Return the final online extracted features  

11. End  

 

2.4 Novel Deep Learning Model Using an Encoded 

Convolutional Neural Network Technique 

This section presents the model of the deep learning 

techniques used for this work. The technique for this 

work is the CNNand Auto Encoder (AE), then 

experiments on the different models was also carried 

out, considering the CNN+AE. 
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i. Convolutional Neural Networks Model (CNN) 

CNNs are potent tools for cybersecurity tasks, 

particularly in packet analysis. Inspired by the intricate 

organization of neurons in the visual cortex of animals, 

CNNs meticulously analyze input images through 

multiple layers (Lee et al., 2024). By employing 

convolutional operations with small filters (kernels), 

they extract vital features such as edges, textures, and 

shapes. Integrated pooling layers condense spatial 

dimensions, while fully connected layers facilitate 

final anomaly classification. During training, CNNs 

optimize their weights using algorithms like stochastic 

gradient descent (SGD) and back-propagation, 

minimizing a loss function that quantifies differences 

between predicted and actual outputs. This ability to 

learn hierarchical representations directly from raw 

data autonomously has revolutionized information 

security. Figure 2 presents the architecture of the 

CNN. 

 

 
Figure 2: Architecture of the CNN Model 

 

ii. Autoencoder 

Autoencoder represents a category of neural networks 

employed in unsupervised learning tasks, primarily 

focusing on dimensionality reduction and feature 

learning. This architecture comprises two main 

components: an encoder and a decoder. The encoder 

function compresses the input data into a condensed 

latent space representation, while the decoder 

reconstructs the initial input based on this condensed 

representation. Mathematically, an autoencoder can be 

represented as follows. 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ∶ ℎ = 𝑓𝜃 (𝑥)                                             (3) 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 ∶  𝑥 ̂ =  𝑔∅(ℎ)                                          (4) 

 

For a dataset with n samples, the reconstruction 

loss L using mean square error (MSE) and mean 

absolute error (MAE) can be expressed as follows: 

 

𝐿𝑚𝑠𝑒 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥�̂�)

2𝑛
𝑖=1                                          (5) 

𝐿𝑚𝑠𝑒 =  
1

𝑛
∑ |𝑥𝑖 − 𝑥�̂�|

𝑛
𝑖=1                                        (6) 

 

Where x is the input data, h is the latent representation 

(also called encoding), �̂� is the reconstructed output, 

and 𝑓𝜃 and 𝑔∅ are the encoder and decoder functions 

parameterized by ∅  𝜃, respectively. 

  

iii. CNN+AE 

This model combines the feature extraction strength of 

CNN with the efficient data compression and 

reconstruction ability of an Autoencoder. The CNN 

component extracts meaningful spatial features from 

high-dimensional input data, such as network traffic 

flows or medical images, by applying convolutional 

layers that capture essential structural information. 

These extracted features are then passed to an 

Autoencoder, which compresses them into a lower-

dimensional latent representation while preserving 

critical patterns. The decoder component of the 

Autoencoder attempts to reconstruct the input, 

ensuring that only relevant features are retained and 

noise is eliminated. This model is particularly useful 

in anomaly detection for cybersecurity applications, 

where it helps identify deviations in normal network 

behavior while reducing false positives. Figure 3 

presents the flow chart of the CNN+AE. 

 

 
Figure 3: Flowchart of the CNN + AE 
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2.5 Threat Mitigation  

The threat mitigation process in this system begins 

with the real-time analysis of incoming network traffic 

using a cross-correlated deep learning model, which is 

trained to identify complex threat signatures and 

anomalous patterns. Upon detection of a threat feature, 

the model triggers a mitigation response. The system 

then queries user log data, including IP address, 

session activity, and access timestamps, to establish 

the context and potential impact of the threat. This 

correlation allows for precise attribution and rapid 

decision-making. Concurrently, the transmission 

control protocol (TCP) stack is invoked to enforce 

immediate action at the transport layer by terminating 

the packet stream associated with the threat. The 

malicious packet is dropped before it reaches the 

application layer, thereby preventing potential 

exploitation, data leakage, or lateral movement within 

the network. This layered response ensures both 

intelligent detection and swift isolation of harmful 

traffic, minimizing risk while preserving legitimate 

network functionality.  

 

2.6 Integration of the Real-Time Cyber Threat 

Feature Assessment and Mitigation Framework 

System integration involved the seamless combination 

of all core components of the real-time cyber threat 

feature assessment and mitigation framework into a 

unified operational environment. The integration 

process began with the alignment of the deep learning 

model with the network traffic monitoring engine, 

ensuring that raw packet data could be pre-processed 

and fed into the model for real-time threat 

classification. The model's output was then interfaced 

with the transmission control protocol layer to enable 

immediate threat response actions such as packet 

dropping and session termination. Additionally, the 

system was connected to a centralized logging and 

user activity tracking module, allowing for detailed 

threat context analysis and traceability. API-based 

communication protocols were used to synchronize 

various modules, ensuring interoperability. The final 

integrated system was deployed on a virtualized 

testbed to validate end-to-end functionality, 

confirming that detection, analysis, and mitigation 

operations were executed cohesively and in real time. 

Figure 4 presents the program flowchart. 

The flow chart starts with the identification of 

incoming packets from the network. This packet is 

then processed through feature extraction using the 

cross-correlated approach. These features are then 

passed to a trained deep learning which performs real-

time threat feature assessment. Upon detecting a high-

confidence threat, the framework initiates an 

automated response through the threat mitigation 

model, which involves accessing relevant system logs, 

mapping the threat to its source, and executing 

mitigation strategies such as TCP connection reset, 

packet dropping, or session isolation. Additionally, a 

feedback loop should be incorporated to continuously 

update the model based on new threat patterns, thereby 

enhancing its adaptability and detection accuracy. 

 

 
Figure 4: Program flowchart 

 

2.7 System Implementation 

The implementation of the CNN+AE-based network 

assessment model was carried out using the Python 

programming language. Several libraries were applied 

to facilitate data processing, model training, and 

performance evaluation. The primary libraries used 

include TensorFlow and Keras, which were employed 

for constructing and training the deep learning models. 
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NumPy and Pandas were utilized for handling and 

processing large datasets, while Scikit-learn was used 

for feature selection, data splitting, and performance 

evaluation metrics. Additionally, Matplotlib and 

Seaborn were integrated to visualize the model's 

results, including accuracy trends, loss curves, and 

correlation matrices. 

 

The model was trained using an online feature 

extraction approach, where real-time cyber threat data 

was processed dynamically. The cross-correlation 

feature selection method was implemented to identify 

the most relevant features, ensuring that the model 

focused on high-impact indicators of cyber threats. 

The training dataset contained various cyber-attack 

types, such as DoS (Denial of Service), Ransomware, 

Botnet, and Man-in-the-Middle (MITM) attacks, with 

labels indicating normal and malicious activities. The 

dataset was processed through normalization and 

encoding to enhance the model's learning capability. 

 

During training, the dataset was split into training 

(70%), validation (15%), and testing (15%) subsets. 

The model was trained over 100 epochs with an 

adaptive learning rate and the Adam optimizer to 

minimize the categorical cross-entropy loss. 

Performance evaluation was conducted using multiple 

metrics, including accuracy, precision, recall, and F1-

score.The experimental results were visualized 

through performance graphs, including accuracy and 

loss curves, confusion matrices, and ROC curves for 

each attack category. These visualizations 

demonstrated the model’s effectiveness in classifying 

different cyber threats with minimal misclassification. 

 

III. SYSTEM TESTING AND RESULTS 

 

This section presents the testing procedures, 

performance evaluation metrics, and outcomes 

obtained from implementing the proposed real-time 

cyber threat feature assessment and mitigation system. 

System testing was conducted in a controlled network 

environment using both synthetic and real-world 

traffic datasets to simulate various cyberattack 

scenarios, including R2L, U2L, denial-of-service 

(DoS), and packet injection. The objective was to 

validate the framework’s ability to accurately detect 

and mitigate threats in real time. Key performance 

indicators such as detection accuracy, response time, 

precision, and recall were measured to assess the 

effectiveness and robustness of the developed model. 

The results are analyzed to demonstrate the efficiency 

of the deep learning-based threat detection 

mechanism, the responsiveness of the mitigation 

module, and the overall impact on network stability 

and security.  

 

3.1Result of Feature Extraction 

The feature correlation matrix fitness curve over time 

evaluates the effectiveness of the feature extraction 

process in selecting the most relevant attributes for 

network analysis. The fitness score on the y-axis 

represents the degree of correlation and relevance of 

extracted features, while the x-axis represents time, 

showing the progression of feature extraction 

efficiency. This analysis with the graph in Figure 5 is 

essential for understanding how well the cross-

correlated deep learning approach refines features for 

improved network security assessment. 

   

 
Figure 5: Feature Correlation Matrix Fitness Curve 

Over Time 

 

From the plot in Figure 5, we observe a fluctuating 

pattern in the correlation fitness score over time. 

Initially, the fitness score increases, indicating that the 

feature selection algorithm is effectively capturing 

highly correlated attributes in the network data. 

However, after a brief stabilization phase, a significant 

peak appears around the 4-second mark, suggesting 

that the feature extraction model identified a set of 

features with maximum correlation at that instance. 

Following the peak, there is a decline, which can be 

attributed to dynamic network behavior or redundancy 

filtering in the feature selection process. The system 

continuously adjusts to new patterns, discarding 
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irrelevant or redundant features while maintaining a 

balance in feature selection efficiency.   

 

The overall fitness score remains above 0.08, 

indicating that the selected features maintain a 

meaningful level of correlation throughout the 

process. However, the oscillations in the fitness curve 

suggest that the model continuously refines its 

selections, reacting to network traffic variations and 

attack patterns. The observed fluctuations highlight 

the adaptability of the model, ensuring that only the 

most informative features are retained for real-time 

cyber threat detection.   

 

The results demonstrate that the cross-correlation 

technique is highly effective in optimizing feature 

extraction for network security. The peak correlation 

phases suggest periods where the extracted features 

are most informative for anomaly detection, while the 

declines indicate periods of feature redundancy 

filtering. This ensures that the network model does not 

rely on stale or irrelevant features, thereby enhancing 

the overall accuracy of cyber threat detection.   

 

The Feature Correlation Matrix Fitness Curve 

provides valuable insights into the efficiency of the 

cross-correlated feature extraction process. The model 

dynamically refines its feature selection to maintain 

optimal network analysis performance, ensuring that 

cyber threats are detected with high precision. The 

variations in fitness scores confirm that the method 

successfully adapts to changing network conditions, 

filtering out irrelevant features while retaining the 

most significant ones for real-time threat assessment.   

 

3.2 Result of CNN+AE model training 

This section presents the training and validation results 

of the CNN+AE (Convolutional Neural Network + 

Autoencoder) model for network feature assessment. 

The model was trained to classify normal and threat-

related network features using a combination of 

convolutional feature extraction and autoencoder-

based anomaly detection techniques.   

 
Figure 6: Accuracy of the CNN+AE feature 

assessment model 

 

Figure 6 illustrates the accuracy performance of the 

CNN+AE model during training and validation. The 

results indicate that the training accuracy reached 

0.8923, while the validation accuracy was recorded at 

0.8674. These values suggest that the model 

effectively learned feature representations from 

network traffic data, achieving 89.23% accuracy in 

training and 86.74% accuracy in validation.  The high 

validation accuracy indicates that the model 

generalizes well to unseen data, maintaining strong 

predictive performance. This demonstrates the 

model’s capability in accurately distinguishing 

between normal network behavior and potential 

threats using a hybrid approach of convolutional 

feature extraction and anomaly detection through an 

autoencoder.   

 

Additionally, Figure 7 presents the loss performance 

of the CNN+AE model during both training and 

validation, providing insights into how well the model 

minimized classification errors. 

 

 
Figure 7: Loss result of the CNN+AE model for 

network assessment 

 

Figure 7 presents the loss performance of the 

CNN+AE model during training and validation. The 

results indicate that the training loss was recorded at 
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0.3041, while the validation loss was slightly higher at 

0.3099.  The relatively low loss values suggest that the 

CNN+AE model effectively minimized errors while 

learning the distinguishing features of network traffic. 

The small difference between training and validation 

loss further confirms that the model generalizes well 

to unseen data, avoiding overfitting. These results 

highlight the effectiveness of the CNN-based feature 

extraction combined with an autoencoder’s anomaly 

detection capability, ensuring robust network threat 

assessment with minimal classification errors. 

 

CONCLUSION 

 

The proposed and carried out a study later established 

a new deep learning-based system of real-time cyber 

threat feature evaluation and mitigation. The central 

model encourages the usage of Convolutional Neural 

Networks (CNN) spatial feature extraction and 

Autoencoders (AE) as a way of dimension reduction 

and anomaly identification. The essence of the 

effectiveness of the model is using a novel feature 

extraction method that makes use of a cross-

correlation schema, the feature extraction method 

dynamically identifies and stores only the most 

pertinent features on high-dimensional data in the 

network traffic. It analyzes the real-time network data 

packets, identifies the important characteristics, based 

on the correlation approach, and categorizes the 

information into the CNN+AE model. When the 

anomalies are detected, the system automatically 

responds to them by terminating TCP sessions and 

dropping packets. It was implemented in Python with 

the use of TensorFlow, Keras and other assisting 

libraries and deployed into a virtualized testbed 

environment to test realistic threat scenarios.  

 

The cross-correlation algorithm kept a well-defined 

cross-correlation index during run time, thus, it 

consecutively calculated the fitness of retrieved 

features. This flexibility was found beneficial in that 

useless, or old features were dropped and only the best 

explanatory features were employed, and as such, 

making detection accurate and minimizing false 

positives. The model attained training accuracy of 

89.23, validation accuracy of 86.74 and a small value 

of losses, which proves the performance. This paper 

substantiates that feature extraction through cross-

correlation plays a crucial role in the development of 

intelligent, real time- based threat detecting systems. 

The next steps can be future or the integration of time-

based models (such as LSTM), online/continual 

learning, and even large-scale distributed execution to 

have an even more flexible and reactive performance. 
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